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Abstract

In this paper, we prove that with high probability, random Reed–Solomon codes approach
the half-Singleton bound — the optimal rate versus error tradeoff for linear insdel codes — with
linear-sized alphabets. More precisely, we prove that, for any ε > 0 and positive integers n and
k, with high probability, random Reed–Solomon codes of length n and dimension k can correct
(1−ε)n−2k +1 adversarial insdel errors over alphabets of size n+2poly(1/ε)k. This significantly
improves upon the alphabet size demonstrated in the work of Con, Shpilka, and Tamo (IEEE
TIT, 2023), who showed the existence of Reed–Solomon codes with exponential alphabet size
Õ
((

n
2k−1

)2
)

precisely achieving the half-Singleton bound.
Our methods are inspired by recent works on list-decoding Reed–Solomon codes. Brakensiek–

Gopi–Makam (STOC 2023) showed that random Reed–Solomon codes are list-decodable up
to capacity with exponential-sized alphabets, and Guo–Zhang (FOCS 2023) and Alrabiah–
Guruswami–Li (STOC 2024) improved the alphabet-size to linear. We achieve a similar
alphabet-size reduction by similarly establishing strong bounds on the probability that certain
random rectangular matrices are full rank. To accomplish this in our insdel context, our proof
combines the random matrix techniques from list-decoding with structural properties of Longest
Common Subsequences.
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1 Introduction
Error-correcting codes (hereafter referred to as codes) are constructs designed to enable the recovery
of original information from data that has been corrupted. The primary corruption model explored
in the literature involves errors or erasures. In this model, each symbol in the transmitted word is
either replaced with a different symbol from the alphabet (an error) or with a ’?’ (an erasure).

The theory of coding theory originated with the influential works of Shannon and Hamming.
Shannon [Sha48] studied random errors and erasures, whereas Hamming [Ham50] studied the
adversarial model for errors and erasures. These models are well understood, and today, we have
efficiently encodable and decodable codes that are optimal for Shannon’s model of random errors.
For adversarial errors, optimal and efficient codes exist over large alphabets, and there are good
codes (codes with constant relative rate and relative distance) for every constant-sized alphabet.

Another important model that has been considered ever since Shannon’s work is that of
synchronization errors. The most common model for studying synchronization errors is the
insertion-deletion model (insdel for short): an insertion error is when a new symbol is inserted
between two symbols of the transmitted word and a deletion is when a symbol is removed from
the transmitted word. For example, over the binary alphabet, when 100110 is transmitted, we may
receive the word 1101100, which is obtained from two insertions (1 at the beginning and 0 at the
end) and one deletion (one of the 0’s at the beginning of the transmitted word). These errors are
related to the more common substitution and erasure errors: a deletion is like an erasure, but the
position of the deletion is unknown, and a substitution can be imitated by a deletion followed by
an insertion. Despite their apparent similarity to well studied error models, insdel errors are much
more challenging to handle.

Coding schemes that correct insdel errors are not only an intriguing theoretical concept but
also have implications in real-world scenarios. Such codes find applications in magnetic and optical
recording, semiconductor devices, integrated circuits, and synchronous digital communication
networks (for detailed applications, refer to the survey by Mercier [MBT10]). This natural
theoretical model together coupled with its relevance across various domains, has led many
researches in recent years to study and design codes that can correct from insdel errors
[BGH16, HS21b, BGZ17, GW17, SWZGY17, CJLW22, Hae19, CGHL21, GH21, GHL22], just to
name a few. Although there has been significant progress in recent years on understanding this
model of insdel errors (both on limitation and constructing efficient codes), our comprehension of
this model lags far behind our understanding of codes that correct erasures and substitution errors
(we refer the reader to the following excellent surveys [Mit09, MBT10, CR20, HS21a]).

Codes that can correct insdel errors also attract a lot of attention due to their possible
application in designing DNA-based storage systems [GBC+13]. This recent increased interest
was paved by substantial progress in synthesis and sequencing technologies. The main advantages
of DNA-based storage over classical storage technologies are very high data densities and
long-term reliability without an electrical supply. It is thus natural that designing codes for
DNA storage and studying the limitations of this model received a lot of attention recently
[HSRD17, LSWZY19, HMG19, SH22].

While linear codes are highly desirable, most of the works constructing codes for the insdel
model are not linear codes, in contrast to the predominant use of linear codes for Hamming errors.
Notable examples of linear codes for Hamming errors include Hamming codes, Reed–Solomon
codes, Reed–Muller codes, algebraic-geometry codes, polar codes, Turbo codes, expander codes,
and LDPC codes. The reason for the absence of linear codes in the insdel model can be found
in works such as [AGFC07, CGHL21], which show that the maximal rate of a linear code capable
of correcting insdel errors is significantly worse than that of a nonlinear code correcting the same
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number of insdel errors. However, linear codes are desirable for many reasons: they offer compact
representation, efficient encoding, easier analysis, and in many cases, efficient decoding algorithms.
Moreover, linear codes are a central mathematical object that has found widespread applications
across various research areas. As such, studying them in the context of insdel errors is important
and was the subject of recent works [CGHL21, Che22, CST22, CST23, JZCW23, CJL+23, Liu24].

This work concerns the performance of Reed–Solomon codes in the insdel model. As Reed–
Solomon codes are ubiquitous in theory and practice, it is important to understand whether they
can also decode from insdel errors. This question received a lot of attention recently [SNW02,
WMSN04, TSN07, DLTX21, LT21, CZ22, CST23, CST24, Liu24]. Our result makes a substantial
improvement in this line of research. Specifically, we show that “most” RS codes over linear-sized
fields have almost optimal capabilities correcting insdel errors. Our methods are inspired by recent
works on list-decoding Reed–Solomon codes [GZ23, AGL24], which showed that ‘most’ RS codes
are list-decodable up to capacity over linear-sized alphabets. Specifically, we achieve our result by
adapting the random matrix techniques from [GZ23, AGL24] to the insdel setting which required
the development of several chain-based structural results of longest common subsequences.

1.1 Previous works

Insdel codes. To offer a wider context, we now discuss some results related to the broader study
of codes correcting adversarial insdel errors.

Codes correcting adversarial insdel errors were first considered in the seminal works of
Levenshtein [Lev66] and Varshamov and Tenengolts [VT65], the latter of which constructed binary
codes that can correct a single insdel error with optimal redundancy. The first efficient construction
of asymptotically good binary insdel codes — codes with asymptotically positive rate and tolerating
an asymptotically positive insdel fraction — are, as far as we know, given in [SZ99].

Despite these early successes and much recent interest, there are still significant gaps in our
understanding of insdel codes, particularly for binary codes. For binary codes, gaps remain for
several important questions, including (i) determining the optimal redundancy-error tradeoff and
finding explicit binary codes for correcting t insdels, for constant t [GH21, SB20, SGB20]; (ii) finding
explicit binary codes for correcting εn insdels for small constant ε > 0 with optimal rate [CJLW22,
Hae19], (iii) determining the zero-rate threshold, the maximum fraction of errors correctable by an
asymptotically positive rate code (we know the answer to be in [

√
2−1, 1/2−10−40]) [GL16, GHL22],

and (iv) determining the optimal rate-versus distance tradeoff for deletion codes [Lev66, Lev02,
Yas24], among others.

On the other hand, when the alphabet can be larger, as is the case in this work, the picture
is more complete. Haeupler and Shahrasbi [HS21b], using a novel primitive called synchronization
strings, constructed codes of rate 1 − δ − ε that can correct δ fraction of insdel errors over an
alphabet of size Oε(1). This work was the first one to show explicit and efficient constructions of
codes that can achieve the Singleton bound in the edit distance setting over constant alphabets.
This work also inspired several follow-up works that improved the secondary code parameters and
applied synchronization strings to related problems; we refer the reader to [HS21a] for a discussion.

Linear insdel codes. As far as we know, the first study about the performance of linear codes
against insdel errors is due to [AGFC07]. Specifically, they showed that any linear code that can
correct one deletion must have rate at most 1/2. Note that this result shows that linear codes are
provably worse than nonlinear codes in the context of insdel errors. Indeed, nonlinear can achieve
rate close to 1 whereas linear codes have rate ≤ 1/2.
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Nevertheless, as described in the introduction, studying the performance of linear codes against
insdel errors is an important question that indeed has been studied in recent years. The basic
question of whether there exist good linear codes for the insdel model was first addressed in the
work of Cheng, Guruswami, Haeupler, and Li [CGHL21]. They showed that there are linear codes of
rate R = (1−δ)/2−h(δ)/ log2(q) that can correct a δ fraction of insdel errors. They also established
two upper bounds on the rate of linear codes that can correct a δ fraction of deletions. First, they
proved the half-Plotkin bound ([CGHL21, Theorem 5.1]), which states that every linear code over a
finite field Fq capable of correcting a δ-fraction of insdel errors has rate at most 1

2

(
1− q

q−1δ
)

+o(1).
Then, they established the following alphabet-independent bound,

Theorem 1 (Half-Singleton bound [CGHL21, Corollary 5.2]). Every linear insdel code which is
capable of correcting a δ fraction of deletions has rate at most (1− δ)/2 + o(1).

Remark. The following non-asymptotic version of the half-Singleton bound can be derived from
the proof of [CGHL21, Corollary 5.2]: An [n, k] linear code can correct at most n − 2k + 1 insdel
errors.

The question of constructing explicit linear codes that are efficiently decodable has also been
studied and there are explicit and efficient constructions of linear codes over small alphabets (such
as binary) that are asymptotically good [CST22, CJL+23]. However, we note that over small
alphabets, determining the optimal rate-error tradeoff and finding optimal explicit constructions
remains an open problem.

Reed–Solomon codes against insdel errors. In this work, we focus on Reed–Solomon codes,
which are among the most well-known codes. These codes are defined as follows.

Definition 2 (Reed–Solomon code). Let α1, α2, . . . , αn be distinct elements in the finite field Fq

of order q. For k < n, the [n, k]q Reed–Solomon (RS) code of dimension k and block length n
associated with the evaluation vector (α1, . . . , αn) ∈ Fn

q is defined to be the set of codewords

RSn,k(α1, . . . , αn) := {(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg f < k} .

The performance of RS codes against insdel errors was first considered in [SNW02] in the
context of traitor tracing. In [WMSN04], the authors constructed a [5, 2]q RS code correcting a
single deletion. In [TSN07], an [n, k] generalized RS code that is capable of correcting logk+1 n− 1
deletions was constructed. Several constructions of two-dimensional RS codes correcting n − 3
insdel errors are given in [DLTX21, LT21]. Note that the half-Singleton bound states that an [n, 2]
code can correct at most n − 3 deletions. In [CST23], it was shown that for an [n, 2]q RS code to
decode from n − 3 insdel errors, it must be that q = Ω(n3). On the other hand, [CST24] gave an
explicit construction with q = O(n3). Thus, for the special case of two-dimensional RS codes, there
is a complete characterization of RS codes that achieve the half-Singleton bound.

For k > 2, much less is known. It was shown in [CST23] that over large enough fields, there
exist RS codes that exactly achieve the half-Singleton bound. Specifically,

Theorem 3 ([CST23, Theorem 16]). Let n and k be positive integers such that 2k − 1 ≤ n. For
q = 2Θ(n), there exists an [n, k]q RS code that can decode from n− 2k + 1 insdel errors.1

1The alphabet size in [CST23, proof of Theorem 16] is actually q =
(

n
2k−1

)2 · k2 + n2, which is better, especially
for sublinear k = o(n). However, given that the primary parameter regime of interest in this paper is k = Θ(n), we
state this simplified version for brevity.
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In both theoretical and practical scenarios, codes over smaller alphabets tend to be more
valuable, but the field size above is very large. Whether Reed–Solomon codes over significantly
smaller fields are capable of correcting insdel errors up to the half-Singleton bound remained an
interesting and important open problem, which we address in this work.

