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Abstract
We introduce the problem of constructing explicit variety evasive subspace families. Given a family F

of subvarieties of a projective or affine space, a collection H of projective or affine k-subspaces is (F , ε)-
evasive if for every V ∈ F , all but at most ε-fraction of W ∈ H intersect every irreducible component
of V with (at most) the expected dimension. The problem of constructing such an explicit subspace
family generalizes both deterministic black-box polynomial identity testing (PIT) and the problem of
constructing explicit (weak) lossless rank condensers.

Using Chow forms, we construct explicit k-subspace families of polynomial size that are evasive
for all varieties of bounded degree in a projective or affine n-space. As one application, we obtain a
complete derandomization of Noether’s normalization lemma for varieties of low degree in a projective or
affine n-space. In another application, we obtain a simple polynomial-time black-box PIT algorithm for
depth-4 arithmetic circuits with bounded top fan-in and bottom fan-in that are not in the Sylvester–Gallai
configuration, improving and simplifying a result of Gupta (ECCC TR 14-130).

As a complement of our explicit construction, we prove a tight lower bound for the size of k-subspace
families that are evasive for degree-d varieties in a projective n-space. When n − k = nΩ(1), the lower
bound is superpolynomial unless d is bounded. The proof uses a dimension-counting argument on Chow
varieties that parametrize projective subvarieties.

1 Introduction

Polynomial identity testing (PIT) is a fundamental problem in the areas of derandomization and algebraic
complexity theory. The problem asks whether a multivariate polynomial, computed by an arithmetic
circuit, formula, or other algebraic computational models, is identically zero. For example, the polynomial
(X + Y )(X − Y ) −X2 − Y 2 is identically zero while (X + Y )2 −X2 is not.

It is easy to solve PIT in randomized polynomial time, as we may simply evaluate the input polynomial at
a random point and check if the evaluation is zero. On the other hand, finding a deterministic polynomial-time
PIT algorithm for general arithmetic circuits is a long-standing open problem. Such algorithms are known
for some special cases, and we refer the readers to the surveys [Sax09, Sax13, SY10] for details.

Black-box PIT algorithms are a special kind of PIT algorithm. A (deterministic) black-box PIT algorithm
tests if a polynomial in a family F is zero by constructing a hitting set for F , which is a finite collection H
of evaluation points with the following property: for any nonzero Q ∈ F , there exists p ∈ H such that the
evaluation of Q at p is nonzero. After constructing a hitting set H for F , the algorithm simply checks if the
evaluation of the given polynomial at every point in H is zero. The problem of designing a deterministic
black-box PIT algorithm for polynomials in F is thus equivalent to deterministically constructing a hitting
set for F . To make the algorithm efficient, such a hitting set should be small and efficiently computable.
Hitting sets are also called correct test sequences and are studied in [HS80, PS22a].

From a geometric perspective, an n-variate nonzero polynomial Q over an algebraically-closed field F
defines a hypersurface V(Q) := {α ∈ Fn : Q(α) = 0} of Fn. A hitting set H for F has the property that
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for every nonzeroQ ∈ F , there exists a point p ∈ H that is disjoint from the hypersurface V(Q), or we say p
evades V(Q). It is natural to consider the generalization of this property to higher dimensions/codimensions.
Namely, we want to construct a finite collection H of affine k-subspaces (i.e. affine subspaces of dimension
k) such that for every variety V ⊆ Fn (i.e., solution set of a set of polynomial equations) from a certain
family, some (or most) W ∈ H evade V , in the sense that the dimension of the intersection V ∩ W is
bounded by the expected dimension achieved by W in general position. A similar property can be defined
for projective k-spaces, to be defined below. We call such a collection H of projective or affine k-subspaces
a variety evasive subspace family. The formal definition is given below.

1.1 Variety Evasive Subspace Families

Let F be an algebraically closed field. An affine n-space An, as a set, is simply defined to be the vector space
Fn. We also need the notion of a projective n-space, denoted by Pn, which is (intuitively) the set of lines
passing through the origin 0 of An+1. Formally, it is defined to be the quotient set (An+1 \ {0})/ ∼, where
∼ is the equivalence relation defined by scaling, i.e., u ∼ v if u = cv for some nonzero scalar c ∈ F.

