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Abstract

This paper shows that, with high probability, randomly punctured Reed–Solomon codes over fields
of polynomial size achieve the list decoding capacity. More specifically, we prove that for any ε > 0
and R ∈ (0, 1), with high probability, randomly punctured Reed–Solomon codes of block length n and
rate R are (1−R− ε,O(1/ε)) list decodable over alphabets of size at least 2poly(1/ε)n2. This extends
the recent breakthrough of Brakensiek, Gopi, and Makam (STOC 2023) that randomly punctured Reed–
Solomon codes over fields of exponential size attain the generalized Singleton bound of Shangguan and
Tamo (STOC 2020).

1 Introduction

Reed–Solomon (RS) codes [RS60] are a classical family of error-correcting codes that have found numerous
applications both in theory and in practice. They are obtained by evaluating low-degree univariate polynomi-
als over a finite field Fq at a set of evaluation points. Formally, given distinct elements α1, α2, . . . , αn ∈ Fq,
the [n, k] RS code over Fq with evaluation points α1, . . . , αn is defined to be the linear code

RSn,k(α1, . . . , αn) :=
{(
f(α1), . . . , f(αn)

)
: f(X) ∈ Fq[X], deg(f) < k

}
⊆ Fn

q .

It has rate R = k/n and relative minimum distance δ = (n − k + 1)/n, attaining the Singleton bound
[Sin64]. Thus, an RS code of rate R has the unique decoding radius (1 − R)/2, which is optimal by the
Singleton bound. In this paper, we consider the more challenging problem of determining the list decoding
radius of RS codes.

List decoding. The notion of list decoding was introduced independently by Elias [Eli57] and Wozencraft
[Woz58] in the 1950s as a natural generalization of unique decoding, where the decoder is allowed to output
L ≥ 1 codewords and can potentially correct more than δ/2 fraction of errors, δ being the relative minimum
distance of the code. Since its introduction, list decoding has found many applications in theoretical computer
science [Sud00, Vad12, GL89, CPS99, GRS00] and information theory [Eli91, Ahl73, Bli86, Bli97].

Formally, a code C ⊆ Σn over an alphabet Σ is said to be (combinatorially) (ρ, L) list decodable if for
every y ∈ Σn, the Hamming ball centered at y with relative radius ρ ∈ [0, 1] contains at most L codewords
in C. By the list decoding capacity theorem [GRS19, Theorem 7.4.1], for q ≥ 2, 0 ≤ ρ < 1− 1

q , ε > 0, and
sufficiently large n, there exist (ρ, L) list decodable codes of block length n, rate R, alphabet size q, and list
size L = O(1/ε) such that

R ≥ 1−Hq(ρ)−O(ε) (1.1)
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where Hq(·) denotes the q-ary entropy function. Codes satisfying (1.1) are said to achieve the list decoding
capacity. When q ≥ 2Ω(1/ε), Condition (1.1) can be rewritten as ρ ≥ 1−R−O(ε).

In a seminal paper [GR08], Guruswami and Rudra constructed the first explicit list decodable codes
achieving the list decoding capacity, known as folded Reed–Solomon codes. Other explicit capacity-achieving
codes have been discovered since then, which are based on the same or similar techniques [Gur09, GW13,
Kop15, GRZ21, GX22]. These codes are not only combinatorially list decodable, but also efficiently list
decodable, meaning that they admit efficient list decoding algorithms. On the other hand, the known bounds
on the list size in these constructions are substantially worse than the bound O(1/ε) in the list decoding
capacity theorem, being at least exponential in 1/ε.1

List decodability of RS codes. While folded RS codes have been shown to achieve the list decoding
capacity in [GR08], understanding the list decodability of RS codes remains an important problem and has
attracted a lot of attention. See, e.g., [Gur04, Rud07, Vad12]. By the classical Johnson bound [Joh62, GS01],
an RS code of rate R is list decodable up to the radius around 1 −

√
R. Guruswami and Sudan [GS06],

built on the earlier work of Sudan [Sud97], gave an efficient algorithm that list decodes RS codes up to the
Johnson bound.

Going beyond the Johnson bound is much more challenging. Ben-Sasson, Kopparty, and Radhakrishnan
[BSKR09] proved that over certain (non-prime) finite fields Fq, full-length RS codes are not list decodable
substantially beyond the Johnson bound. However, this result does not rule out the possibility that randomly
punctured RS codes (i.e., RS codes with a random subset of evaluation points inFq) are, with high probability,
list decodable beyond the Johnson bound. Proving that these codes can indeed outperform the Johnson bound
is, however, highly nontrivial due to the strong algebraic structure of RS codes. In particular, the lack of
independence between the codewords prevents one from simply applying the probabilistic method.

As a side remark, some other natural families of random codes with structures have been shown to
be list decodable well beyond the Johnson bound and in fact achieve the list decoding capacity, including
random linear codes [GHK11, CGV13, Woo13, RW18, GLM+21] and random LDPC codes [MRRZ+20].
In [GM22], it was shown that random puncturings of low-bias linear codes over Fq of rate R are, with high
probability, (ρ, L) list decodable if R < 1−Hq(ρ)− Cρ,q

L − ε, where Cρ,q depends only on ρ and q.
Rudra and Wootters [RW14] were the first to show that randomly punctured RS codes are list decodable

beyond the Johnson bound for a certain range of parameters. Specifically, they proved that for small enough
ε and large enough q, randomly punctured RS codes of rate ε

log5(1/ε) log q
over Fq are, with high probability,

(ρ, L) list decodable with ρ = 1 − O(ε) and L = O(1/ε). In [ST20], Shangguan and Tamo proved that if
C is a linear code of rate R that is (ρ, L) list decodable, then

ρ ≤ L

L+ 1
(1−R). (1.2)

Bound (1.2) is called the generalized Singleton bound in [ST20]. Indeed, it generalizes the bound ρ ≤
(1−R)/2 for unique decoding (i.e., the case where L = 1) that follows from the Singleton bound.

For L = 2, 3, Shangguan and Tamo proved in the same paper [ST20] that their generalized Singleton
bound is (with high probability) attained by randomly punctured RS codes over alphabets of exponential
size. They further conjectured that this also holds for arbitrary L. In a follow-up paper [GLS+22], Guo,
Li, Shangguan, Tamo, and Wootters proved that randomly punctured RS codes of rate R over alphabets
of exponential size are (1 − ε,O(1/ε)) list decodable for some R = Ω( ε

log(1/ε)). Their result was greatly
improved by Ferber, Kwan, and Sauermann [FKS22], who used a short and clever proof to show that, over a
large enough alphabet of (at least) polynomial size, a code of rate R obtained by randomly puncturing any
code is, with high probability, (1−ε,O(1/ε)) list decodable for someR = Ω(ε). Using the proof of [FKS22],

1For folded RS codes [GR08], the best known upper bound for the list size is (1/ε)O(1/ε), proved in [KRZSW18].

2



Goldberg, Shangguan, and Tamo [GST22] showed that a randomly punctured RS code of rate R and block
length n over a large enough field of size nOR,1/ε(1) is, with high probability, (1− 2

R+1R − ε,O(1/ε)) list
decodable. This follows from a more general result that they proved about the list decodability of randomly
punctured linear codes (see [GST22, Theorem 5]).

In a recent breakthrough [BGM22a], Brakensiek, Gopi, and Makam resolved the conjecture of Shangguan
and Tamo in the affirmative by showing that generic RS codes achieve the generalized Singleton bound. This
means that over a large enough alphabet, randomly punctured RS codes of rate R are, with high probability,
( L
L+1(1 − R), L) list decodable.2 Brakensiek et al. proved their result by establishing connections among

three notions of linear codes that strengthen the classical notion of maximum distance separable (MDS)
codes. These are MDS(ℓ) codes studied in [BGM22b, BDG22], GZP(ℓ) codes, which are linear MDS
codes whose generating matrices attain generic zero patterns [DSY14, BGM22a], and LD-MDS(ℓ) codes
(introduced and called ℓ-MDS codes in [Rot22]), which are linear codes that attain the bound (1.2) in a
strong sense. Surprisingly, Brakensiek et al. showed that these notions are all equivalent. More precisely,
they proved that for ℓ ≥ 2, a linear code C is MDS(ℓ) iff it is GZP(ℓ), which holds iff the dual code of C
is LD-MDS(≤ ℓ− 1) (i.e., LD-MDS(ℓ′) for all ℓ′ ≤ ℓ− 1). It is known that a generic RS code is GZP(ℓ),
which was proved independently by Lovett [Lov18] and Yildiz and Hassibi [YH19] in their resolutions
of the GM-MDS conjecture [DSY14]. Combining this fact with the above equivalence and the duality of
(generalized) RS codes, Brakensiek et al. proved that generic RS codes are LD-MDS(ℓ) for all ℓ, which
implies the conjecture of Shangguan and Tamo.