List-decodable (Hamming) codes. As we mentioned, we port some crucial ideas from a
different context (List-decoding under Hamming distance) to build our main results in the insertion-
deletion world. To facilitate a better understanding, we provide a concise summary of recent and
significant advancements in the field of list decoding of codes under the Hamming metric.

The notion of list decoding was introduced by Elias and Wozencraft [Eli57, Woz58] in 1950s as a
natural generalization of unique decoding. Briefly, a code exhibits satisfactory list decodability
if its codewords are widely dispersed throughout the entire space, that is, there are not too
many codewords located within a single ball under the Hamming metric. After the seminal
work of Sudan [Sud97] and Guruswami–Sudan [GS98], which provided efficient algorithms for
list decoding RS codes up to the Johnson bound [Joh62], the issue of understanding the list
decodability of RS codes beyond the Johnson bound became very important. A long line of works
[RW14, ST20, GLS+22, FKS22, GST22, BGM23, GZ23, AGL24, BDGZ24, RZVW24, GXYZ24]
have made significant advancements in the understanding of list decodability for RS and related
codes. Specifically, recent works [BGM23, GZ23, AGL24] have shown that “most” RS codes over
exponential-sized alphabets (in terms of the code length) are optimally list decodable, and “most”
RS codes over linear-sized alphabets are in fact almost optimally list decodable.

1.2 Our results

When (α1, . . . , αn) is uniformly distributed over the set of all n-tuples of distinct elements in Fq, we
say the code RSn,k(α1, . . . , αn) over Fq is a random RS code of dimension k and length n over Fq.
In this work, we show that random RS codes over alphabets of size Oε(n), with high probability,
approach the half-Singleton bound for insdel errors. Specifically,

Theorem 4 (Informal, Details in Theorem 43). Let ε ∈ (0, 1), and let n and k be positive integers.
For a prime power q satisfying q ≥ n + 2poly(1/ε)k, with high probability, a random RS code of
dimension k and length n over Fq corrects at least (1− ε)n− 2k + 1 adversarial insdel errors.

For the constant rate regime, R = Θ(1), our result exponentially improves the alphabet size
of Con, Shpilka, and Tamo [CST23], where they have q = 2Θ(n). As a warmup to this result, we
prove a weaker but more straightforward result (Theorem 21), which establishes Theorem 4 for
q = 2O(1/ε)n2.

1.3 Proof overview

We outline the proof of our main theorem in this section. First, we review the proof of Theorem 3
[CST23] that achieves the half-Singleton bound with exponential-sized alphabets. We slightly
modify the proof’s presentation to parallel our proofs. Second, we show how to prove a weaker
version of Theorem 4 (Theorem 21) with quadratic-sized alphabets. Lastly, we describe how to
prove Theorem 4 that achieves linear-sized alphabets. Throughout this overview, let C be a random
Reed–Solomon code of length n and dimension k, where the tuple of evaluation points (α1, . . . , αn)
is sampled uniformly from all n-tuples of pairwise-distinct elements from Fq.
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Warmup: exponential alphabet size. We start with the argument from [CST23] that proves
that Reed–Solomon codes achieve the half-Singleton bound over exponential-sized alphabets q =
2Θ(n). Let ℓ

def= 2k − 1. We want (with high probability over α1, . . . , αn) that our code C corrects
n− 2k + 1 = n− ℓ insdel errors, or equivalently, has pairwise small LCS: LCS(c, c′) < ℓ for any two
distinct codewords c, c′ ∈ C.

The key observation is that, if our code C fails to correct n − 2k + 1 insdels, then there exist
indices I1 < · · · < Iℓ and J1 < · · · < Jℓ such that the following matrix, which we call the V -matrix,
is bad, meaning it does not have full column rank.

Vk,ℓ,I,J(α1, α2, · · · , αn) :=


1 αI1 · · · αk−1

I1
αJ1 · · · αk−1

J1
1 αI2 · · · αk−1

I2
αJ2 · · · αk−1

J2...
... . . . ...

... . . . ...
1 αIℓ

· · · αk−1
Iℓ

αJℓ
· · · αk−1

Jℓ

 , (1)

Indeed, if C fails to correct n − 2k + 1 insdels, there exist two distinct polynomials f(X) =
f0+f1X +· · ·+fk−1Xk−1 and f ′(X) = f ′

0+f ′
1X +· · ·+f ′

k−1Xk−1, such that the (I1, . . . , Iℓ)-indexed
subsequence of the codeword for f equals the (J1, . . . , Jℓ)-indexed subsequence of the codeword for
f ′. In that case,


1 αI1 · · · αk−1

I1
αJ1 · · · αk−1

J1
1 αI2 · · · αk−1

I2
αJ2 · · · αk−1

J2...
... . . . ...

... . . . ...
1 αIℓ

· · · αk−1
Iℓ

αJℓ
· · · αk−1

Jℓ

 ·



f0 − f ′
0

f1
...

fk−1
−f ′

1
...

−f ′
k−1


= 0, (2)

so the V -matrix is bad.
Now, it suffices to show, with high probability, that all V -matrices are good (have full collumn

rank). However, by considering the determinant of the V -matrix (which is square as ℓ = 2k − 1),
the probability that one V -matrix is bad is at most k(k−1)

q−n by the Schwartz–Zippel lemma.2 A
V -matrix is defined by the indices of the subsequences I1 < · · · < Iℓ and J1 < · · · < Jℓ, so there are
at most 22n possible V -matrices. Hence, by the union bound, the probability that some V -matrix
is bad is at most 22n · k(k−1)

q−n . Hence, for sufficiently large exponential alphabet sizes q ≥ 2Θ(n), our
code corrects n− 2k + 1 insdel errors with high probability, as desired.

Quadratic alphabet size. We now discuss how to improve the field size bound, first to quadratic,
and then to linear.

Our main idea, inspired by [GZ23, AGL24], is to use “slackness” in the coding parameters to
amplify the probability that a V -matrix is bad. The above warmup gives random RS codes that
correct n− (2k−1) errors, exactly achieving the half-Singleton bound. We relax the guarantee, and
now ask for a random RS code to correct n− (2k − 1)− εn errors, approaching the half-Singleton
bound. Now, the corresponding V -matrix is a ℓ× (2k − 1) matrix, for ℓ

def= (2k − 1) + εn. For this
relaxation, we show the probability V -matrix is bad is at most

(
kn

q−n

)Θ(εn)
, rather than k(k−1)

q−n .

2An important detail here, which [CST23] proves, is that (to apply the Schwartz-Zippel lemma) the determinant
needs to be symbolically nonzero.
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First, we discuss a toy problem that illustrates this probability amplification. Consider the toy
problem of independently picking ℓ uniformly random row vectors v1, · · · , vℓ ∈ F2k−1

q to form an
ℓ× (2k − 1) matrix M , which we want to have full column rank. If we choose ℓ = 2k − 1, then the
probability that M has full column rank is bounded by a function that is Θ(1/q), and this happens
only if each vi is not in the span of v1, . . . , vi−1. However, suppose we choose ℓ = (2k − 1) + εn for
some small ε > 0. In this case, we could afford εn “faulty” vectors vi , i.e., vi may be in the span of
previous vectors, in which case we just skip it and consider the next vector. The probability that
the matrix M has full column rank is then exponentially small, 1/qΩ(εn).

Now we outline the formal proof of this probability amplification, captured in Corollary 20.

Corollary (Corollary 20, informal). Let ε ∈ [0, 1], ℓ = (2k− 1) + εn, and r = εn/2. Let I, J ∈ [n]ℓ
be two increasing subsequences that agree on at most k − 1 coordinates3. Then,

Pr
[
Matrix Vk,ℓ,I,J(α1, . . . , αn) is bad

]
≤
(2n(k − 1)

q − n + 1

)r

.

At the highest level, our proof of Corollary 20 is a union bound over “certificates.” For all
evaluation points (α1, . . . , αn) ∈ Fn

q where Vk,ℓ,I,J is bad, we show that there is a certificate
(i1, . . . , ir) ∈ [n]r of distinct indices in [n] (Lemma 18) that intuitively “attests” that the matrix
Vk,ℓ,I,J is bad.

We generate the certificate (i1, . . . , ir) deterministically from the evaluations α1, . . . , αn using
Algorithm 1. We compute the certificate one index ij at a time. Given indices i1, . . . , ij−1, define
index ij as follows: let Aj be the top (2k − 1) × (2k − 1) square submatrix of V

{i1,...,ij−1}
k,ℓ,I,J — the

V -matrix Vk,ℓ,I,J after removing rows containing any of variables Xi1 , Xi2 , . . . , Xij−1 — and let ij

be the smallest index such that Aj |X1=α1,...,Xij
=αij

is not full column rank (we call ij a faulty index,
Definition 17). Since Aj is a full rank submatrix of a bad V -matrix4, Aj |X1=α1,...,Xn=αn is not full
rank, so index ij always exists. Hence, we can keep generating indices ij as long as the truncated
V -matrix, V

{i1,...,ij−1}
k,ℓ,I,J , has at least 2k − 1 rows. By definition, each Xi participates in at most 2

rows of a V -matrix, so we get a certificate of length at least
⌊

ℓ−(2k−1)
2

⌋
+ 1 ≥ εn/2 = r.

We then show (Lemma 19), for any certificate (i1, . . . , ir), the probability that the V -matrix
has certificate (i1, . . . , ir) is exponentially small. Conditioned on Aj being full rank with X1 =
α1, . . . , Xij−1 = αij−1, the probability that Aj becomes not-full-rank when setting Xij = αij is at
most 2(k−1)

q−n : αij is uniformly random over at least q − n field elements, and the degree of Xij in
the determinant of Aj is at most 2(k−1). This event needs to happen r times, and it is possible to
run the conditional probabilities in the correct order to conclude that the probability of generating
a particular certificate (i1, . . . , ir) is at most

(
2(k−1)

q−n

)r
.

Since there are at most nr certificates, the total probability that that a particular V -matrix is
bad is at most nr ·

(
2(k−1)

q−n

)r
. This is at most 2−3n for sufficiently large quadratic alphabet sizes

q = 2Θ(1/ε) ·n2. For such q, by a union bound over the at-most-22n V -matrices, with probability at
least 1− 2−n, the code C corrects n− ℓ deletions, thus approaching the half-Singleton bound with
quadratic alphabet size.

Linear alphabet size. To improve the alphabet size to linear, we modify the certificate argument
so that the number of certificates is only

(n
r

)
, rather than nr. The idea is to force the certificates

3More precisely, Ii = Ji for at most k − 1 values of i. This technical condition ensures that the V -matrix is
symbolically full column rank.

4The full-rank part needs to be checked, but follows from [CST23].
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to have increasing coordinates i1 < i2 < · · · < ir (this does not hold automatically).5
First, we preprocess the V -matrix by removing some of its rows (equivalently, we remove

elements from I and J), so that the remaining matrix can be partitioned into “blocks” of length
at most O(1/ε). Crucially, the variables in a block appear only in that block, so that the blocks
partition the variables X1, . . . , Xn (in the proof, these blocks are given by chains, Definition 23).
Proving this step requires establishing structural properties of longest common subsequences.