An (affine) subvariety V ⊆ An is the set of common zeros of a set of n-variate polynomials over F.
Similarly, a (projective) subvariety V ⊆ Pn is the set of common zeros of a set of homogeneous (n + 1)-
variate polynomials over F, where we represent each element of Pn as an (n + 1)-tuple in An+1. In this
paper, a variety refers to a subvariety of a projective or affine space, and is said to be irreducible if it cannot
be written as a union of finitely many proper subvarieties.1

The dimension of a variety V , denoted by dim(V), is intuitively the “degree of freedom” of picking a
point in the variety. See Section 2.3 for its formal definition. In particular, for a linear subspace V ⊆ An,
the dimension of V as a variety is simply its linear-algebraic dimension.

For two irreducible subvarieties V1 and V2 of Pn or An in general position, we expect the dimension
of V1 ∩ V2 to be dim(V1) + dim(V2) − n (unless dim(V1) + dim(V2) < n, in which case we expect
V1 ∩ V2 = ∅). The following definition captures the condition that dim(V1 ∩ V2) is bounded by the expected
dimension.

Definition 1.1 (Evading). Let V1 and V2 be irreducible subvarieties of Pn or An. We say V1 evades V2 if

dim(V1 ∩ V2) ≤ dim(V1) + dim(V2) − n,

where the dimension of an empty set is assumed to be −∞. In particular, if dim(V1) + dim(V2) < n, then
V1 evades V2 iff V1 ∩ V2 = ∅.

More generally, suppose V1 is irreducible but V2 is possibly reducible. We say V1 evades V2 if it evades
every irreducible component of V2.

Next, we define subspace families and variety evasive subspace families.

Definition 1.2 (Subspace family). For 0 ≤ k ≤ n, a finite collection2 of k-subspaces of Pn is called a
(projective) k-subspace family on Pn. Similarly, a finite collection of affine k-subspaces of An is called an
affine k-subspace family on An.

Definition 1.3 (Variety evasive subspace family). Let F be a family of subvarieties of Pn (resp. An). Let H
be a k-subspace family on Pn (resp. affine k-subspace family on An) where 0 ≤ k ≤ n. Then:

• We say H is F-evasive if for every V ∈ F , there exists W ∈ H that evades V .

• We say H is (F , ε)-evasive if for every V ∈ F , a random element W ∈ H evades V with probability
at least 1 − ε.

1Varieties in this paper are not necessarily irreducible. They are often called algebraic sets in literature.
2In this paper, a collection is a multiset, i.e., its elements are allowed to appear more than once.
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Connection with hitting sets. Definition 1.3 naturally generalizes the notions of hitting sets in the context
of PIT. For example, a collection of points in Pn is a hitting set for a family F of homogeneous polynomials
in F[X1, . . . , Xn+1] iff it is an F ′-evasive 0-subspace family, where F ′ = {V(P ) : P ∈ F} is the family of
hypersurfaces defined by the polynomials in F . In other words, hitting sets may be viewed as 0-subspace
families that are evasive for varieties of codimension one.

Connection with lossless rank condensers. Other than the case of codimension one, we may also consider
the special case of degree one, and this leads to another important family of pseudorandom objects, called
(weak) lossless rank condensers [GR08, FS12, FSS14, FG15]. These objects were used by Gabizon and
Raz [GR08] to construct affine extractors. They also play a crucial role in polynomial identity testing
[KS11, SS12, FS12, FSS14].

A lossless rank condenser is defined as follows: Let r ≤ t ≤ n be positive integers. A finite collection
H of matrices E ∈ Ft×n is called an (r, L)-lossless rank condenser if for every matrix M ∈ Fn×r of rank
r, the number of E ∈ H satisfying rank(EM) < r is at most L.