The alphabet size. While Brakensiek et al. [BGM22a] showed that randomly punctured RS codes over
large enough alphabets attain the generalized Singleton bound ρ ≤ L

L+1(1−R), the alphabet size they need
is quite large, which is at least exponential in nL when the rate R = k/n is a bounded away from zero and
one. Moreover, Brakensiek, Dhar, and Gopi [BDG22] recently proved an exponential lower bound on the
alphabet size for such R and L = 2 (see [BDG22, Corollary 1.7 and Theorem 1.8]). Also see [BGM22b]
for an earlier lower bound.

However, as noted in [BDG22], the exponential lower bound applies only if we want to exactly achieve
the generalized Singleton bound. In particular, it does not rule out the possibility that a randomly punctured
RS code is, with high probability, (1 − R − ε,O(1/ε)) list decodable over an alphabet of polynomial size,
which is consistent with the list decoding capacity theorem and known lower bounds.

We remark that both in theory and in practice, codes over smaller alphabets tend to have more applications.
Whether or not there exist RS codes over polynomial-size alphabets that still achieve the list decoding capacity
is thus a very important question. In this paper, we answer this question in the affirmative. See Table 1 below
for a summary of known results on the list decodability of randomly punctured RS codes over Fq.

1.1 Our Results

We now state our main results. Recall that a linear code C ⊆ Fn
q is (ρ, L) list decodable (resp. (ρ, L)

average-radius list decodable) if there do not exist y ∈ Fn
q and distinct codewords x1, . . . , xL+1 ∈ C such

that the maximum relative distance (resp. average relative distance) between xi and y over i ∈ [L + 1]
is bounded by ρ. And a randomly punctured [n, k] RS code over Fq is just RSn,k(α1, . . . , αn) where
(α1, . . . , αn) is uniformly distributed over the set of vectors in Fn

q with distinct coordinates.
Our main theorem states that with high probability, randomly punctured RS codes over alphabets of

polynomial size are (average-radius) list decodable up to a radius that almost attains the generalized Singleton
bound.

2In fact, Brakensiek, Gopi, and Makam [BGM22a] proved the stronger statement that randomly punctured RS codes of rate R
are, with high probability, ( L

L+1
(1−R), L) average-radius list decodable. See Definition 2.1.
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Table 1: Adapted from [GST22] and [BGM22a]. Known results on the combinatorial list decodability of
randomly punctured RS codes over Fq. We use c and cR,ε to denote an absolute constant and a constant
depending on R and ε, respectively.

Radius ρ List size L Rate R Field size q

Johnson bound [GS01] 1− ε O(1/ε2) Ω(ε2) q ≥ n

[RW14] 1− ε O(1/ε) Ω
(

ε
log5(1/ε) log q

)
q ≥ cn logc(n/ε)/ε

[ST20] L(1−R)
L+1 2, 3 R q ≥ 2cn

[GLS+22] 1− ε O(1/ε) Ω
(

ε
log(1/ε)

)
q ≥

(
1
ε

)cn
[FKS22] 1− ε O(1/ε) Ω(ε) q ≥ poly(n)

[GST22] 1− 2R
R+1 − ε O(1/ε) R q ≥ ncR,ε

[BGM22a] 1−R− ε 1−R−ε
ε R q ≥ exp(Θ̃(n/ε))

Our work (Thm. 1.1) L(1−R−ε)
L+1 L R q ≥ 2poly(L)/εn2

Our work (Cor. 1.2) 1−R− ε 2(1−R−ε)
ε R q ≥ 2poly(1/ε)n2

Theorem 1.1. For ε > 0, positive integers n, k, L with k ≤ n, and a prime power q ≥ 2poly(L)/εnk, a
randomly punctured [n, k] RS code of rateR = k/n over Fq is, with high probability,

(
L

L+1(1−R− ε), L
)

average-radius list decodable (and hence also
(

L
L+1(1−R− ε), L

)
list decodable).

As a corollary, we prove that randomly punctured RS codes over alphabets of polynomial size achieve
the list decoding capacity with high probability.

Corollary 1.2. For ε > 0, positive integer n, k with k ≤ n, and a prime power q ≥ 2poly(1/ε)nk, a randomly
punctured [n, k] RS code of rate R = k/n over Fq is, with high probability, (1−R− ε, L) average-radius
list decodable (and hence also (1−R− ε, L) list decodable) with L = max

{⌈
2(1−R)

ε

⌉
− 1, 1

}
.

See Theorem 4.7 and Corollary 4.8 for the more detailed versions of Theorem 1.1 and Corollary 1.2,
respectively.

Recall that Brakensiek et al. [BGM22a] proved that with high probability, randomly punctured RS
codes are

(
1−R− ε, 1−R−ε

ε

)
list decodable over alphabets of exponential size. Compared with their result,

Corollary 1.2 reduces the required alphabet size to Oε(n
2).

On the other hand, the list size in Corollary 1.2 is worse than that in [BGM22a] by a constant factor.
This constant factor can be brought arbitrarily close to one at the cost of increasing the field size. See
Corollary 4.8 for details.

1.2 Proof Overview

The ideas in our proof are quite natural and intuitive. To explain these ideas, we first take a look at why
previous results in [ST20, GLS+22, BGM22a] require an exponentially large alphabet. In [ST20], Shangguan
and Tamo showed that proving the list decodability of randomly punctured RS codes reduces to proving
that certain matrices, which they call intersection matrices, have full column rank. In this paper, we use
an equivalent variant called reduced intersection matrices, but the basic idea is the same. Namely, one
can show that randomly punctured RS codes of block length n over a large enough finite field Fq are, with
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high probability, (average-radius) list decodable if a collection of reduced intersection matrices all have full
column rank. See Section 3, and in particular, Lemma 3.5 for details.

It follows from the analysis in [BGM22a] that the reduced intersection matrices, as symbolic matrices in
variablesX1, . . . , Xn, do have full column rank. Then by the Schwartz–Zippel lemma [Sch80, Zip79], these
matrices still have full column rank with high probability under a random assignment X1 = α1, . . . , Xn =
αn, where α1, . . . , αn are the random evaluation points of the RS code. More specifically, the probability
that each of the reduced intersection matrices fails to have full column rank under a random assignment
X1 = α1, . . . , Xn = αn is bounded by a function inverse linear in q. However, we also need to apply a union
bound over the set of reduced intersection matrices to prove that there exist evaluation points α1, . . . , αn for
which all the reduced intersection matrices have full column rank simultaneously. As there are exponentially
many reduced intersection matrices, applying the union bound requires the alphabet size q to be exponentially
large in n.

It is not clear to us whether it is possible to use much fewer (e.g., polynomially many) reduced intersection
matrices. Nevertheless, to improve the alphabet size q, one may also try to reduce the probability that each
reduced intersection matrix fails to have full column rank under a random assignment. If this probability
can be brought down to exp(−Ω(n)) even if q is only polynomially large, then we would be able to afford
the union bound over polynomially large alphabets.

Our key observation is that reducing the failure probability to exp(−Ω(n)) is indeed possible if we
introduce a little “slackness” in the parameters, which corresponds to slightly worsening the list decoding
radius of the code. To see this, consider the toy problem of independently picking m random row vectors
v1, . . . , vm ∈ Fn

q to form anm×nmatrixM , which we want to have full column rank. If we choosem = n,
which is the optimal choice of m, then the probability that M has full column rank is bounded by a function
inverse linear in q, and this happens only if each vi is not in the span of v1, . . . , vi−1. However, suppose we
choosem = (1+λ)n for some small λ > 0. In this case, we could afford λn “faulty” vectors vi, i.e., vi may
be in the span of previous vectors, in which case we just skip it and consider the next vector. The probability
that the matrixM has full column rank is then exponentially small in λn even if q is only polynomially large.