We then generate our certificates in a more careful way. We remove the largest Ωε(n) of these
blocks from our V -matrix to create a bank of blocks, and, we reindex the variables so that the
banked blocks have the highest-indexed variables.6 As in Algorithm 1, we choose A1 to be the top
(2k−1)×(2k−1) submatrix of the V -matrix — this time, after removing the blocks in the bank —,
and for all j, we again choose ij as the smallest index such that setting Xij = αij makes Aj not full
rank. However, we choose the matrices A2, A3, . . . more carefully. After choosing ij , we let Aj+1
be a submatrix of Vk,ℓ,I,J that “re-indeterminates” the matrix Aj : we remove from Aj the block
containing variable Xij , and replace it with an “equivalent” new block from our bank — possibly
truncating the new block, if the new block is longer than the old block — to get Aj+1. This results
in a matrix Aj+1 “equivalent” to Aj ; it is the same polynomial matrix up to permuting the rows
and relabeling the indeterminates. Since this matrix Aj+1 is an equivalent, “re-indeterminated”
version of Aj , we must have Aj+1|X1=α1,...,Xij

=αij
is full column rank, so we have ij < ij+1, which

is our desired property for our certificates. Further, since our bank has at least Ωε(n) blocks, we
can “re-indeterminate” at least Ωε(n) times, giving a certificate of length r = Ωε(n).

Since our certificates now satisfy i1 < · · · < ir, the number of certificates is at most
(n

r

)
, the

probability C fails to correct n− ℓ deletions is only
(n

r

) (2(k−1)
q−n

)r
, which is exponentially small 2−3n

for sufficiently large linear alphabet sizes q = n + Θε(k). Again, a union bound over (at most 22n)
V -matrices gives that, with high probability, our code C corrects n− ℓ deletions, thus approaching
the half-Singleton bound with linear-sized alphabets.

1.4 Future research directions

We conclude the introduction by outlining several open questions for future research:

1. Lower bounds on the field size. In [CST23], it was demonstrated that there exist RS codes
over fields of size nO(k) that exactly attain the half-Singleton bound. This paper shows that
the field size can be significantly reduced if we only need to get ε-close to the half-Singleton
bound. A remaining open question is to prove a lower bound on the field size of linear codes,
not just RS codes, that achieve (or get close to) the half-Singleton bound.

2. Explicit constructions. The results presented in this paper are existential; specifically, we
demonstrate the existence of RS codes capable of correcting insdel errors with an almost
optimal rate-distance tradeoff. An important question remains: How to provide explicit
constructions of RS codes that achieve these parameters?

3. Decoding algorithms. One of the primary advantages of RS codes in the Hamming metric
is their efficient decoding algorithms. Currently, as far as we know, there are no efficient
algorithms for RS codes that correct insdel errors. Therefore, a crucial open question is how
to design efficient decoding algorithms for RS codes handling insdel errors.

5For convenience, in the actual proof, our certificate is slightly different. Instead of 1 ≤ i1 < i2 < · · · < ir ≤ n, we
take certificates 0 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ 2k − 2. The ij ’s have slightly different meaning, but the idea is the same.

6This is acceptable, since we don’t use the original ordering on the variables after this point.
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4. Affine codes. In [CGHL21, Theorem 1.5], it was demonstrated that affine codes outperform
linear codes in correcting insdel errors. Specifically, efficient affine binary codes of rate
1 − ε were constructed to correct Ω(ε3) insdel errors. By efficient codes, we mean explicit
construction of codes with efficient encoding and decoding algorithms. An immediate open
question is to construct efficient affine code with improved rate-distance trade-offs. Moreover,
considering that RS codes achieve the half-Singleton bound, a natural question arises: can
affine RS codes perform even better? In particular, can they approach the Singleton bound?
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2 Notation and Preliminaries
Define N = {0, 1, 2, . . . , }, N+ = {1, 2, . . . }, and [n] = {1, 2, . . . , n} for n ∈ N. Throughout the
paper, Fq denotes the finite field of order q.

Denote by Fq[X1, . . . , Xn] the ring of polynomials in X1, . . . , Xn over Fq and by Fq(X1, . . . , Xn)
the field of fractions of that ring. More generally, for a collection of variables Xi indexed by a
set I, denote by Fq[Xi : i ∈ I] the ring of polynomials in these variables over Fq. The value of
f ∈ Fq[Xi : i ∈ I] at (αi)i∈I is denoted by f(αi : i ∈ I), or f(α1, . . . , αn) when I = [n].

The degree deg(f) of a nonzero multivariate polynomial f ∈ Fq[Xi : i ∈ I] refers to its total
degree. And for i ∈ [n], degXi

(f) denotes the degree of f in Xi, where the other variables are
viewed as constants.

We also need the following notation, adapted from [GZ23], regarding the partial assignment of
a symbolic matrix.

Definition 5 (Partial assignment). Let A be a matrix over K := Fq(X1, . . . , Xn) such that
the entries of A are in Fq[X1, . . . , Xn]. For i ∈ {0, 1, . . . , n} and α1, . . . , αi ∈ K, denote by
A|X1=α1,...,Xi=αi the matrix obtained from A by substituting αj for Xj for j = 1, . . . , i. More
generally, for I ⊆ [n] and a tuple (αi)i∈I ∈ KI , denote by A|Xi=αi for i∈I the matrix obtained from
A by substituting αi for Xi for i ∈ I.

We need the following variation of the Schwarz-Zippel Lemma.

Lemma 6. Let Q(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] be a nonzero polynomial such that degXi
(Q) ≤ d

for i ∈ [n]. Let T ⊆ Fq be a set of size at least n, and let α = (α1, . . . , αn) be uniformly distributed
over the set of n-tuples with distinct coordinates in T . Then Pr[Q(α1, . . . , αn) = 0] ≤ nd

|T |−n+1 .

Proof. For i ∈ [n], let Ei be the event that Q(α1, . . . , αi−1, Xi, . . . , Xn) ̸= 0 but
Q(α1, . . . , αi, Xi+1, . . . , Xn) = 0. As Q ̸= 0, the event Q(α1, . . . , αn) = 0 occurs precisely when one
of E1, . . . , En occurs. By the union bound, it suffices to prove that Pr[Ei] ≤ d

|T |−n+1 .
Fix i ∈ [n]. Further fix α1, . . . , αi−1 ∈ Fq such that Q(α1, . . . , αi−1, Xi, . . . , Xn) ̸= 0. It suffices

to prove that Ei occurs with probability at most d
|T |−n+1 after fixing such α1, . . . , αi−1. (If such

α1, . . . , αi−1 do not exist, then Pr[Ei] = 0 and we are done.)
Now αi is uniformly distributed over the set T ′ := T \ {α1, . . . , αi−1}. Let Q∗ :=

Q(α1, . . . , αi−1, Xi, . . . , Xn) ̸= 0. View Q∗ as a polynomial in Xi+1, . . . , Xn over the ring Fq[Xi]. Let
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Q∗
0 ∈ Fq[Xi] be the coefficient of a nonzero term of Q∗. Then Q∗

0 ̸= 0, and deg(Q∗) ≤ degXi
(Q) ≤ d.

Therefore,
Pr[Q∗

0(αi) = 0] ≤ d

|T ′|
≤ d

|T | − n + 1 . (3)

Note that Q∗
0(αi) is the coefficient of a term of Q∗(αi, Xi+1, . . . , Xn) = Q(α1, . . . , αi, Xi+1, . . . , Xn).

Therefore, the latter is zero only if Q∗
0(αi) = 0. So by (3), Ei occurs with probability at most

d
|T |−n+1 , as desired.

We recall the notion of a subsequence and a longest common subsequence.

Definition 7. A subsequence of a string s is a string obtained by removing some (possibly none)
of the symbols in s.

Definition 8. Let s, s′ be strings over an alphabet Σ. A longest common subsequence between s
and s′, is a subsequence of both s and s′, of maximal length. We denote by LCS(s, s′) the length
of a longest common subsequence.

The edit distance between s and s′, denoted by ED(s, s′), is the minimal number of insertions
and deletions needed in order to turn s into s′.

It is well known that the insdel correction capability of a code is determined by the LCS of its
codewords. Specifically,

Lemma 9. A code C can correct δn insdel errors if and only LCS(c, c′) ≤ n − δn − 1 for any
distinct c, c′ ∈ C.

We give the proof for completeness.

Proof. A code can correct δn insdel errors if and only if for any two distinct codewords c, c′, it
holds ED(c, c′) ≥ 2δn + 1. The claim follow by the well-known relation between edit distance and
LCS which states that ED(s, s′) = |s|+ |s′| − 2LCS(s, s′) [CR03, Lemma 12.1].

We now adopt two definitions and a lemma from [CST23]. These will establish the algebraic
conditions ensuring that an RS code can correct insdel errors.

Definition 10 (Increasing subsequence). We call I = (I1, . . . , Iℓ) ∈ [n]ℓ an increasing subsequence
if it holds that I1 < I2 < · · · < Iℓ, where ℓ is called the length of I.

Definition 11 (V -matrix). For positive integers ℓ, k and increasing subsequences I =
(I1, . . . , Iℓ), J = (J1, . . . , Jℓ) ∈ [n]ℓ of length ℓ, define the ℓ× (2k − 1) matrix

Vk,ℓ,I,J(X1, X2, · · · , Xn) :=


1 XI1 · · · Xk−1

I1
XJ1 · · · Xk−1

J1
1 XI2 · · · Xk−1

I2
XJ2 · · · Xk−1

J2...
... . . . ...

... . . . ...
1 XIℓ

· · · Xk−1
Iℓ

XJℓ
· · · Xk−1

Jℓ

 ,

over the field Fq(X1, . . . , Xn). We call Vk,ℓ,I,J(X1, X2, · · · , Xn) a V -matrix.

The following lemma states that if a Reed–Solomon code RSn,k(α1, . . . , αn) ⊆ Fn
q cannot correct

ℓ insdel errors, then we can identify a specific V -matrix that does not have full column rank. The
proof of this lemma is identical to the proof of Proposition 2.1 in [CST23]. However, we include it
here for completeness.
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Lemma 12. Let ℓ ≥ 2k − 1. Consider the [n, k] Reed–Solomon code RSn,k(α1, . . . , αn) ⊆ Fn
q

associated with an evaluation vector α⃗ := (α1, . . . , αn) ∈ Fn
q . If the code cannot correct arbitrary n−ℓ

insdel errors, then there exist two increasing subsequences I = (I1, . . . , Iℓ), J = (J1, . . . , Iℓ) ∈ [n]ℓ
that agree on at most k − 1 coordinates such that matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn does not have full
column rank.

Proof. Suppose the code RSn,k(α1, . . . , αn) ⊆ Fn
q can not recover from n − ℓ insdel errors, then

by Lemma 9, there exist two distinct codewords ci := (fi(α1), . . . , fi(αn)) (i = 1, 2) such that
LCS(c1, c2) ≥ ℓ. Therefore, by definition, we have two increasing subsequences I, J ∈ [n]ℓ such that

f1(αIs) = f2(αJs) for s = 1, 2, . . . , ℓ, (4)

where fi := ∑k−1
j=0 f

(j)
i Xj ∈ Fq[X] (i = 1, 2) are two distinct polynomials of degree at most k − 1.