Our actual analysis is somewhat more complicated than the one sketched above, but the intuition remains
the same. In our analysis, we consider a reduced intersection matrix A of full column rank, which is a
symbolic matrix in the variables X1, . . . , Xn. Then we fix a nonsingular maximal square submatrix M of
A, and consider if its nonsingularity changes under a partial random assignment X1 = α1, . . . , Xi = αi,
where i goes from zero to n. If M remains nonsingular after assigning all of the n variables, then we have
certified that A continues to have full column rank under the assignment. On the other hand, if M becomes
singular after assigning some variableXi, then we call i a faulty index. In this case, we updateA by deleting
all the rows that depend on Xi, pick a new nonsingular maximal square submatrix M of A, and start all
over again. By repeating this process up to r times, where r is some parameter linear in n, we either certify
that A has full column rank under the randomly chosen assignment, or obtain a sequence of faulty indices
(i1, . . . , ir). Moreover, our analysis shows that the latter case occurs with exponentially small probability
even after taking the union bound over all the possible sequences (i1, . . . , ir). Further taking the union
bound over all the reduced intersection matrices establishes the average-radius list decodability of randomly
punctured RS codes.

The above analysis requires the reduced intersection matrices to have the property that they have full
column rank even after deleting a small number of rows, namely, those whose associated variables have
faulty indices. We prove this property (formally stated as Lemma 3.11) by following and extending the proof
in [BGM22a]. We also remark that this full-rank property is used in a black-box manner in our analysis,
which makes the analysis quite general.
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2 Notations and Preliminaries

Let N = {0, 1, . . . }, N+ = {1, 2, . . . }, and [n] = {1, 2, . . . , n} for n ∈ N. Denote by |S| the cardinality of
a set S. We write S = P1 ⊔ P2 ⊔ · · · ⊔ Pk if the sets P1, . . . , Pk are nonempty and form a partition of the
set S. All logarithms are to the base 2. Denote by Fq the finite field of size q. For convenience, we use IJ
to denote a set system (Ij : j ∈ J) indexed by a set J .

Write Fn×m for the vector space of n × m matrices over a field F. For M ∈ Fn×m, S ⊆ [n], and
T ⊆ [m], denote by MS,T the |S| × |T | submatrix of M where the rows are selected by S and the columns
are selected by T , and the order of rows and that of columns are preserved. We writeMi,T instead ofM{i},T
if S = {i}, and similarly write MS,j instead of MS,{j} if T = {j}.

Unless stated otherwise, all vectors are column vectors. For a (column) vector v ∈ Fn and S ⊆ [n],
define v|S ∈ F|S| to be the vector obtained by restricting v to the subset S of coordinates, where the order of
coordinates is preserved.

For a matrix M ∈ Fn×m, define Im(M) := {Mx : x ∈ Fm} and Ker(M) := {x ∈ Fm : Mx = 0},
i.e., Im(M) and Ker(M) are the image and the kernel of the linear map Fn → Fm represented by M ,
respectively.

Codes. A code over an alphabet Σ is simply a set C ⊆ Σn, where n is called the block length of C. The
elements of C are called the codewords of C. The rate of C is r(C) := log |C|

n log |Σ| ∈ [0, 1]. The (relative)
Hamming distance δ(x, y) between x, y ∈ Σn is the fraction of coordinates where x and y differ. The
(relative) minimum distance of C is δ(C) := minx,y∈C,x̸=y δ(x, y).

When Σ is a finite field Fq and C ⊆ Fn
q is an Fq-subspace, we say C is a linear code over Fq. A linear

code of block length n and dimension k is also called an [n, k] code, and its rate is simply k/n. For a linear
code C ⊆ Fn

q of dimension k, a generating matrix of C is a matrix G ∈ Fn×k
q such that C = Im(G), and

a parity-check matrix of C is a matrix H ∈ F(n−k)×n
q such that C = Ker(H). Generating matrices always

have full column rank and parity check matrices always have full row rank.

Next, we define list decodable codes and average-radius list decodable codes.

Definition 2.1 (List decodable code). For ρ ∈ [0, 1] and L ∈ N+, a code C ⊆ Σn is said to be (ρ, L) list
decodable if for every y ∈ Σn, the Hamming ball By,ρ := {x ∈ Σn : δ(x, y) ≤ ρ} contains at most L
codewords of C. And C is said to be (ρ, L) average-radius list decodable if there do not exist y ∈ Σn and
distinct codewords x1, . . . , xL+1 ∈ C such that 1

L+1

∑L+1
i=1 δ(xi, y) ≤ ρ.

Note that a code is (ρ, L) list decodable if it is (ρ, L) average-radius list decodable. In [BGM22a], a
linear code of rate R that is ( L

L+1(1 − R), L) average-radius list decodable is also called an LD-MDS(L)
code.

Reed–Solomon codes. Fix a finite field Fq. Given distinct α1, α2, . . . , αn ∈ Fq, the [n, k] Reed–Solomon
(RS) code over Fq with evaluation points α1, . . . , αn is the linear code

RSn,k(α1, . . . , αn) :=
{(
f(α1), . . . , f(αn)

)
: f(X) ∈ Fq[X], deg(f) < k

}
⊆ Fn

q

which has dimension k and minimum relative distance (n− k + 1)/n.
The Vandermonde matrix

Vn,k(α1, . . . , αn) := (αj−1
i )i∈[n],j∈[k] ∈ Fn×k

q

is a generating matrix of RSn,k(α1, α2, . . . , αn). We also use Vn,k to denote the symbolic Vandermonde
matrix

Vn,k := (Xj−1
i )i∈[n],j∈[k] ∈ Fq(X1, . . . , Xn)

n×k.
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Both Vn,k(α1, . . . , αn) and Vn,k are MDS matrices, i.e., their maximal minors are all nonzero.

Duality of (generalized) RS codes. It is well known that if C is an RS code, then its dual code C⊥ is a
generalized RS code. This means C⊥ has a generating matrix that is, up to scaling the rows, a Vandermonde
matrix. We record this fact in terms of symbolic Vandermonde matrices as follows.

Lemma 2.2. V ⊤
n,n−kDVn,k = 0, where D = diag(v1, . . . , vn) and vi =

∏
j∈[n]\{i}

1
Xi−Xj

for i ∈ [n].

Proof. For j ∈ [n− k] and ℓ ∈ [k], the (j, ℓ)-th entry of V ⊤
n,n−kDVn,k is

∑
i∈[n] viX

j+ℓ−2
i , and we want to

prove that it equals zero. We will show that in fact, for any polynomial f(X) ∈ Fq[X] of degree at most
n− 2, we have

∑
i∈[n] vif(Xi) = 0.

By Lagrange’s interpolation formula, we have f(X) =
∑

i∈[n]

(∏
j∈[n]\{i}

X−Xj

Xi−Xj

)
f(Xi). Thus, the

coefficient of Xn−1 in f(X) is
∑

i∈[n]

(∏
j∈[n]\{i}

1
Xi−Xj

)
f(Xi) =

∑
i∈[n] vif(Xi), which we know is

zero as deg(f) ≤ n− 2.

3 Reduced Intersection Matrices

We introduce the notion of reduced intersection matrices. They are essentially equivalent3 to the notion of
intersection matrices introduced in [ST20], but are somewhat more lightweight to use.

3.1 Definitions and Basic Properties

Following [ST20], we first define the weight function wt(·) for finite set systems on [n].

Definition 3.1 (Weight function). Let n ∈ N+. For a collection of subsets Ij ⊆ [n] indexed by a finite set
J , define

wt(IJ) :=
∑
j∈J
|Ij | −

∣∣∣ ⋃
j∈J

Ij

∣∣∣.
We now give the formal definition of reduced intersection matrices.

Definition 3.2 (Reduced intersection matrix). Let n, k, t ∈ N+ and Ij ⊆ [n] for j ∈ [t]. Let G ∈ Fn×k be
a matrix over a field F. For i ∈ [n], let Ji := {j ∈ [t] : i ∈ Ij} ⊆ [t]. In other words, the sets Ji ⊆ [t] are
chosen such that for (i, j) ∈ [n]× [t], we have i ∈ Ij iff j ∈ Ii.

Construct a matrix RG,I[t] over F as follows. Enumerate all i ∈ [n] such that |Ji| ≥ 2. For each
such i, write Ji = {j1, . . . , j|Ji|} with j1 < · · · < j|Ji|, and for u = 2, . . . , |Ji|, add to RG,I[t] a row
ri,u = (r(1), . . . , r(t−1)) of length (t− 1)k that is determined as follows:

• r(j1) = Gi,[k] (i.e., the i-th row of G).