To verify that I and J agree on at most k − 1 coordinates, assume that this is not true, i.e., there
exist distinct i1, . . . , ik ∈ [ℓ] such that Iij = Jij for j ∈ [k]. Then by (4), f1 − f2 vanishes at the k
distinct points αIi1

, . . . , αIik
. But this contradicts the fact that f1 and f2 are distinct polynomials

of degree at most k − 1.
Consider the vector v⃗ :=

(
f

(0)
1 − f

(0)
2 , f

(1)
1 , f

(2)
1 , . . . , f

(k−1)
1 ,−f

(1)
2 ,−f

(2)
2 , . . . ,−f

(k−1)
2

)
∈ F2k−1

q ,
which is non-zero. By the algebraic relations stated in (4), we have Vk,ℓ,I,J |X1=α1,...,Xn=αn · v⃗ = 0.
Therefore, the matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn does not have full column rank.

A key technical lemma regarding the V -matrices that was proved in [CST23] is the following.

Lemma 13 (Proposition 2.4, [CST23]). Let I, J ∈ [n]2k−1 be two increasing subsequences that agree
on at most k−1 coordinates. Then, we have det (Vk,2k−1,I,J(X1, X2, . . . , Xn)) ̸= 0 as a multivariate
polynomial in Fq[X1, X2, . . . , Xn].

Informally speaking, by using this lemma, and by considering all the V -matrices, the authors of
[CST23] showed by using the Schwarz-Zippel lemma that there exists an assignment (α1, . . . , αn)
over a large enough field for which det(Vk,ℓ,I,J |X1=α1,...,Xn=αn) is nonzero for all pairs I, J of length
2k − 1 that agree on at most k − 1 coordinates.

For convenience, we introduce the following definition.

Definition 14 (Selecting a subset of coordinates). For an increasing subsequence I ∈ [n]ℓ and
P = {i1, . . . , iℓ′} ⊆ [ℓ] with i1 < · · · < iℓ′ , denote by IP the increasing subsequence (Ii1 , . . . , Iiℓ′ ).

The following is a corollary of Lemma 13.

Corollary 15. Let I, J ∈ [n]ℓ with ℓ ≥ 2k−1 be two increasing subsequences that agree on at most
k − 1 coordinates. Let P ⊆ [ℓ] be a set of size 2k − 1. Then det(Vk,2k−1,IP ,JP ) ̸= 0. Additionally,
for i ∈ [n], we have degXi

(det(Vk,2k−1,IP ,JP )) ≤ 2(k − 1).

Proof. Note that IP , JP ∈ [n]2k−1 are two increasing subsequences that agree on at most k − 1
coordinates. So the first claim follows immediately from Lemma 13. The second claim follows from
the facts that every entry of Vk,2k−1,IP ,JP has the form Xj

i with j ≤ k−1 and that each Xi appears
in at most two rows.

3 Achieving Quadratic Alphabet Size
In this section, we present a warm-up result, Theorem 21, which achieves the alphabet size Oε(n2).
Our proof resembles the proof by Guo and Zhang [GZ23] showing that random RS codes achieve
list decodability over fields of quadratic size.
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3.1 Full rankness of Vk,ℓ,I,J under a random assignment

Firstly, we introduce the following definition, V B
k,ℓ,I,J , which is a submatrix of Vk,ℓ,I,J obtained by

deleting certain rows.

Definition 16. Under the notation in Definition 11, for a subset B ⊆ [n], define the matrix V B
k,ℓ,I,J

to be the submatrix of Vk,ℓ,I,J obtained by deleting the i-th row for all i ∈ [ℓ] such that Ii ∈ B or
Ji ∈ B. In other words, V B

k,ℓ,I,J is obtained from Vk,ℓ,I,J by deleting all the rows containing powers
of Xj for every index j ∈ B.

We also need to define the notion of faulty indices. Our definition is a simplification of a similar
definition in [GZ23].

Definition 17 (Faulty index). Let A ∈ Fq(X1, . . . , Xn)m×s be a matrix, where m ≥ s, and let
A′ be the s × s submatrix consisting of the first s rows of A. Suppose the entries of A are in
Fq[X1, . . . , Xn]. For α1, . . . , αn ∈ Fq, we say i ∈ [n] is the faulty index of A (with respect to
α1, . . . , αn) if det(A′|X1=α1,...,Xi−1=αi−1) ̸= 0 but det(A′|X1=α1,...,Xi=αi) = 0. Note that the faulty
index of A is unique if it exists.

Next, we will present an algorithm that, when provided with two increasing subsequences I, J ∈
[n]ℓ of length ℓ = 2k− 1 + ⌊εn⌋ that agree on at most k− 1 coordinates, elements α1, . . . , αn ∈ Fq,
and a parameter r ∈ N+, attempts to verify whether the matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn has full
column rank. If it is unable to confirm this, the algorithm produces either a “FAIL” message or
identifies a sequence of faulty indicies (i1, . . . , ir) ∈ [n]r. The algorithm is given as Algorithm 1.

Algorithm 1: CertifyFullColumnRankness

Input: n, k, r ∈ N+, increasing subsequences I, J ∈ [n]ℓ with ℓ = 2k − 1 + ⌊εn⌋ that agree
on at most k − 1 coordinates, and α1, . . . , αn ∈ Fq.

Output: “SUCCESS”, “FAIL”, or a sequence (i1, . . . , ir) ∈ [n]r.
1 B ← ∅.
2 for j = 1 to r do
3 if rank(V B

k,ℓ,I,J) < 2k − 1 then
4 Output “FAIL” and halt.
5 else if the faculty index i ∈ [n] of V B

k,ℓ,I,J exists then // i is unique if it exists
6 ij ← i and B ← B ∪ {i}.
7 else
8 Output “SUCCESS” and halt.
9 end

10 end
11 Output (i1, . . . , ir).

Lemma 18 (Behavior of Algorithm 1). Let ε ≥ 0. Let I, J ∈ [n]ℓ be two increasing subsequences
that agree on at most k − 1 coordinates, where ℓ = 2k − 1 + ⌊εn⌋. Let r be a positive integer such
that r ≤

⌈
εn
2
⌉
. Then for all α1, . . . , αn ∈ Fq, running Algorithm 1 on the input I, J, α1, . . . , αn, and

r yields one of the following two possible scenarios:

1. Algorithm 1 outputs “SUCCESS”. In this case, Vk,ℓ,I,J |X1=α1,...,Xn=αn has full column rank.

2. Algorithm 1 outputs a sequence of distinct indices (i1, . . . , ir) ∈ [n]r. For each j ∈ [r], ij is
the faulty index of V

Bj

k,ℓ,I,J , where Bj := {i1, . . . , ij−1}.
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Proof. We first show that the algorithm never outputs “FAIL”. If the algorithm reaches the j-th
round of the loop, where j ∈ [r], then at the beginning of this round, we have |B| = j − 1 ≤ r − 1.
For any j ∈ B, the number of indices i ∈ [ℓ] for which Ii = j or Ji = j is at most two. Therefore,
V B

k,ℓ,I,J is obtained from Vk,ℓ,I,J by removing at most 2|B| rows. It follows that the number of rows
that V B

k,ℓ,I,J contains is at least ℓ− 2|B| ≥ (2k − 1) + ⌊εn⌋ − 2(r − 1) ≥ 2k − 1. Note that the top
(2k − 1) × (2k − 1) submatrix of V B

k,ℓ,I,J equals Vk,2k−1,IP ,JP for some P ⊆ [ℓ] of size 2k − 1. So
by Corollary 15, the matrix V B

k,ℓ,I,J has full column rank, which implies that the algorithm never
outputs “FAIL”.

Assume the algorithm outputs “SUCCESS” and halts in the j-th round for some j ∈ [r], which
means the faulty index of V B

k,ℓ,I,J does not exist in that round. Let M be the top (2k−1)× (2k−1)
submatrix of V B

k,ℓ,I,J . Then det(M |X1=α1,...,Xn=αn) ̸= 0, which implies that Vk,ℓ,I,J |X1=α1,...,Xn=αn

has full column rank.
On the other hand, suppose that the algorithm does not output “SUCCESS”. Then it outputs

some (i1, . . . , ir) ∈ [n]r where ij is the faulty index of V
Bj

k,ℓ,I,J and Bj = {i1, . . . , ij−1} for j ∈ [r].
Note that i1, . . . , ir ∈ [n] must be distinct. Indeed, if an index i is in Bj , then Xi does not appear
in V

Bj

k,ℓ,I,J , and hence i cannot be the faulty index of V
Bj

k,ℓ,I,J .

The next lemma bounds the probability that Algorithm 1 outputs a particular sequence of faulty
indices over random (α1, . . . , αn). The proof follows the same approach as [GZ23, Lemma 4.5].

Lemma 19. Under the notation and conditions in Lemma 18, suppose q ≥ n and (α1, . . . , αn) is
chosen uniformly at random from the set of all n-tuples of distinct elements in Fq. Then for any
sequence (i1, . . . , ir) ∈ [n]r, the probability that Algorithm 1 outputs (i1, . . . , ir) on the input I, J ,
α1, . . . , αn, and r is at most

(
2(k−1)
q−n+1

)r
.

Proof. For j ∈ [r], define the following:

1. Bj := {i1, . . . , ij−1}.

2. Let Aj be the top (2k − 1) × (2k − 1) submatrix of V
Bj

k,ℓ,I,J . (The fact that det Aj ̸= 0
symbolically is guaranteed by Corollary 15.)

3. Let Ej be the event that det(Aj |X1=α1,...,Xij −1=αij −1) ̸= 0 but det(Aj |X1=α1,...,Xij
=αij

) = 0.

If Algorithm 1 outputs (i1, . . . , ir), then ij is the faulty index of V
Bj

k,ℓ,I,J for j ∈ [r] by Lemma 18 and
therefore the events E1, . . . , Er all occur. So it suffies to verify that Pr[E1 ∧ · · · ∧Er] ≤

(
2(k−1)
q−n+1

)r
.

Let (j1, j2, . . . , jr) be a permutation of (1, 2, . . . , r) such that ij1 < · · · < ijr , i.e., ijℓ
is the ℓ-th

smallest index among i1, . . . , ir for ℓ ∈ [r]. For ℓ ∈ {0, 1, . . . , r}, we define Fℓ := Ej1 ∧ · · · ∧ Ejℓ
,

where F0 is the event that always occurs. Then Fr = Ej1 ∧ · · · ∧ Ejr = E1 ∧ · · · ∧ Er. We may
assume Pr[Fr] > 0 since otherwise we are done. By definition, if Fℓ occurs and ℓ′ < ℓ, then Fℓ′ also
occurs. So Pr[Fℓ] > 0 for all ℓ ∈ {0, 1, . . . , r}. We have that

Pr[E1 ∧ · · · ∧ Er] = Pr[Fr] =
r∏

ℓ=1

Pr[Fℓ]
Pr[Fℓ−1] .

Thus, to prove Pr[E1 ∧ · · · ∧ Er] ≤
(

2(k−1)
q−n+1

)r
, it suffices to show that Pr[Fℓ]

Pr[Fℓ−1] ≤
2(k−1)
q−n+1 for every

ℓ ∈ [r].
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Fix ℓ ∈ [r] and let j = jℓ. Let S be the set of all β = (β1, . . . , βij−1) ∈ Fij−1
q such that

Pr
[(

α<ij = β
)
∧ Fℓ−1

]
> 0, where α<ij = β is a shorthand for (α1 = β1) ∧ · · · ∧ (αij−1 = βij−1).