• r(ju) = −Gi,[k] if ju ̸= t.

• All the other r(j) are zero row vectors of length k.

3In [ST20], an intersection matrix is used to represent a system of linear equations satisfied by the pairwise differences
fij = fj − fi between a list of codewords fi. We define a reduced intersection matrix such that it represents an equivalent system
of linear equations obtained by eliminating some variables using the cycle relations fij + fjk = fik and removing some redundant
linear equations.
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Order the rows ri,u in the lexicographic order of (i, u). This yields the matrixRG,I[t] with (t− 1)k columns.
Its number of rows is

∑
i∈[n]:|Ji|≥2(|Ji| − 1) = wt(I[t]). So RG,I[t] ∈ Fwt(I[t])×(t−1)k. We call RG,I[t] the

reduced intersection matrix associated with G and I[t].

We now explain the motivation behind Definition 3.2 above. Suppose C ⊆ Fn
q is a linear code with

a generating matrix G ∈ Fn×k
q , y ∈ Fn

q is a transmitted word, and c1, . . . , ct ∈ C are t codewords. We
may choose (unique) messages f1, . . . , ft ∈ Fk

q such that cj = Gfj for j ∈ [t]. Let I1, . . . , It ⊆ [n] such
that each Ij is the set of indices of the coordinates where y and cj agree. For j ∈ [t], let fj,t := fj − ft.
We are interested in these differences fj,t as knowing them and some fj0 allows us to determine all fj via
fj = fj0 − fj0,t + fj,t.

Consider i ∈ [n]. The set Ji consists of the set of j ∈ [t] such that cj = Gfj and y agree at the i-th
coordinate. In particular, for every pair j, j′ ∈ Ji, we have a linear equation Gi,[k]fj,t − Gi,[k]fj′,t = 0
that the differences fj,t must satisfy. But note that these equations are not linearly independent. In fact,
let j1 be the smallest element in Ji. Then these linear equations are generated by the subset of equations
Gi,[k]fj1,t −Gi,[k]fj,t = 0, where j ranges over Ji \ {j1}.

View the coordinates of the vectors fj,t as unknowns. Then consider the system of linear equations
Gi,[k]fj1,t − Gi,[k]fj,t = 0 in these unknowns, where i ∈ [n], j ∈ Ji, and j1 = j1(u) is the smallest
element of Ji. The reduced intersection matrix RG,I[t] is defined to exactly represent this system of linear
equations, except for one technicality: A we already know ft,t = 0, we exclude the coordinates of ft,t from
the unknowns. This is reflected in Definition 3.2 above, where we let r(ju) = −Gi,[k] only if ju ̸= t.

Finally, we remark that while the above explanation assumesG andRG,I[t] are matrices over a finite field
Fq, in our applications, they will be matrices over a function field F = Fq(X1, . . . , Xn). In particular, we
will choose G to be a symbolic Vandermonde matrix Vn,k, which corresponds to a “generic RS code.”

Example 3.3. Let n = 6, k = 3, t = 4, and G = Vn,k =


1 X1 X2

1

1 X2 X2
2

...
...

...
1 X6 X2

6

. Also let I1 = {1, 3, 4}, I2 =

{1, 4, 5}, I3 = {2, 3, 4, 5}, I4 = {1, 2, 4, 6}. Then J1 = {1, 2, 4}, J2 = {3, 4}, J3 = {1, 3}, J4 =
{1, 2, 3, 4}, J5 = {2, 3}, J6 = {4}, and wt(I[4]) = 8. The reduced intersection matrix RG,I[t] ∈
F(X1, . . . , X6)

8×9 is given as follows.

RG,I[t] =



1 X1 X2
1 −1 −X1 −X2

1

1 X1 X2
1

1 X2 X2
2

1 X3 X2
3 −1 −X3 −X2

3

1 X4 X2
4 −1 −X4 −X2

4

1 X4 X2
4 −1 −X4 −X2

4

1 X4 X2
4

1 X5 X2
5 −1 −X5 −X2

5


.

WhenG is a symbolic Vandermonde matrix, we have the following easy observation regarding the degree
of the maximal minors of RG,I[t] , which will be used later.

Lemma 3.4. IfG = Vn,k andM is a (t− 1)k× (t− 1)k submatrix ofRG,I[t] , then det(M) is a polynomial
in F[X1, . . . , Xn] whose degree in each variable Xi is at most (t− 1)(k − 1).

Proof. This follows from the definition. The degree bound holds since for each i ∈ [n], there are at most
t− 1 rows of RG,I[t] that depend on Xi, and the degree of each entry of RG,I[t] in Xi is at most k − 1.

8



The following lemma states that if a linear code with a generating matrix G is not average-radius list
decodable, then we can identify a reduced intersection matrix RG,I[t] that does not have full column rank,
where I[t] is a set system satisfying certain conditions.

Lemma 3.5. Let ρ ∈ [0, 1], λ ≥ 0, and L ∈ N+. Let C be an [n, k] linear code over a finite field Fq with a
generating matrixG ∈ Fn×k

q . SupposeC is not (ρ, L) average-radius list decodable and ρ ≤ L
L+1

(n−(1+λ)k)
n .

Then there exist t ∈ {2, 3, . . . , L+ 1} and sets I1, . . . , It ⊆ [n] such that

(1) Ker(RG,I[t]) ̸= 0,

(2) wt(I[t]) ≥ (1 + λ)(t− 1)k, and

(3) wt(IJ) ≤ (1 + λ)(|J | − 1)k for all nonempty J ⊊ [t].

Proof. As C is not (ρ, L) average-radius list decodable, there exist y = (y1, . . . , yn) ∈ Fn
q and distinct

c1, . . . , cL+1 ∈ C such that
∑L+1

j=1 δ(cj , y) ≤ (L + 1)ρ. For each j ∈ [L + 1], write cj = (cj,1, . . . , cj,n)
and let Ij be the set of indices i ∈ [n] where cj and y agree, i.e., cj,i = yi. As n − |Ij | = n · δ(cj , y) for
j ∈ [L+ 1], we have

L+1∑
j=1

|Ij | = n(L+ 1)− n ·
L+1∑
j=1

δ(cj , y) ≥ n(L+ 1)(1− ρ).

Therefore,

wt(I[L+1]) =

L+1∑
j=1

|Ij | −

∣∣∣∣∣
L+1⋃
j=1

Ij

∣∣∣∣∣ ≥ n(L+ 1)(1− ρ)− n ≥ (1 + λ)Lk (3.1)

where the last inequality uses the assumption ρ ≤ L
L+1

(n−(1+λ)k)
n . Choose a minimal set S ⊆ [L+ 1] with

respect to inclusion such that |S| ≥ 2 and wt(IS) ≥ (1 + λ)(|S| − 1)k. By (3.1), such a set S exists. Let
t = |S|. By permuting the codewords cj and the corresponding sets Ij , we may assume S = [t]. So (2) in
the lemma holds.

By definition, we have wt(IJ) = 0 for any J ⊆ [t] of size one. Therefore, (3) in the lemma holds by the
minimality of S.

Finally, we show that there exists a nonzero vector v ∈ F(t−1)k
q such that RG,I[t] · v = 0. For j ∈ [t], let

xj ∈ Fk
q be the unique vector satisfying Gxj = cj , and let xj,t = xj − xt. In particular, xt,t = 0.

Let v = (x1,t, . . . , xt−1,t) ∈ F(t−1)k
q . Now consider an arbitrary row r of RG,I[t] . By the definition of

RG,I[t] (Definition 3.2), there exist ℓ, ℓ′ ∈ [t] with ℓ < ℓ′ and i ∈ Iℓ ∩ Iℓ′ such that r = (r(1), . . . , r(t−1)),
where r(ℓ) = Gi,[k], r(ℓ

′) = −Gi,[k] if ℓ′ ̸= t, and all the other r(j) are zero row vectors of length k.
If ℓ′ ̸= t, then r · v = Gi,[k]xℓ,t − Gi,[k]xℓ′,t. If ℓ′ = t, then we still have r · v = Gi,[k]xℓ,t =

Gi,[k]xℓ,t −Gi,[k]xℓ′,t since xt,t = 0. Therefore,

r · v = Gi,[k]xℓ,t −Gi,[k]xℓ′,t = Gi,[k](xℓ − xt)−Gi,[k](xℓ′,t − xt)
= Gi,[k]xℓ −Gi,[k]xℓ′ = cℓ,i − cℓ′,i = 0

where the last equality holds since cℓ,i, cℓ′,i = yi due to the fact i ∈ Iℓ ∩ Iℓ′ . As r is an arbitrary row of
RG,I[t] , we have RG,I[t] · v = 0. So Ker(RG,I[t]) ̸= 0.
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3.2 Fundamental Results Established by Brakensiek–Gopi–Makam

We review several results proved by Brakensiek, Gopi, and Makam [BGM22a, BGM22b], which will be
used in our analysis.

Recall that for M ∈ Fk×n, S ⊆ [k], and T ⊆ [n], we denote by MS,T the |S| × |T | submatrix of M
where the rows are selected by S and the columns are selected by T . In particular, M[k],T is the k × |T |
matrix consisting of the columns of M with indices in T , and Im(M[k],T ) is its column span.

In the following, we say ann×mmatrixW is generic (with the base fieldF) ifW ∈ F(X1,1, . . . , Xn,m)n×m

and the (i, j)-th entry of W is the indeterminate Xi,j for i ∈ [n] and j ∈ [m]. The next theorem, proved
in [BGM22a], gives a formula for computing the dimension of the intersection of several column spans
Im(W[k],Ai

) for a generic k × n matrix W .

Theorem 3.6 ([BGM22a, Theorem 1.15]). For a generic k × n matrix W and sets A1, . . . , Aℓ ⊆ [n], each
of size at most k, it holds that

dim

(
ℓ⋂

i=1

Im(W[k],Ai
)

)
= max

P1⊔P2⊔···⊔Ps=[ℓ]

 s∑
i=1

∣∣∣ ⋂
j∈Pi

Aj

∣∣∣− (s− 1)k

 , (3.2)

where the maximum is taken over all partitions of [ℓ].

In [BGM22a], an [n, k] linear code with a generating matrix G is said to be MDS(ℓ) if the LHS of (3.2)
equals dim

(⋂ℓ
i=1 Im((G⊤)[k],Ai

)
)

for all A1, . . . , Aℓ ⊆ [n] of size at most k. One of the main results of
[BGM22a] is that generic RS codes are MDS(ℓ) for all ℓ. In other words, the following theorem holds.

Theorem 3.7 ([BGM22a, Corollary 1.14]). Let G = Vn,k = (Xj−1
i )i∈[n],j∈[k]. Let W be a generic k × n

matrix. Then for all ℓ ∈ N+ and sets A1, . . . , Aℓ ⊆ [n], each of size at most k,

dim

(
ℓ⋂

i=1

Im((G⊤)[k],Ai
)

)
= dim

(
ℓ⋂

i=1

Im(W[k],Ai
)

)
.

Finally, we need the following lemma in [BGM22b], which relates the dimension of the intersection of
several column spans Im(H[k],Ai

) to the sum of the dimensions of these column spans and the rank of a
certain matrix.

Lemma 3.8 ([BGM22b, Claim B.1]. See also [Tia19]). For H ∈ Fk×n, ℓ ≥ 2, and A1, A2, . . . , Aℓ ⊆ [n],

dim

(
ℓ⋂

i=1

Im(H[k],Ai
)

)
=

ℓ∑
i=1

dim(Im(H[k],Ai
))− rank


H[k],A1

H[k],A2

H[k],A1
H[k],A3

... . . .
H[k],A1

H[k],Aℓ

 .

3.3 Full Rankness of Reduced Intersection Matrices

In this subsection, we prove a crucial statement, Lemma 3.11, which states that under certain conditions,
a reduced intersection matrix RG,I[t] with G = Vn,k has full column rank even if we ignore all the rows
associated with a small subset B of variables. Here the size of B is controlled by a parameter λ ≥ 0.
The lossless (i.e. λ = 0) case of this statement was (essentially) proved by Brakensiek, Gopi, and Makam
[BGM22a].4 Our proof of Lemma 3.11 follows and extends their proof.

4See [BGM22a, Appendix A] for the proof of the conjecture of Shangguan and Tamo [ST20] about the full rankness of
intersection matrices. We also remark that the conjecture concerns list decodability rather than the stronger notion of average-radius
list decodability, but the same proof works for the latter.
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First, we introduce the following notation, RB
G,I[t]

, which is a submatrix of a reduced intersection matrix
RG,I[t] obtained by deleting some rows.

Definition 3.9 (Deleting rows in RG,I[t]). Under the notations in Definition 3.2, for B ⊆ [n], define RB
G,I[t]

to be the submatrix of RG,I[t] obtained by deleting all rows ri,u with i ∈ B. Equivalently, RB
G,I[t]

= RG,I′
[t]

where I ′j = Ij \B for j ∈ [t].

The next lemma states that under some conditions, the kernel of a reduced intersection matrix RG,I[t]

can be embedded as a subspace of the kernel of a certain matrix M , which also appears in Lemma 3.8.

Lemma 3.10. LetG ∈ Fn×k andH ∈ F(n−k)×n be matrices over a field F such thatG has full column rank
and HG = 0. Let t > 1 be an integer. Let Ij ⊆ [n] and Aj = [n] \ Ij for j ∈ [t]. Finally, let

M =


H[n−k],A1

H[n−k],A2

H[n−k],A1
H[n−k],A3

... . . .
H[n−k],A1

H[n−k],At

 .

Suppose
⋃

j∈[t] Ij = [n]. Then there exists a linear map ψ : F(t−1)k → F
∑t

j=1 |Aj | that maps Ker(RG,I[t])
injectively to Ker(M).

Proof. For each i ∈ [n], let ji ∈ [t] be the smallest index satisfying i ∈ Iji . Such an index ji always
exists as

⋃
j∈[t] Ij = [n]. Define the linear map ϕ : F(t−1)k → Fn sending x = (x1, . . . , xt−1) ∈

(Fk)t−1 to (ϕ1(x), . . . , ϕn(x)) ∈ Fn such that ϕi(x) := Gi,[k]xji for i ∈ [n]. Also define the linear
map ψ : F(t−1)k → F

∑t
j=1 |Aj | sending x = (x1, . . . , xt−1) ∈ (Fk)t−1 to (−y1, y2, . . . , yt) such that

yj = (ϕ(x) − Gxj)|Aj ∈ F|Aj | for j ∈ [t], where we let xt = 0 ∈ Fk. We will show that ψ is the desired
linear map.

Consider x = (x1, . . . , xt−1) ∈ Ker(RG,I[t]) and let xt = 0 ∈ Fk. We claim that (ϕ(x)−Gxj)|Ij = 0
for j ∈ [t]. To see this, consider arbitrary j ∈ [t] and i ∈ Ij . Then the i-th coordinate of ϕ(x) − Gxj is
Gi,[k]xji − Gi,[k]xj . By definition, either j is the only index in [t] satisfying i ∈ Ij (and hence j = ji), or
RG,I[t] has a row that expresses the linear equation Gi,[k]xji − Gi,[k]xj that (x1, . . . , xt−1) ∈ Ker(RG,I[t])
and xt = 0 must satisfy. In either case, we have Gi,[k]xji −Gi,[k]xj = 0. This proves the claim that

(ϕ(x)−Gxj)|Ij = 0 for j ∈ [t]. (3.3)

For j ∈ [t], let yj = (ϕ(x)−Gxj)|Aj , and we have

H[n−k],Aj
yj = H[n−k],Aj

(ϕ(x)−Gxj)|Aj

= H(ϕ(x)−Gxj)−H[n−k],Ij (ϕ(x)−Gxj)|Ij
= Hϕ(x)

(3.4)

where the last equality holds by the fact HG = 0 and (3.3).
Now for arbitrary j ∈ [t − 1], the j-th block of Mψ(x) equals H[n−k],A1

(−y1) +H[n−k],Aj+1
yj+1 by

definition, which equals zero by (3.4). So Mψ(x) = 0. This proves ψ(Ker(RG,I[t])) ⊆ Ker(M).
Now further assume ψ(x) = 0, i.e., (ϕ(x) − Gxj)|Aj = 0 for j ∈ [t]. Combining this with (3.3) and

the fact xt = 0, we see that Gxj = ϕ(x) = Gxt = 0 for j ∈ [t]. As G has full column rank, this implies
x1 = · · · = xt−1 = 0, i.e., x = 0. So ψ maps Ker(RG,I[t]) injectively to Ker(M).
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We now combine the statements established so far to prove the following key lemma, which states that
under certain conditions, a submatrix RB

G,I[t]
of a reduced intersection matrix RG,I[t] with G = Vn,k has full

column rank if the set B ⊆ [n] is small enough. This lemma will be used in our analysis in Section 4.