Note that for β ∈ S, the event
(
α<ij = β

)
∧Fℓ−1 is simply α<ij = β since Fℓ−1 = Ej1 ∧ · · · ∧Ejℓ−1

depends only on α1, . . . , αijℓ−1
and as α<ij = β ∈ S, Fℓ−1 occurs (by the definition of S). We then

have

Pr[Fℓ]
Pr[Fℓ−1] =

∑
β∈S Pr

[(
α<ij = β

)
∧ Fℓ

]
∑

β∈S Pr
[(

α<ij = β
)
∧ Fℓ−1

] =
∑

β∈S Pr
[(

α<ij = β
)
∧ Ej

]
∑

β∈S Pr
[
α<ij = β

]
≤ max

β∈S

Pr
[(

α<ij = β
)
∧ Ej

]
Pr
[
α<ij = β

] = max
β∈S

Pr
[
Ej | α<ij = β

]
.

Fix β = (β1, . . . , βij−1) ∈ S. We just need to prove that Pr
[
Ej | α<ij = β

]
≤ 2(k−1)

q−n+1 . Let

Q := det(Aj |X1=β1,...,Xij −1=βij −1) ∈ Fq[Xij , . . . , Xn].

If Q = 0, then Ej never occurs conditioned on α<ij = β and we are done. So assume Q ̸= 0.
View Q as a polynomial in Xij+1, . . . , Xn over the ring Fq[Xij ], and let Q0 ∈ Fq[Xij ] be the
coefficient of a nonzero term of Q. Then conditioned on α<ij = β, the event Ej occurs only
if αij is a root of Q0 ̸= 0. Note that deg Q0 ≤ degXij

Q ≤ degXij
(det(Aj)) ≤ 2(k − 1) by

Lemma 15. Also note that conditioned on α<ij = β, the random variable αij is uniformly distributed
over the set Fq \ {β1, . . . , βij−1}, whose size is at least q − n + 1 since ij ≤ n. It follows that
Pr
[
Ej | α<ij = β

]
≤ 2(k−1)

q−n+1 , as desired.

By combining Lemma 18 and Lemma 19 and taking a union bound over the set of possible
outputs (i1, . . . , ir) of Algorithm 1, we obtain the following corollary.

Corollary 20. Under the notation and conditions in Lemma 18, suppose q ≥ n and (α1, . . . , αn)
is chosen uniformly at random from the set of all n-tuples of distinct elements in Fq. Then for any
positive integer r ≤

⌈
εn
2
⌉
, we have

Pr
[
The matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn

does not have full column rank

]
≤
(2n(k − 1)

q − n + 1

)r

.

Proof. By Lemma 19 and the union bound, the probability that Algorithm 1 outputs some sequence
(i1, . . . , ir) ∈ [n]r on the input I, J , α1, . . . , αn, and r is at most nr ·

(
2(k−1)
q−n+1

)r
=
(

2n(k−1)
q−n+1

)r
. By

Lemma 18, whenever this does not occur, the matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn has full column rank,
as desired.

3.2 Putting it together

We are now ready to prove a weaker version of our main result, which achieves quadratic-sized
alphabets.

Theorem 21. Let ε ∈ (0, 1) and n, k ∈ N+, where k ≤ n. Let q be a prime power such that q ≥(
1 + 2 · 26/εk

)
n. Suppose (α1, . . . , αn) is chosen uniformly at random from the set of all n-tuples

of distinct elements in Fq. Then with probability at least 1 − 2−n > 0, the code RSn,k(α1, . . . , αn)
over Fq corrects at least (1− ε)n− 2k + 1 adversarial insdel errors.
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Type II chain
I1 = (3, 6, 8, 9)
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Type II chain
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Figure 1: Example of chains

Proof. Let ℓ = (2k − 1) + ⌊εn⌋. By Lemma 12, if RSn,k(α1, . . . , αn) ⊆ Fn
q fails to correct n − ℓ

adversarial insdel errors, then we will have two increasing subsequences I, J ∈ [n]ℓ which agree on
at most k − 1 coordinates, such that the matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn does not have full column
rank. On the other hand, applying Corollary 20 with r =

⌈
εn
2
⌉
, for fixed I, J , we have that

Pr
[
The matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn

does not have full column rank

]
≤
(2n(k − 1)

q − n + 1

) εn
2

.

By the union bound over all (I, J) and the fact that q ≥
(
1 + 2 · 26/εk

)
n, the probability that

RSn,k(α1, . . . , αn) ⊆ Fn
q cannot recover from (1 − ε)n − 2k + 1 adversarial insdel errors is at most(n

ℓ

)2 · (2n(k−1)
q−n+1

) εn
2 ≤ 22n ·

(
2n(k−1)
q−n+1

) εn
2 ≤ 2−n, as desired.

4 Achieving Linear Alphabet Size
In this section, we present an improved analysis that achieves a linear alphabet size. We begin
by defining the notion of “chains” and establishing related structural results about common
subsequences in Section 4.1. Building on these foundations, we then prove Theorem 4 in Section 4.2.

4.1 Chain decomposition

For convenience, we first introduce some definitions.

Definition 22. For an increasing subsequence I = (I1, . . . , Iℓ) ∈ [n]ℓ, define

Set(I) := {I1, . . . , Iℓ}.

Definition 23 (Chain). For two increasing subsequences I, J ∈ [n]ℓ, where n, ℓ ∈ N+, we call the
pair (I, J) a chain if either (i) Ii = Ji+1 for all i = 1, . . . , ℓ−1, or (ii) Ii+1 = Ji for all i = 1, . . . , ℓ−1.
If ℓ = 1 and I = J , we call (I, J) a Type I chain. Otherwise, we call (I, J) a Type II chain. See
Figure 1 for some examples.

Recall Definition 14 that for an increasing subsequence I ∈ [n]ℓ and P = {i1, . . . , iℓ′} ⊆ [ℓ] with
i1 < · · · < iℓ′ , we let IP = (Ii1 , . . . , Iiℓ′ ).

Definition 24 (Maximal chain). Let I, J ∈ [n]ℓ be two increasing subsequences. Let P be a subset
of [ℓ] of size ℓ′ ≥ 1. Let I ′ = IP and J ′ = JP . Suppose (I ′, J ′) is a chain. We say the chain (I ′, J ′)
is maximal with respect to (I, J) if
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I1 = (3, 6, 8, 9)
I2 = (4, 7)

J1 = (1, 3, 6, 8)
J2 = (2, 4)

Figure 2: A decomposition of (I, J), where I = (3, 4, 6, 7, 8, 9) and J = (1, 2, 3, 4, 6, 8), into maximal
chains (I1, J1) and (I2, J2). Note that the maximal chains are (I, J)-disjoint but can interleave.

1. (I ′, J ′) is a Type I chain, or

2. (I ′, J ′) is a Type II chain, and both min(I ′
1, J ′

1) and max(I ′
ℓ′ , J ′

ℓ′) is in exactly one of Set(I)
and Set(J).

Intuitively, a chain (I ′, J ′) is maximal with respect to (I, J) if it cannot be extended to a longer
chain in (I, J) by adding matches from either side.

Definition 25 (Indices of variables). For increasing subsequences I, J ∈ [n]ℓ and P ⊆ [ℓ], define

Var(I, J, P ) := Set(IP ) ∪ Set(JP ) ⊆ [n].

Note that Var(I, J, P ) is the set of indices of the variables involved in a V -matrix Vk,|P |,IP ,JP .7

Definition 26 ((I, J)-disjointness). Let I, J ∈ [n]ℓ be increasing subsequences. We say two
sets P, P ′ ⊆ [ℓ] are (I, J)-disjoint if Var(I, J, P ) and Var(I, J, P ′) are disjoint. Note that (I, J)-
disjointness implies disjointness.

Lemma 27. Let I, J ∈ [n]ℓ be two increasing subsequences. Let P ′ ⊆ P ⊆ [ℓ]. Suppose (IP ′
, JP ′)

is a maximal chain with respect to (IP , JP ). Then P ′ and P \ P ′ are (I, J)-disjoint.

Proof. By definition, we have

Set(IP \P ′) = Set(IP ) \ Set(IP ′) and Set(JP \P ′) = Set(JP ) \ Set(JP ′). (5)

If (IP ′
, JP ′) is a Type I chain, the claim holds by (5) and the fact the that IP ′ = JP ′ .

Now suppose (IP ′
, JP ′) is a Type II chain. Let ℓ′ = |P ′|. By definition, either (IP ′)i = (JP ′)i+1

for i = 1, . . . , ℓ′ − 1, or (IP ′)i+1 = (JP ′)i for i = 1, . . . , ℓ′ − 1. This implies that all elements in
Var(I, J, P ′) except a := min((IP ′)1, (JP ′)1) and b := max((IP ′)ℓ′ , (JP ′)ℓ′) are in both Set(IP ′) and
Set(JP ′). So by (5), these elements are excluded from Var(I, J, P \ P ′). As (IP ′

, JP ′) is maximal
with respect to (IP , JP ), both a and b are in exactly one of Set(IP ) and Set(JP ). And they are
in Set(IP ) (resp. Set(JP )) iff they are in Set(IP ′) (resp. Set(JP ′)). By (5), a and b are excluded
from Var(I, J, P \ P ′) as well.

7If k = 1, these variables do not really appear as Xk−1
i = X0

i = 1. But we still consider Var(I, J, P ) as the set of
indices of variables involved in Vk,|P |,IP ,JP in this case.
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Theorem 28. Let I, J ∈ [n]ℓ be increasing subsequences. Let P ⊆ [ℓ]. Then there exists a partition
P1 ⊔ P2 ⊔ · · · ⊔ Ps of P into nonempty sets Pi such that (IPi , JPi) is a maximal chain with respect
to (IP , JP ) for all i ∈ [s].

Proof. Induct on t := |P |. When t = 0, i.e., P = ∅, the theorem holds trivially. Now assume t > 0
and the theorem holds for t′ < t.

We first construct a nonempty set P1 ⊆ P such that (IP1 , JP1) is a maximal chain with respect
to (IP , JP ). Initially, let i1 be the smallest integer in P , and let P1 = {i1}. If Ii1 = Ji1 , then
(IP1 , JP1) is a Type I chain and hence a maximal chain with respect to (IP , JP ) by Definition 24.

Now assume Ii1 < Ji1 . In this case, run the following process on P1 = {i1}:

1 s← 1.
2 while there exists i ∈ P such that Ii = Jis do // i is unique if it exists
3 s← s + 1.
4 is ← i.
5 P1 ← P1 ∪ {is}.
6 end

The above process iteratively finds indices i1 < · · · < is in P such that Ii1 < Ji1 = Ii2 <
Ji2 = · · · = Iis < Jis , and Jis ̸∈ Set(IP ). The resulting set P1 is {i1, . . . , is}. Note that both
Ii1 = min(Ii1 , Ji1) and Jis = max(Iis , Jis) are in exactly one of Set(IP ) and Set(JP ). So by
Definition 24, (IP1 , JP1) is a maximal chain with respect to (IP , JP ).

Finally, in the case where Ii1 > Ji1 , we construct P1 via a symmetric process, where I and J
and swapped.

In all cases, we obtain a nonempty set P1 ⊆ P such that (IP1 , JP1) is a maximal chain with
respect to (IP , JP ). By Lemma 27, P1 and P \ P1 are (I, J)-disjoint.