Lemma 3.11. Let G = Vn,k. Let λ ≥ 0 and let t > 1 be an integer. Let I1, . . . , It ⊆ [n] such that
wt(I[t]) ≥ (1 + λ)(t− 1)k and wt(IJ) ≤ (1 + λ)(|J | − 1)k for all nonempty J ⊆ [t]. Finally, let B ⊆ [n]

such that |B|(t− 1) ≤ λk. Then Ker(RB
G,I[t]

) = 0, i.e., RB
G,I[t]

has full column rank.

Proof. Let I ′j = Ij \ B for j ∈ [t]. Then RB
G,I[t]

= RG,I′
[t]

and we want prove Ker(RG,I′
[t]
) = 0. Let

S =
⋃

j∈[t] I
′
j and n′ = |S|. Note that permuting the indices in [n] and changing I ′1, . . . , I ′t accordingly

corresponds to permuting the variables Xi in RG,I′
[t]

, which does not change the dimension of Ker(RG,I′
[t]
).

So by applying a permutation on [n], we may assume S = [n′]. Let G′ = G[n′],[k] = Vn′,k. Note
RG,I′

[t]
= RG′,I′

[t]
since the definition of RG,I′

[t]
only uses the rows of G whose indices are in S = [n′] (see

Definition 3.2).
Also note that

wt(I ′[t]) ≥ wt(I[t])− |B|(t− 1) ≥ (1 + λ)(t− 1)k − λk (3.5)
and

wt(I ′J) ≤ wt(IJ) ≤ (1 + λ)(|J | − 1)k for ∅ ≠ J ⊆ [t]. (3.6)

Let Aj = [n′] \ I ′j for j ∈ [t]. For j ∈ [t], we have |I ′j | ≥ wt(I ′[t]) − wt(I ′[t]\{j})
(3.5),(3.6)
≥ k and hence

|Aj | ≤ n′ − k.
Let H = V ⊤

n′,n′−k and

M =


H[n′−k],A1

H[n′−k],A2

H[n′−k],A1
H[n′−k],A3

... . . .
H[n′−k],A1

H[n′−k],At

 .

By Theorem 3.6 and Theorem 3.7, we have

dim

(
t⋂

i=1

Im(H[n′−k],Ai
)

)
= max

P1⊔P2⊔···⊔Ps=[t]

 s∑
i=1

∣∣∣ ⋂
j∈Pi

Aj

∣∣∣− (s− 1)(n′ − k)

 . (3.7)

Now we calculate the RHS of (3.7). In the case where s = 1 and P1 = [t], as [n′] =
⋃

j∈[t] I
′
j , we have∣∣∣ ⋂

j∈[t].

Aj

∣∣∣ = n′ −
∣∣∣ ⋃
j∈[t]

I ′j

∣∣∣ = 0. (3.8)

For s ≥ 2 and nonempty sets P1, . . . , Ps that form a partition of [t],
s∑

i=1

∣∣∣ ⋂
j∈Pi

Aj

∣∣∣ = s∑
i=1

(
n′ −

∣∣∣ ⋃
j∈Pi

I ′j

∣∣∣) = sn′ +
s∑

i=1

wt(I ′Pi
)−

s∑
i=1

∑
j∈Pi

|I ′j |

(3.6)
≤ sn′ + (1 + λ)k

s∑
i=1

(|Pi| − 1)−
∑
j∈[t]

|I ′j |

= sn′ + (1 + λ)(t− s)k − wt(I ′[t])− n
′

(3.5)
≤ (s− 1)n′ + (1 + λ)(t− s)k − (1 + λ)(t− 1)k + λk

≤ (s− 1)(n′ − k)

(3.9)
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where the last inequality uses the fact s ≥ 2. Combining (3.7), (3.8), and (3.9) yields
⋂t

i=1 Im(H[n′−k],Ai
) =

0. Now by Lemma 3.8, we have

rank(M) =

t∑
i=1

dim(Im(H[n′−k],Ai
))−dim

(
t⋂

i=1

Im(H[n′−k],Ai
)

)
=

t∑
i=1

dim(Im(H[n′−k],Ai
)) =

t∑
i=1

|Ai|

where the last equality uses the facts that H⊤ = Vn′,n′−k is an MDS code and |Aj | ≤ n′ − k for j ∈ [t]. So
M has full column rank, or equivalently, Ker(M) = 0.

By Lemma 2.2, we have H(DG′) = V ⊤
n′,n′−kDVn′,k = 0, where D = diag(v1, . . . , vn′) and vi =∏

j∈[n′]\{i}
1

Xi−Xj
for i ∈ [n′]. Also note

⋃
j∈[t] I

′
j = S = [n′]. Applying Lemma 3.10 to DG′, H , and

I ′1, . . . I
′
t ⊆ [n′] then yields Ker(RDG′,I′

[t]
) = 0. Observe that by the definition of reduced intersection

matrices (Definition 3.2),RDG′,I′
[t]

can be obtained fromRG′,I′
[t]

by scaling its rows by the nonzero elements
vi, and this does not change the dimension of its kernel. So Ker(RG′,I′

[t]
) = 0, i.e., Ker(RG,I′

[t]
) = 0.

4 Capacity-Achieving RS Codes over Polynomial-Size Alphabets

We prove our main results (Theorem 1.1 and Corollary 1.2) in this section. To achieve this, we design
an algorithm to certify that a given reduced intersection matrix has full column rank even after assigning
the variables. We then bound the probability that the algorithm fails to do so under a randomly chosen
assignment. Our main results follow easily from this bound.

4.1 Full Rankness of Reduced Intersection Matrices under a Random Assignment

Fix n, k ∈ N+ and a finite field Fq in the following. Given a matrix A ∈ Fm×ℓ with m ≥ ℓ, we can order its
ℓ× ℓ submatrices according to the lexicographic order of the row indices. Call this the lexicographic order
on the ℓ× ℓ submatrices of A. The formal definition is given as follows.

Definition 4.1 (Lexicographic order). Let A ∈ Fm×ℓ be a matrix over a field F, where m ≥ ℓ. The
lexicographic order ≺ on the ℓ × ℓ submatrices M of A is the lexicographic order determined by the
column indices of M . In other words, if M and M ′ have the column indices i1 < i2 < · · · < iℓ and
i′1 < i′2 < · · · < i′ℓ respectively, thenM ≺M ′ if (i1, . . . , iℓ) is smaller than (i′1, . . . , i

′
ℓ) in the lexicographic

order.

We also introduce the following notation to denote a matrix that is obtained from a symbolic matrix by
assigning a subset of variables.

Definition 4.2 (Partial assignment). Let A ∈ Fq(X1, . . . , Xn)
m×ℓ be a matrix such that the entries of A

are in Fq[X1, . . . , Xn]. For i ∈ {0, 1, . . . , n} and α1, . . . , αi ∈ Fq, denote by A|X1=α1,...,Xi=αi the matrix
obtained from A by substituting αj for Xj for j = 1, . . . , i. Note that the entries of A|X1=α1,...,Xi=αi are in
Fq[Xi+1, . . . , Xn].

Finally, we need the notion of faulty indices. Given a matrix A ∈ Fq(X1, . . . , Xn)
m×ℓ of full column

rank, consider the process of gradually assigningXi = αi for i = 1, . . . , n. The faulty index ofA is the index
where the smallest ℓ× ℓ nonsingular submatrix of A in the lexicographic order changes from nonsingular to
singular. The formal definition is given as follows.

Definition 4.3 (Faulty index). Let A ∈ Fq(X1, . . . , Xn)
m×ℓ be a matrix such that rank(A) = ℓ and the

entries of A are in Fq[X1, . . . , Xn]. For α1, . . . , αn ∈ Fq, we say i ∈ [n] is the faulty index of A (with
respect to α1, . . . , αn) if det(M |X1=α1,...,Xi−1=αi−1) ̸= 0 but det(M |X1=α1,...,Xi=αi) = 0, where M is the
smallest nonsingular ℓ× ℓ submatrix of A in the lexicographic order.
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Note that by definition, the faulty index of A is uniquely determined by α1, . . . , αn if it exists. Also note
that if i is the faulty index of A and M is the smallest nonsingular ℓ× ℓ submatrix of A in the lexicographic
order, then det(M |X1=α1,...,Xj=αj ) is nonzero for j = 0, 1, . . . , i− 1 and is zero for j = i, i+ 1, . . . , n.

Next, we describe an algorithm that given I1, . . . , It ⊆ [n], α1, . . . , αn ∈ Fq, and a parameter r ∈ N+,
tries to certify that the matrix RG,I[t] |X1=α1,...,Xn=αn has full column rank, where G = Vn,k. When it fails
to do so, it outputs either “FAIL” or a sequence of faulty indices (i1, . . . , ir) ∈ [n]r. See Algorithm 1 for the
pseudocode of this algorithm.

Algorithm 1: CertifyFullColumnRankness

Input: Sets I1, . . . , It ⊆ [n], α1, . . . , αn ∈ Fq, and r ∈ N+.
Output: “SUCCESS”, “FAIL”, or (i1, . . . , ir) ∈ [n]r.

1 Let G← Vn,k and B ← ∅.
2 for j = 1 to r do
3 if rank(RB

G,I[t]
) < (t− 1)k then

4 Output “FAIL” and halt.
5 else if the faculty index i ∈ [n] of RB

G,I[t]
exists then

6 ij ← i and B ← B ∪ {i}.
7 else
8 Output “SUCCESS” and halt.
9 end

10 end
11 Output (i1, . . . , ir).

For the input values in which we are interested, the behavior of Algorithm 1 is described by the following
lemma.

Lemma 4.4. Let λ ≥ 0 and let t > 1 be an integer. Let I1, . . . , It ⊆ [n] such that wt(I[t]) ≥ (1+λ)(t−1)k
and wt(IJ) ≤ (1 + λ)(|J | − 1)k for all nonempty J ⊆ [t]. Let r be a positive integer such that r ≤
λk/(t− 1)+ 1. Then for all α1, . . . , αn ∈ Fq, running Algorithm 1 on the input I1, . . . , It, α1, . . . , αn, and
r yields one of the following two possible scenarios:

(1) Algorithm 1 outputs “SUCCESS”. In this case, RG,I[t] |X1=α1,...,Xn=αn has full column rank.

(2) Algorithm 1 outputs an r-tuple (i1, . . . , ir) ∈ [n]r consisting of r distinct indices. In this case, for each
j ∈ [r], ij is the faulty index of RBj

G,I[t]
, where Bj := {i1, . . . , ij−1}.

Proof. If the algorithm reaches the j-th round of the loop, where j ∈ [r], then at the beginning of this round,
we have |B| = j − 1 ≤ r− 1 ≤ λk/(t− 1). Then by Lemma 3.11, the matrix RB

G,I[t]
has full column rank,

i.e., rank(RB
G,I[t]

) = (t− 1)k. So the algorithm never outputs “FAIL”.
Suppose the algorithm outputs “SUCCESS” and halts in the j-th round for some j ∈ [r], which means

the faculty index ofRB
G,I[t]

does not exist in that round. LetM be the smallest nonsingular ℓ× ℓ submatrix of
RB

G,I[t]
in the lexicographic order. Thendet(M |X1=α1,...,Xn=αn) ̸= 0, i.e.,M |X1=α1,...,Xn=αn is nonsingular.

As RB
G,I[t]

is a submatrix of RG,I[t] obtained by deleting rows, we see that RG,I[t] |X1=α1,...,Xn=αn has full
column rank.

Now suppose the algorithm does not output “SUCCESS”. Then it outputs some (i1, . . . , ir) ∈ [n]r where
ij is the faulty index of RBj

G,I[t]
and Bj = {i1, . . . , ij−1} for j ∈ [r]. Note that i1, . . . , ir must be distinct.
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This is because if an index i is in Bj , then RBj

G,I[t]
does not depend on Xi, and hence i cannot be the faulty

index of RBj

G,I[t]
.

The next lemma bounds the probability that Algorithm 1 outputs a particular sequence of faulty indices
over randomly chosen (α1, . . . , αn).

Lemma 4.5. Under the notations and conditions in Lemma 4.4, suppose q ≥ n and (α1, . . . , αn) is
chosen uniformly at random from the set of all n-tuples of distinct elements in Fq. Then for any r-tuple
(i1, . . . , ir) ∈ [n]r of distinct indices, the probability that Algorithm 1 outputs (i1, . . . , ir) on the input
I1, . . . , It, α1, . . . , αn, and r is at most

(
(t−1)(k−1)
q−n+1

)r
.

Proof. For j ∈ [r], define the following:

1. Bj := {i1, . . . , ij−1}.

2. LetMj be the smallest nonsingular (t−1)k× (t−1)k submatrix ofRBj

G,I[t]
in the lexicographic order.

As argued in the proof of Lemma 4.4, since |Bj | = j − 1 ≤ r − 1 ≤ λk/(t − 1), the matrix RBj

G,I[t]
has full column rank and hence Mj exists.

3. Let Ej be the event that det(Mj |X1=α1,...,Xij−1=αij−1) ̸= 0 but det(Mj |X1=α1,...,Xij
=αij

) = 0.

If Algorithm 1 outputs (i1, . . . , ir), then ij is the faulty index of RBj

G,I[t]
for j ∈ [r] by Lemma 4.4 and hence

the events E1, . . . , Er all occur. So we just need to prove that Pr[E1 ∧ · · · ∧ Er] ≤
(
(t−1)(k−1)
q−n+1

)r
.

Let (j1, j2, . . . , jr) be a permutation of (1, 2, . . . , r) such that ij1 < · · · < ijr , i.e., ijℓ is the ℓ-th smallest
index among i1, . . . , ir for ℓ ∈ [r]. For ℓ ∈ {0, 1, . . . , r}, define Fℓ := Ej1 ∧ · · · ∧ Ejℓ , where we let F0 be
the event that always occurs. Then Fr = Ej1 ∧ · · · ∧Ejr = E1 ∧ · · · ∧Er. If Pr[Fr] = 0 then we are done.
So assume Pr[Fr] > 0. By definition, if Fℓ occurs and ℓ′ < ℓ, then Fℓ′ also occurs. So Pr[Fℓ] > 0 for all
ℓ ∈ {0, 1, . . . , r}. Note

Pr[E1 ∧ · · · ∧ Er] = Pr[Fr] =

r∏
ℓ=1

Pr[Fℓ]

Pr[Fℓ−1]
.

So it suffices to prove that Pr[Fℓ]
Pr[Fℓ−1]

≤ (t−1)(k−1)
q−n+1 for ℓ ∈ [r].

Fix ℓ ∈ [r] and let j = jℓ. Let S be the set of all β = (β1, . . . , βij−1) ∈ Fij−1
q such that

Pr
[(
α<ij = β

)
∧ Fℓ−1

]
> 0, where α<ij = β is a shorthand for (α1 = β1) ∧ · · · ∧ (αij−1 = βij−1).

Note that for β ∈ S, the event
(
α<ij = β

)
∧ Fℓ−1 is simply α<ij = β since Fℓ−1 = Ej1 ∧ · · · ∧ Ejℓ−1

depends only on α1, . . . , αijℓ−1
and is bound to happen conditioned on α<ij = β. We then have

Pr[Fℓ]

Pr[Fℓ−1]
=

∑
β∈S Pr

[(
α<ij = β

)
∧ Fℓ

]∑
β∈S Pr

[(
α<ij = β

)
∧ Fℓ−1

] = ∑
β∈S Pr

[(
α<ij = β

)
∧ Ej

]∑
β∈S Pr

[
α<ij = β

]
≤ max

β∈S

Pr
[(
α<ij = β

)
∧ Ej

]
Pr
[
α<ij = β

] = max
β∈S

Pr
[
Ej | α<ij = β

]
.

Fix β = (β1, . . . , βij−1) ∈ S. We just need to prove that Pr
[
Ej | α<ij = β

]
≤ (t−1)(k−1)

q−n+1 . Let

Q := det(Mj |X1=β1,...,Xij−1=βij−1
) ∈ Fq[Xij , . . . , Xn].