By the induction hypothesis, there exists a partition P2 ⊔ · · · ⊔Ps of P \P1 such that (IPi , JPi)
is a maximal chain with respect to (IP \P1 , JP \P1) for i = 2, . . . , s. As P1 and P \ P1 are (I, J)-
disjoint, it follows from Definition 24 that a maximal chain with respect to (IP \P1 , JP \P1) is also
maximal with respect to (IP , JP ). So (IPi , JPi) is a maximal chain with respect to (IP , JP ) for
i = 1, 2, . . . , s, as desired.

By choosing P = [ℓ], we obtain the following corollary, which states that for increasing
subsequences I, J ∈ [n]ℓ, (I, J) can always be decomposed into maximal chains.

Corollary 29. For any two increasing subsequences I, J ∈ [n]ℓ, there exists a partition P1 ⊔ P2 ⊔
· · · ⊔ Ps of [ℓ] such that (IPi , JPi) is a maximal chain with respect to (I, J) for all i ∈ [s].

See Figure 2 for an example. In fact, one can prove that the decomposition into maximal chains
is unique, but we do not need this result.

Splitting long chains into short ones. The maximal chains in Corollary 29 can be very long.
The next lemma states that, by removing a small fraction of matchings from (I, J), we can split
the long chains into very short ones while maintaining their (I, J)-disjointness. (See also Figure 3.)

Lemma 30. Let I, J ∈ [n]ℓ be increasing subsequences. Let ε ∈ (0, 1). Then there exist a subset
P ⊆ [ℓ] of size at least (1− ε)ℓ and a partition P1 ⊔ P2 ⊔ · · · ⊔ Ps of P such that,

1. P1, . . . , Ps are mutually (I, J)-disjoint.
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Figure 3: Lemma 30: splitting long chains into short ones. Ensure that all chains have a length of
at most 1/ε by removing at most ε fraction of pairs from each chain.

2. |Pi| ≤ 1/ε for i ∈ [s].

Proof. By Corollary 29, there exists a partition P1 ⊔ P2 ⊔ · · · ⊔ Ps of [ℓ] such that (IPi , JPi) is a
maximal chain with respect to (I, J) for all i ∈ [s]. Fix such a partition. Then Item 1 holds by
Lemma 27. Consider any i ∈ [s] such that |Pi| > 1/ε. Note that (IPi , JPi) must be a Type II
chain (since otherwise we would have |Pi| = 1 ≤ 1/ε). Let t = ⌊1/ε⌋ + 1 ≥ 1/ε. We remove the
j-th smallest element of Pi for j = t, 2t, . . . , ⌊Pi/t⌋t. The remaining elements split into consecutive
blocks Pi,j , each of size at most t− 1 ≤ 1/ε. Splitting Pi into Pi,j preserves the (I, J)-disjointness
of the sets. See Figure 3 for an illustration.

Perform the above operations for each i with |Pi| > 1/ε, and we obtain the desired partition.
The set P consists of the remaining elements of [ℓ]. Its size is at least (1−ε)ℓ since we have removed
at most (1/t)-fraction of elements from each Pi, where 1/t ≤ ε.

4.2 Proof of Theorem 4

Fix I, J ∈ [n]ℓ to be increasing subsequences that agree on at most k − 1 coordinates. For
convenience, we introduce the following notation.

Definition 31. Let n, k, ℓ ∈ N+. Let P1, . . . , Ps ⊆ [ℓ] be nonempty subsets of [ℓ]. Define the block
matrix

Ṽk,I,J,(Pi)s
i=1

(X1, . . . , Xn) =


Vk,|P1|,IP1 ,JP1

Vk,|P2|,IP2 ,JP2
...

Vk,|Ps|,IPs ,JPs


which is a (∑s

i=1 |Pi|)× (2k − 1) matrix over Fq(X1, . . . , Xn).

Lemma 32. Let P1, . . . , Ps ⊆ [ℓ] and α1, . . . , αn ∈ Fq. If Ṽk,I,J,(Pi)s
i=1

has full column rank under
the assignment X1 = α1, . . . , Xn = αn, then Vk,ℓ,I,J also has full column rank under the same
assignment.

Proof. By definition, each row of Ṽk,I,J,(Pi)s
i=1
|X1=α1,...,Xn=αn is a row of Vk,ℓ,I,J |X1=α1,...,Xn=αn . So

if the former matrix has full column rank, i.e., its row space has dimension 2k− 1, then so does the
latter matrix.

Choosing sets P1, . . . , Ps. Fix a parameter ε0 ∈ (0, 1), whose exact value will be determined later.
We note that by Lemma 30, there exist mutually (I, J)-disjoint nonempty sets P1, . . . , Ps ⊆ [ℓ],
each of size at most 1/ε0, such that ∑s

i=1 |Pi| ≥ (1 − ε0)ℓ and each (IPi , JPi) is a chain. Fix such
P1, . . . , Ps. We further make the following assumption:
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Assumption 1. |P1| ≤ |P2| ≤ · · · ≤ |Ps|. Moreover, for i, j ∈ [s] with i < j, if (IPj , JPj ) is a Type
I chain, so is (IPi , JPi). In other words, the Type I chains (IPi , JPi) have the smallest indices i.

Note that Assumption 1 can be guaranteed by permuting the sets Pi.
We will show that Ṽk,I,J,(Pi)s

i=1
|X1=α1,...,Xn=αn has full column rank with high probability over

random (α1, . . . , αn). By Lemma 32, this would imply that Vk,ℓ,I,J |X1=α1,...,Xn=αn also has full
column rank with high probability.

Algorithm 2: CertifyFullColumnRankness2

Input: n, k, ℓ, r ∈ N+, ε0 ∈ (0, 1), increasing subsequences I, J ∈ [n]ℓ, P1, . . . , Ps ⊆ [ℓ], and
α1, . . . , αn ∈ Fq.

Output: “SUCCESS” or a sequence (i1, . . . , ir) ∈ {0, . . . , 2k − 2}r.
1 S ← ∅. // set of indices of assigned variables
2 c← 0. // number of assigned rows
3 Pick the smallest m ∈ [s] such that ∑s

i=s−m+1 |Pi| ∈ [r/ε0, (r + 1)/ε0]. // last m chains
form the bank

4 a← 1. // current chain to assign
5 b← s−m + 1. // current chain in the bank
6 j ← 0. // number of failed attempts
7 for i = 1 to s do Qi ← Pi.
8 while c < 2k − 1 do
9 M ← the top (2k − 1)× (2k − 1) submatrix of Ṽk,I,J,(Qi)s−m

i=1
.

10 S′ ← S ∪Var(I, J, Qa).
11 M ←M |Xi=αi for i∈S′ .
12 if M is nonsingular then // assign variables in the a-th chain
13 S ← S′.
14 c← c + |Qa|.
15 a← a + 1.
16 else // replace the a-th chain by (part of) the b-th chain in the bank
17 Qa ← set of the smallest |Qa| elements in Qb.
18 Qb ← ∅.
19 b← b + 1.
20 j ← j + 1.
21 ij ← c.
22 if j = r then output (i1, . . . , ir) and halt.
23 end
24 end
25 Output “SUCCESS”.

To bound the probability that Ṽk,I,J,(Pi)s
i=1
|X1=α1,...,Xn=αn does not have full column rank, we

use Algorithm 2, whose pseudocode is given above, to assign the variables chain by chain. We
sketch how the algorithm works.

• First, choose the smallest m ∈ [s] such that ∑s
i=s−m+1 |Pi| ∈ [r/ε0, (r + 1)/ε0] (Line 3).

We will soon prove that such m exists for ℓ slightly larger than 2k − 1. The last m chains
(IPi , JPi), i = s − m + 1, . . . , s, form a “bank.” At a high level, Algorithm 2 attempts to
assign the variables in the first s −m chains, i.e., those not in the bank, while keeping the
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top (2k − 1) × (2k − 1) submatrix of Ṽk,I,J,(Pi)s−m
i=1

nonsingular even after the assignment. If
assigning the variables in some chain violates this property, the algorithm will use part of a
chain in the bank to replace that chain, and continue. Such a replacement is done by updating
the sets Pi. To avoid confusion, we create a copy Qi = Pi for i ∈ [s] (Line 7) and update the
sets Qi instead.

• The variables are assigned chain by chain. That is, for a = 1, 2, . . . , Algorithm 2 assigns αi to
Xi for all i ∈ Var(I, J, Qa). The algorithm terminates when the top 2k−1 rows of Ṽk,I,J,(Qi)s−m

i=1
have been fully assigned. This condition is checked at Line 8. The number of assigned rows
is maintained as a variable c. That is, if the first i chains (IQ1 , JQ1), . . . , (IQi , JQi) have been
assigned, then c = ∑i

j=1 |Qj |.

• When attempting to assign the variables in the a-th chain (IQa , JQa), we check (Line 12)
whether the top (2k − 1)× (2k − 1) submatrix of Ṽk,I,J,(Qi)s−m

i=1
remains nonsingular after the

assignment. If so, we perform the assignment, and then move to the next chain (Lines 13–15).
If not, we use a prefix of a chain (IQb , JQb) in the bank to replace the chain (IQa , JQa), and
then throw away (IQb , JQb).8 In the algorithm, the updates to the chains (IQa , JQa) and
(IQb , JQb) are done by simply updating the sets Qa and Qb (Lines 17–18).

• Finally, the algorithm maintains a variable j, which is the number of times the nonsingularity
condition at Line 12 fails to hold. It also maintains a sequence (i1, . . . , ij). When the
nonsingularity condition fails for the j-th time, the number of successfully assigned rows
is stored into ij (Line 21). We have ij ≤ 2k − 2 due to the condition checked at Line 8. If j
reaches a given integer r, the algorithm outputs the sequence (i1, . . . , ir) and halts (Line 22).
We will eventually choose r = Θ(ε2n).

From now on, assume ℓ is chosen such that

(1− ε0)ℓ ≥ 2k − 1 + (r + 1)/ε0. (6)

As promised, we now show that Line 3 of Algorithm 2 is valid by proving the following lemma.

Lemma 33. There exists m ∈ [s] such that ∑s
i=s−m+1 |Pi| ∈ [r/ε0, (r + 1)/ε0]. Moreover, for such

m, it holds that ∑s−m
i=1 |Pi| ≥ 2k − 1 and m ≥ r.

Proof. Recall that P1, . . . , Ps that we choose satisfy ∑s
i=1 |Pi| ≥ (1−ε0)ℓ. Combining this with (6),

we have that ∑s
i=1 |Pi| ≥ (1 − ε0)ℓ ≥ r/ε0. Thus, there exists m ∈ [s] such that ∑s

i=s−m+1 |Pi| ≥
r/ε0. Pick the smallest such m. Then ∑s

i=s−m+1 |Pi| ≤ (r + 1)/ε0 by the minimality of m and the
fact that the size of each Pi is at most 1/ε0. Therefore,

s−m∑
i=1
|Pi| =

(
s∑

i=1
|Pi|

)
−

 s∑
i=s−m+1

|Pi|

 ≥ (1− ε0)ℓ− (r + 1)/ε0
(6)
≥ 2k − 1.

Finally, as ∑s
i=s−m+1 |Pi| ≥ r/ε0 and each Pi has size at most 1/ε0, we have m ≥ r.

The next lemma ensures the validity of the other parts of Algorithm 2. Particularly, Item (b)
guarantees that Line 9 is valid, while Items (d) and (e) guarantees that Lines 17–18 are valid.