If Q = 0, then Ej never occurs conditioned on α<ij = β and we are done. So assume Q ̸= 0. View Q as
a polynomial in Xij+1, . . . , Xn over the ring Fq[Xij ], and let Q0 ∈ Fq[Xij ] be the coefficient of a nonzero
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term of Q. Then conditioned on α<ij = β, the event Ej occurs only if αij is a root of Q0 ̸= 0. Note that
degQ0 ≤ degXij

Q ≤ degXij
(det(Mj)), which is bounded by (t−1)(k−1) by Lemma 3.4. Also note that

conditioned on α<ij = β, the random variable αij is uniformly distributed over the set Fq \{β1, . . . , βij−1},
whose size is at least q − n+ 1. It follows that Pr

[
Ej | α<ij = β

]
≤ (t−1)(k−1)

q−n+1 , as desired.

By combining Lemma 4.4 and Lemma 4.5 and taking a union bound over the set of possible outputs
(i1, . . . , ir) of the algorithm, we obtain the following corollary.

Corollary 4.6. Under the notations and conditions in Lemma 4.4, suppose q ≥ n and (α1, . . . , αn) is chosen
uniformly at random from the set of all n-tuples of distinct elements in Fq. Then

Pr
[
Ker(RG,I[t] |X1=α1,...,Xn=αn) ̸= 0

]
≤
(
(t− 1)n(k − 1)

q − n+ 1

)r

.

Proof. By Lemma 4.5 and the union bound, the probability that Algorithm 1 outputs some sequence
(i1, . . . , ir) ∈ [n]r on the input I1, . . . , It, α1, . . . , αn, and r is at most nr ·

(
(t−1)(k−1)
q−n+1

)r
=
(
(t−1)n(k−1)

q−n+1

)r
.

By Lemma 4.4, whenever this does not occur, the matrix RG,I[t] |X1=α1,...,Xn=αn has full column rank, i.e.,
its kernel is zero. The claim follows.

4.2 Proof of Theorem 1.1 and Corollary 1.2

We are now ready to prove our main results, Theorem 1.1 and Corollary 1.2.

Theorem 4.7 (Theorem 1.1 restated). Let ε ∈ (0, 1), c > 2, and n, k, L ∈ N+ with k ≤ n. Let q be a prime
power such that q ≥ 2

L(L+c)
ε Ln(k − 1) + n. Then with probability at least 1 − 2−(c−2)n > 0, a randomly

punctured RS code of block length n and rateR = k/n over Fq is
(

L
L+1(1−R− ε), L

)
average-radius list

decodable.

Proof. Let λ = ε/R = εn/k. By Lemma 3.5, if an [n, k] linear code with a generating matrix G

is not
(

L
L+1(1−R− ε), L

)
average-radius list decodable, then there exist t ∈ {2, 3, . . . , L + 1} and

I1, . . . , It ⊆ [n] such that

(1) Ker(RG,I[t]
) ̸= 0,

(2) wt(I[t]) ≥ (1 + λ)(t− 1)k, and

(3) wt(IJ) ≤ (1 + λ)(|J | − 1)k for all nonempty J ⊊ [t].

Choose (α1, . . . , αn) uniformly at random from the set of n-tuples of distinct elements in Fq. Let
G = Vn,k(α1, . . . , αn) ∈ Fn×k

q . Then to prove the theorem, it suffices to show that the probability that there
exist t ∈ {2, 3, . . . , L+ 1} and I1, . . . , It ⊆ [n] satisfying (1)–(3) above is at most 2−(c−2)n.

Fix t ∈ {2, 3, . . . , L+1} and I1, . . . , It ⊆ [n] satisfying (2) and (3) above. Let r = ⌊λk/(t− 1)+1⌋ ≥
λk/(t − 1) = εn/(t − 1). Note that RG,I[t]

is exactly RG,I[t] |X1=α1,...,Xn=αn , where G = Vn,k. So by

Corollary 4.6, the probability that Ker(RG,I[t]
) ̸= 0 holds is at most

(
(t−1)n(k−1)

q−n+1

)r
≤
(
Ln(k−1)
q−n+1

)εn/L
.

Here we use the facts r ≥ εn/(t− 1) ≥ εn/L and q − n+ 1 ≥ Ln(k − 1) ≥ (t− 1)n(k − 1).
The number of (t, I1, . . . , It) with t ∈ {2, 3, . . . , L+1} and I1, . . . , It ⊆ [n] is bounded by

∑L+1
t=2 2tn ≤

2(L+2)n. By the union bound, the probability that (1)–(3) above hold for some t ∈ {2, 3, . . . , L + 1} and

I1, . . . , It ⊆ [n] is at most 2(L+2)n
(
Ln(k−1)
q−n+1

)εn/L
≤ 2−(c−2)n, as desired.

16



Remark. While Theorem 4.7 is stated with ε > 0, its proof still makes sense when ε = 0. In this case,
λ = ε/R = 0 and we choose r = ⌊λk/(t − 1) + 1⌋ = 1. Then the above proof shows that for sufficiently
large q that is (at least) exponential in n, a randomly punctured RS code of block length n over Fq is(

L
L+1(1−R), L

)
average-radius list decodable with high probability, recovering one of the main results of

[BGM22a].
Similarly, we restate and prove (a generalization of) Corollary 1.2 as follows.

Corollary 4.8 (Corollary 1.2 restated). Let ε, δ ∈ (0, 1), c > 2, n, k ∈ N+ with k ≤ n, and R = k/n. Let
L = max

{⌈
1−R

(1−δ)ε

⌉
− 1, 1

}
. Let q be a prime power such that q ≥ 2

L(L+c)
δε Ln(k − 1) + n. Then with

probability at least 1− 2−(c−2)n > 0, a randomly punctured RS code of block length n and rate R over Fq

is (1−R− ε, L) average-radius list decodable.

Proof. Let ε′ = δε. By Theorem 4.7, with probability at least 1− 2−(c−2)n, a randomly punctured RS code
of block length n and rate R = k/n over Fq is

(
L

L+1(1−R− ε
′), L

)
average-radius list decodable. Then

note that L
L+1(1−R− ε

′) ≥ 1−R− 1−R
L+1 − ε

′ ≥ 1−R− ε.

5 Future Work and Open Problems

We list some open problems and directions for future work.

Further improving the alphabet size. For (1 − R − ε,O(1/ε)) list decodable RS codes, the smallest
alphabet size we are able to achieve in this paper is q = O

(
2poly(1/ε)nk

)
, which is quadratic in the block

length n when the rate R = k/n is a positive constant. We conjecture that it can be improved to a function
linear in n. Formally, we ask the following question.

Question 5.1. For ε > 0 and positive integers n, k with k ≤ n, do there exist RS codes of block length n
and rate R = k/n that are (1− R − ε,O(1/ε)) list decodable over an alphabet of size at most cεn, where
cε is a constant only depending on ε? And how small can cε be in terms of ε?

It is possible that achieving an alphabet size linear in n would require establishing and exploiting
other properties of intersection matrices or reduced intersection matrices, such as an appropriate notion of
exchangeability. We leave this question for future studies.

Efficient encoding and list decoding algorithms for RS codes achieving the capacity. Given the results
in [BGM22a] and in this paper that randomly punctured RS codes achieve the list decoding capacity, the
next natural (although challenging) questions are if there exist explicit constructions of capacity-achieving
RS codes, and if they admit efficient list decoding algorithms.

Question 5.2. Are there any explicit constructions of RS codes that achieve the list decoding capacity over
alphabets of size at most exponential (or even polynomial) in the block length of the codes?

Question 5.3. Are there efficient algorithms, deterministic or randomized, that list decode an [n, k] RS code
C up to the radius 1− k/n− ε, assuming that C is(1− k/n− ε,O(1/ε)) list decodable and a generating
matrix of C is given to the algorithm?

Remark. Cheng and Wan [CW07] proved that unless the discrete logarithm problem has an efficient algorithm,
it is impossible to efficiently list decode RS codes over Fq up to the relative radius 1 − ĝ/n, where
ĝ := min

{
g ∈ N :

(
n
g

)
qk−g ≤ 1

}
. One can estimate that 1− ĝ/n ≥ 1− k/n− 1/ log q. Thus, this result

does not rule out the possibility of an affirmative answer to Question 5.3 when ε > 1/ log q.
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Further applications of our techniques. Finally, we find our techniques to be quite general and versatile.
Therefore, we expect that these techniques or their generalizations can find applications in the study of other
algebraic constructions of linear codes and other coding-theoretic problems.
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