Lemma 34. During Algorithm 2, after Line 7:
8Alternatively, one can remove the used portion of (IQb , JQb ) and continue using the remaining part. However,

this approach does not qualitatively improve our parameters.
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(a) |Qi| = |Pi| for i ∈ [s−m]. In particular, |Qi| ≤ 1/ε0 for i ∈ [s−m].

(b) ∑s−m
i=1 |Qi| ≥ 2k − 1.

(c) 1 ≤ a ≤ s−m always holds at Line 9.

(d) s−m + 1 ≤ b ≤ s always holds at Line 9.

(e) |Qb| ≥ |Qa| always holds at Line 9, and consequently, also at Line 17.

Proof. First, note that the algorithm runs Lines 17–22 at most r times due to Line 22 and the
fact that each time it runs, b increases by one at Line 19. Initially, b = s −m + 1. As r ≤ m by
Lemma 33, Item (d) holds.

Note that ∑s−m
j=1 |Pi| ≥ 2k − 1 holds by Lemma 33. Thus, if (a) is true, so is (b). And if (b) is

true, (c) must also be true. This is because if a > s−m ever holds at Line 9, then by (b), we have
c = ∑a−1

i=1 |Qi| ≥ 2k − 1 and the algorithm would have exited the while loop before at Line 8.
We know (a) holds initially after Line 7. It continues to hold in each iteration of the while loop

since Line 17 does not change the size of Qa and Line 18 only changes Qb for b > s−m.
Finally, to see that (e) holds, note that at Line 9, we have Qb = Pb. This is because Qb is only

changed at Line 18, followed by Line 19 which increases b by one. So Qb = Pb still holds after Line 19.
Then by (a), (c), (d), and the fact that |P1| ≤ |P2| ≤ · · · ≤ |Ps|, we have |Qb| = |Pb| ≥ |Pa| = |Qa|
at Line 9, proving (e).

The output of Algorithm 2 can be used to certify the full-column-rankness of the matrix
Vk,ℓ,I,J |X1=α1,...,Xn=αn , as stated by the following lemma.

Lemma 35. Algorithm 2 terminates, outputting either “SUCCESS” or (i1, . . . , ir) ∈ {0, . . . , 2k −
2}r. In the former case, Vk,ℓ,I,J |X1=α1,...,Xn=αn has full column rank.

Proof. In each iteration of the while loop, either a or j increases by one. If j reaches r, the algorithm
outputs (i1, . . . , ir) and halts, where i1, . . . , ir ≤ 2k− 2 due to the condition checked at Line 8. On
the other hand, if a gets large enough, the number of assigned rows c = ∑a−1

i=1 |Qi| becomes at least
2k − 1 by Lemma 34, in which case the algorithm outputs “SUCCESS” and terminates. Suppose
this is the case. Then the condition at Line 12 is satisfied in the last round of the while loop, i.e.,
the top (2k − 1)× (2k − 1) submatrix of Ṽk,I,J,(Qi)s−m

i=1
|Xi=αi for i∈S′ , denoted by M , is nonsingular.

As the top 2k − 1 rows have been fully assigned, M is also the top (2k − 1)× (2k − 1) submatrix
of Ṽk,I,J,(Qi)s−m

i=1
|X1=α1,...,Xn=αn . By Lemma 32, Vk,ℓ,I,J |X1=α1,...,Xn=αn has full column rank.

As the variable c in Algorithm 2 never decreases, we have the following lemma.

Lemma 36. Any sequence (i1, . . . , ir) output by Algorithm 2 satisfies i1 ≤ · · · ≤ ir.

Recall that for i ∈ [s], the set of indices of the variables involved in Vk,|Qi|,IQi ,JQi is Var(I, J, Qi).
The next lemma states that these sets are mutually (I, J)-disjoint (see Definition 26).

Lemma 37. Q1, . . . , Qs are mutually (I, J)-disjoint before and after Lines 17–18.

Proof. Initially, the (I, J)-disjointness holds since it holds for the sets P1, . . . , Ps and Qi = Pi for
i ∈ [s]. We just need to verify that Lines 17–18 preserve the (I, J)-disjointness. At Line 17, Qa is
replaced by a subset of Qb, and at Line 18, we let Qb = ∅. So the (I, J)-disjointness still holds.

The next lemma states that the values αi with i ∈ Var(I, J, Qa) used in one iteration of the
while loop have not been used in the previous iterations.
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Lemma 38. At Line 9 of Algorithm 2, none of the elements in Var(I, J, Qa) has been added to S′

in the previous iterations of the while loop.

Proof. In each iteration of the while loop, either a increases by one, or we replace Qa by a subset of
Qb and let Qb = ∅. Either case, the set ⋃s

i=a Var(I, J, Qi) shrinks to a proper subset and excludes
the elements in Var(I, J, Qa) (for the old a).

Suppose an element x ∈ [n] is added to S′ for the first time at Line 10. Then x ∈ Var(I, J, Qa).
(This is because, if x ∈ S at Line 10, then x must have been added to S′ before.) By the first
paragraph, x will not appear in Var(I, J, Qa) in the later iterations. The contrapositive of this
statement is the lemma.

Next, we make the crucial observation that the behavior of the algorithm is mostly determined
by the values of j, (i1, . . . , ij), and c, regardless of α1, . . . , αn.

Lemma 39. At Line 12 of Algorithm 2, the values of Q1, . . . , Qs and a are determined by the
values of j, i1, . . . , ij, and c, together with the input excluding α1, . . . , αn.

Proof. Fix the input excluding α1, . . . , αn and the values of j, i1, . . . , ij , and c. We use j∗, i∗
1, . . . , i∗

j∗ ,
and c∗ to denote these values and distinguish them from the variables.

Simulate the algorithm until it reaches Line 12 with j = j∗, (i1, . . . , ij) = (i∗
1, . . . , i∗

j ), and
c = c∗. Then read off Q1, . . . , Qs and a. Doing the simulation naively requires knowing α1, . . . , αn

to check the condition at Line 12. However, we will show that the outcome of any condition check
at Line 12 performed during the simulation can be determined by our fixed values.

Suppose the simulation has reached Line 12, where i1, . . . , ij have been chosen and j ≤ j∗. First
consider the case j < j∗. In this case, as j has not yet reached j∗, the values i∗

j+1, . . . , i∗
j∗ have not

yet been assigned to ij+1, . . . , ij∗ by the algorithm. Then there are two subcases:

1. c ̸= i∗
j+1. In this case, the condition at Line 12 must be true, since otherwise the algorithm

would store c, rather than i∗
j+1, into ij+1.

2. c = i∗
j+1. In this case, the condition at Line 12 must be false, since otherwise the algorithm

would increase c at Line 14 and then either choose ij+1 to be greater than i∗
j+1 or not choose

it at all.

Now consider the case j = j∗. In this situation, j has reached j∗. However, recall that the
simulation ends when c = c∗. Again, we have two subcases to consider.

1. c ̸= c∗. In this case, the condition at Line 12 must be true, so that the algorithm can continue
to increase c to c∗ before choosing ij∗+1.

2. c = c∗. This is the end of the simulation where we read off Q1, . . . , Qs and a. Note that the
next time the algorithm reaches Line 12, either j will be greater than j∗ or c will be greater
than c∗.

As we can determine Q1, . . . , Qs and a without knowing α1, . . . , αn, the claim follows.

We also need the following crucial lemma.

Lemma 40. At Line 12 of Algorithm 2, M |Xi=αi for i∈S is nonsingular.
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Figure 4: Lemma 40. Re-indeterminating a faulty (blue) chain with (part of) a (gray) chain from
the bank. Three cases: (1) The faulty chain and the bank’s chain are both type II with the same
orientation. The new V -matrix is equivalent to the original one. (2) The faulty chain and the
bank’s (gray) chain are both type II with different orientations. The new V -matrix is equivalent to
the original one when we view the bank’s gray-chain in reverse. (3) The faulty chain is type I and
the bank’s chain is type II. The new V -matrix is not exactly equivalent to the original one, but is
similar enough: since the old matrix is full rank (before setting Xi), the new matrix certainly is
full rank as well, which is what we need.
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Proof. We prove by induction on the iteration of the while loop. When the algorithm first reaches
Line 12, we have S = ∅, and hence M |Xi=αi for i∈S is simply M , which is the top (2k− 1)× (2k− 1)
submatrix of Ṽk,I,J,(Qi)s−m

i=1
= Ṽk,I,J,(Pi)s−m

i=1
. Note that by Definition 31, this matrix equals, up

to reordering of rows, the V -matrix Vk,2k−1,IP ,JP for some P ⊆
⋃s−m

i=1 Pi of size 2k − 1. So by
Corollary 15, M |Xi=αi for i∈S is nonsingular.

Next, assume that for some t ∈ N+, M |Xi=αi for i∈S is nonsingular at Line 12 in the t-th
iteration of the while loop. It suffices to show that M |Xi=αi for i∈S is still nonsingular at Line 12 in
the (t + 1)-th iteration. There are two cases:

Case 1: the matrix M = M |Xi=αi for i∈S′ is nonsingular at Line 12 in the t-th iteration. The
algorithm then runs Lines 13–15 and replaces S by S′. So in the (t+1)-th iteration, M |Xi=αi for i∈S

is nonsingular at Line 12.
Case 2: the matrix M = M |Xi=αi for i∈S′ is singular at Line 12 in the t-th iteration. In this case,

the algorithm runs Lines 17–22, which do not change the set S. However, Qa is replaced by a subset
of Qb at Line 17, which we denote by Q′

b. This replacement, together with Line 9 in the (t + 1)-th
iteration, changes the value of M . We need to verify that it does not affect the nonsingularity of
M |Xi=αi for i∈S .

At Line 12 in the t-th iteration, we have Var(I, J, Qa) ∩ S = ∅. This is because if some
x ∈ Var(I, J, Qa) is in S, then it must have been added to S′ before the t-th iteration, contradicting
Lemma 38. Similarly, we have Var(I, J, Q′

b) ∩ S = ∅ by the same argument and the fact that Q′
b

becomes the new Qa at Line 9 in the (t + 1)-th iteration. The conclusion is that even under the
assignment Xi = αi for i ∈ S, the variables Xi′ with i′ ∈ Var(I, J, Qa) ∪ Var(I, J, Q′

b) remain free
variables.

Let e = |Qa|. Suppose Qa = {j1, . . . , je} ⊆ [ℓ] with j1 < · · · < je, which is replaced by
Q′

b = {j′
1, . . . , j′

e} ⊆ Qb with j′
1 < · · · < j′

e at Line 17 in the t-th iteration. As M only contains
the first 2k − 1 rows of Ṽk,I,J,(Qi)s−m

i=1
, it only contains the first e′ rows of Vk,e,IQa ,JQa for some

e′ ∈ {0, . . . , e}. If e′ = 0, then replacing Qa by Q′
b does not change M and we are done. So assume

e′ > 0.
Define M ′ as the matrix M |Xi=αi for i∈S at Line 12 in the t-th iteration, and define M ′′ as

M |Xi=αi for i∈S at Line 12 in the (t + 1)-th iteration. By assumption, M ′ is nonsingular, and we
want to show that M ′′ is also nonsingular. Define the increasing subsequences I ′, J ′, I ′′, J ′′ ∈ [n]e′

by I ′
i = Iji , J ′

i = Jji , I ′′
i = Ij′

i
, and J ′′

i = Jj′
i

for i ∈ [e′], i.e., I ′ = IQa , J ′ = JQa , I ′′ = IQ′
b , and

J ′′ = JQ′
b . Then replacing Qa by Q′

b has the effect that the submatrix Vk,e′,I′,J ′ of M ′ is replaced
by the submatrix Vk,e′,I′′,J ′′ of M ′′, turning M ′ into M ′′.

Note that (I ′, J ′) is a chain of the same type as (IQa , IQa), and (I ′′, J ′′) is a chain of the same
type as (IQb , JQb). There are several cases (see Figure 4):

1. (I ′, J ′) and (I ′′, J ′′) are both Type-II chains, and I ′
1 < J ′

1 iff I ′′
1 < J ′′

1 . In this case, if we
substitute XI′

i
for XI′′

i
and XJ ′

i
for XJ ′′

i
in M ′′ for i ∈ [e′], then we recover M ′. That

is, M ′ = M ′′|XI′′
i

=XJ′
i
,XJ′′

i
=XJ′

i
for i∈[e′]. Note that either I ′′

i = J ′′
i+1 for i = 1, . . . , e′ − 1 or

I ′′
i+1 = J ′′

i for i = 1, . . . , e′ − 1, but the same relations hold for the coordinates of I ′ and
J ′ as well since (I ′, J ′) and (I ′′, J ′′) have the same type and the same orientation. So the
substitutions of variables are valid.

2. (I ′, J ′) and (I ′′, J ′′) are both Type-II chains, and I ′
1 < J ′

1 iff I ′′
1 > J ′′

1 . In this case, if we
substitute XI′

e−i+1
for XI′′

i
and XJ ′

e−i+1
for XJ ′′

i
in M ′′ for i ∈ [e′], then we recover M ′

up to reordering of rows. That is, M ′ is, up to reordering of rows, equal to the matrix
M ′′|XI′′

i
=XJ′

e′−i+1
,XJ′′

i
=XJ′

e′−i+1
for i∈[e′]. Note that if I ′′

i = J ′′
i+1, then I ′

e−i+1 = J ′
e−i. Similarly,
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if I ′′
i+1 = J ′′

i , then I ′
e−i = J ′

e−i+1. That is, the relations satisfied by the coordinates of I ′′ and
J ′′ are also satisfied by the coordinates of the reversals of I ′ and J ′. So the substitutions of
variables are valid.

3. (I ′, J ′) is a Type-I chain. In this case, e′ = 1 and I ′
1 = J ′

1. Then M ′ = M ′′|XI′′
1

=XI′
1

,XJ′′
1

=XJ′
1
.

Note that (I ′′, J ′′) may or may not be a Type-I chain, but the substitutions of variables are
valid regardless.

Finally, if (I ′′, J ′′) is a Type-I chain, then by Assumption 1, the chain (I ′, J ′), which comes from
(IPb′ , JPb′ ) for some b′ < b, is also a Type-I chain. So the above three cases cover all the possibilities.
In each case, M ′ is, up to reordering rows, equal to σ(M ′′), where σ is a ring endomorphism of
Fq[Xi : i ∈ [n] \ S] induced by the substitutions of variables described above and applied to M ′′

entrywise. So det(M ′) = ±σ(det(M ′′)). As det(M ′) ̸= 0, we have det(M ′′) ̸= 0, i.e., M ′′ is
nonsingular.

Now we are ready to bound the probability that Algorithm 2 outputs a particular sequence.

Lemma 41. Suppose q ≥ n and (α1, . . . , αn) is chosen uniformly at random from the set of all
n-tuples of distinct elements in Fq. The probability that Algorithm 2 outputs a fixed sequence
(i∗

1, . . . , i∗
r) ∈ {0, . . . , 2k − 2}r is at most pr, where

p = ((1/ε0) + 1) · 2(k − 1)
q − n + 1 .

Proof. For 0 ≤ t ≤ r, let Ft be the event that the algorithm chooses (i1, . . . , it) = (i∗
1, . . . , i∗

t ). We
will prove by induction that Pr[Ft] ≤ pt. The lemma follows by choosing t = r.

For t = 0, the claim hold trivially. Assume the claim holds for some t < r. We now prove that
it holds for t + 1 as well.

Let F ′
t be the sub-event of Ft that the algorithm reaches Line 12 with j = t, (i1, . . . , it) =

(i∗
1, . . . , i∗

t ), and c = i∗
t+1. Note that F ′

t must happen if Ft+1 happens, i.e., Ft+1 is a sub-event
of F ′

t . If Pr[F ′
t ] = 0, then Pr[Ft+1] = 0 and we are done. So assume this is not the case. By

the induction hypothesis, we have Pr[F ′
t ] ≤ Pr[Ft] ≤ pt. So it suffices to bound the conditional

probability Pr[Ft+1|F ′
t ] by p.

Condition on the event F ′
t . Consider the moment when algorithm reaches Line 12 with j = t,

(i1, . . . , it) = (i∗
1, . . . , i∗

t ), and c = i∗
t+1. By Lemma 39, Q1, . . . , Qs and a are determined. The set S

of assigned variables is also determined via S = ⋃a−1
i=1 Var(I, J, Qi).

We further fix arbitrary values of αi for i ∈ [n] \ Var(I, J, Qa) consistent with F ′
t . It suffices

to show that the probability that Ft+1 occurs (conditioned on F ′
t and the fixed αi for i ∈ [n] \

Var(I, J, Qa)) is at most p.
By Lemma 38, the elements αi for i ∈ Var(I, J, Qa) have not been used in the previous iterations

of the while loop. Thus, the (conditional) distribution of (αi)i∈Var(I,J,Qa) is the uniform distribution
over the set of |Var(I, J, Qa)|-tuples with distinct coordinates in the set T := Fq \ {αi : i ∈
[n] \Var(I, J, Qa)}.

Let M∗ := M |Xi=αi for i∈S . Then M = M∗|Xi=αi for i∈Var(I,J,Qa). By Lemma 40, M∗ is
nonsingular, i.e., det(M∗) ̸= 0. View det(M∗) as a polynomial in the variables Xi, i ∈ [n] \ (S ∪
Var(I, J, Qa)), over the polynomial ring Fq[Xi : i ∈ Var(I, J, Qa)]. Let Q ∈ Fq[Xi : i ∈ Var(I, J, Qa)]
be the coefficient of a nonzero term of det(M∗). Then Q ̸= 0. We also have

degXi
(Q) ≤ degXi

(det(M∗)) ≤ 2(k − 1)
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for i ∈ Var(I, J, Qa), where the last inequality holds since Xi appears in at most two rows of M∗

and every entry of M∗ containing Xi has the form Xd
i with d ≤ k − 1. By Lemma 6, we have

Pr[Q(αi : i ∈ Var(I, J, Qa)) = 0] ≤ |Var(I, J, Qa)| · 2(k − 1)
|T | − |Var(I, J, Qa)|+ 1 ≤

((1/ε0) + 1) · 2(k − 1)
q − n + 1 = p,

where the second inequality uses the facts that |Var(I, J, Qa)| ≤ |Qa|+1 ≤ (1/ε0)+1 (as (IQa , JQa)
is a chain) and that the size of T = Fq \ {αi : i ∈ [n] \Var(I, J, Qa)} is q − n + |Var(I, J, Qa)|.

Note that Q(αi : i ∈ Var(I, J, Qa)) is the coefficient of a term of det(M∗)|Xi=αi for i∈Var(I,J,Qa) =
det(M). So if det(M) is zero, so is Q(αi : i ∈ Var(I, J, Qa)). This implies that the probability that
M is singular is at most p. Note that Ft+1 occurs only if M is singular. (This is because, assuming
M is not singular, the algorithm will not run Lines 17–22 and store c = i∗

t+1 into it+1. Instead, it
will run Lines 13–15 and increase c.) Therefore, the (conditional) probability that Ft+1 occurs is
at most p, as desired.

Taking the union bound over all possible output sequences, we obtain the following corollary.

Corollary 42. Suppose q ≥ n and (α1, . . . , αn) is chosen uniformly at random from the set of all
n-tuples of distinct elements in Fq. Also suppose ℓ, r ∈ N+ and ε0 ∈ (0, 1) satisfy (6). Then the
probability that Vk,ℓ,I,J |X1=α1,...,Xn=αn does not have full column rank is at most 22k+r−2pr, where
p = ((1/ε0)+1)·2(k−1)

q−n+1 .

Proof. By Lemma 36, any sequence (i1, . . . , ir) ∈ {0, . . . , 2k − 2}r output by Algorithm 2 satisfies
i1 ≤ · · · ≤ ir. The number of such sequences is

((2k−1)+r−1
r

)
≤ 22k+r−2. By Lemma 41, any

fixed sequence is output with probability at most pr. So by the union bound, the probability that
Algorithm 2 outputs a sequence (i1, . . . , ir) is at most 22k+r−2pr.

By Lemma 35, Algorithm 2 outputs a sequence (i1, . . . , ir) whenever Vk,ℓ,I,J |X1=α1,...,Xn=αn does
not have full column rank. So the probability of the latter event is at most 22k+r−2 · pr.

Finally, we prove our main theorem below.

Theorem 43 (Detailed version of Theorem 4). Let ε ∈ (0, 1) and n, k ∈ N+, where k ≤ n. Let q be
a prime power such that q ≥ n + 2c/ε2

k, where c > 0 is a large enough absolute constant. Suppose
(α1, . . . , αn) is chosen uniformly at random from the set of all n-tuples of distinct elements in Fq.
Then with probability at least 1 − 2−n > 0, the code RSn,k(α1, . . . , αn) over Fq corrects at least
(1− ε)n− 2k + 1 adversarial insdel errors.

Proof. Let c0 > 0 be a large enough absolute constant, and let c = c2
0. First assume ε2n ≤ c0.

Since c/ε2 ≥ c0n, it suffices to prove the claim for q ≥ n + 2c0nk = 2Θ(n). In this case, the code
can, in fact, correct at least n − 2k + 1 adversarial insdel errors. A proof was implicitly given in
[CST23, proof of Theorem 16] and also sketched in our Section 1.3.

Next, assume ε2n ≥ c0. Choose ℓ = (2k − 1) + ⌊εn⌋, ε0 = ε/4, and r = ⌈ ε2n
16 ⌉. It is easy to

verify that that (6) holds given that the constant c0 is large enough.
By Lemma 12, if RSn,k(α1, . . . , αn) ⊆ Fn

q fails to correct n − ℓ adversarial insdel errors, then
we will have two increasing subsequences I, J ∈ [n]ℓ which agree on at most k − 1 coordinates,
such that the matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn does not have full column rank. On the other hand,
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applying Corollary 42 with the chosen parameters ℓ, ε0, and r, for fixed I, J , we have that

Pr
[
The matrix Vk,ℓ,I,J |X1=α1,...,Xn=αn

does not have full column rank

]
≤ 22k+⌈ ε2n

16 ⌉−2 ·
(((4/ε) + 1) · 2(k − 1)

q − n + 1

)⌈ ε2n
16 ⌉

≤ 23n ·
(((4/ε) + 1) · 2(k − 1)

q − n + 1

)⌈ ε2n
16 ⌉

≤ 2−3n,

where the last inequality uses the facts that q ≥ n + 2c/ε2
k and that c > 0 is a large enough

constant. By the union bound over all (I, J), the probability that RSn,k(α1, . . . , αn) cannot correct
(1− ε)n− 2k + 1 adversarial insdel errors is at most

(n
ℓ

)2 · 2−3n ≤ 2−n, as desired.
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