The connection between lossless rank condensers and variety evasive subspace families can be seen as
follows: Let us assume every matrixE ∈ H has full rank t. Such a matrixE corresponds a linear t-subspace
W of Fn. On the other hand, a matrix M ⊆ Fn×r of rank r corresponds to a linear (n− r)-subspaces of Fn

via M 7→ ker(M), where ker(M) = {u ∈ Fn : uM = 0} denotes the left kernel of M . It is easy to see
that the condition rank(EM) = r is equivalent to dim(W ∩ ker(M)) = t− r. Passing from Fn to Pn−1 by
taking the quotient modulo scalars, this condition is also equivalent to the condition that the two projective
subspaces PW and P(ker(M)) evade each other.

Every projective (n − r − 1)-subspace of Pn−1 can be realized as P(ker(M)) for some rank-r matrix
M . Therefore, H is an (r, L)-lossless rank condenser iff it is an (F , ε)-evasive (t − 1)-subspace family on
Pn−1, where ε = L/|H| and F is the family of all (n− r − 1)-subspaces of Pn−1.

Rank condensers are central objects in the theory of “linear-algebraic pseudorandomness” coined by
Guruswami and Forbes [FG15]. Our study of variety evasive subspace families may be seen as one step of
extending the theory to a nonlinear setting.

Explicit lossless rank condensers were used to construct explicit (deterministic) affine extractors [GR08]
and more generally, extractors for varieties [Dvi12]. Similar ideas were used to construct explicit
deterministic extractors (and rank extractors) for polynomial sources [DGW09], which also generalize
affine extractors. It is an interesting question to us whether explicit variety evasive subspace families and the
related derandomized Noether’s normalization lemma (see below) can be similarly useful in this area.

1.2 Our Results

We have seen that variety evasive subspace families generalize some important and well-studied
pseudorandom objects. This leads to the following natural question: For which interesting families F
of subvarieties can we construct explicit F-evasive or (F , ε)-evasive subspace families?

In this paper, we focus on the families of subvarieties of bounded degree. First, we recall the definition
of the degree of a variety.

Definition 1.4 (degree). The degree of an irreducible variety V inPn (resp. An) is the number of intersections
of V with a general projective (resp. affine) subspace of codimension dim(V). Following [HS80, Hei83], we
define the degree of a (possibly reducible) variety to be the sum of the degrees of its irreducible components.

For convenience, we introduce the following definition.

Definition 1.5. We say a projective (resp. affine) k-subspace family H on Pn (resp. An) is (n, d)-evasive if
it is F-evasive, where F is chosen to be the family of all subvarieties of Pn (resp. An) of degree at most d.
Similarly, we say H is (n, d, ε)-evasive if it is (F , ε)-evasive.
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Remark. In Definition 1.5, we do not make any assumption about the dimension of the varieties in F or
their irreducible components. We will see in Section 3.1 that in fact, it suffices to consider the subfamily of
equidimensional varieties or even irreducible varieties of dimension n − k − 1 when constructing variety
evasive k-subspace families.

For n, d ∈ N+ and k ∈ {0, 1, . . . , n− 1}, define N(k, d, n) by

N(k, d, n) := min
{(

(k′ + 1)(n′ + 1 + d)
(k′ + 1)d

)
,

(
(n− k)(n′ + 1 + d)

(n− k)d

)}
.

where k′ := min{k, d− 2} ≤ k and n′ := k′ + n− k ≤ n.
Our main theorem then states as follows.

Theorem 1.6 (Main Theorem). For n, d ∈ N+, k ∈ {0, 1, . . . , n − 1}, and ε ∈ (0, 1), there exists
an (n, d, ε)-evasive k-subspace family (resp. affine k-subspace family) H on Pn (resp. An) of size
poly(N(k, d, n), n, 1/ε), which is bounded by poly(nmin{k+1,n−k,d}d, d, 1/ε). Moreover:

• If char(F) = 0, whereF denotes the base field, then the linear equations defining the projective or affine
subspaces in H are defined over Q. Moreover, the bit-lengths of the numerators and denominators
of the coefficients of these linear equations are polynomial in |H|, and the total bit complexity of
computing these linear equations is polynomial in |H|.

• If char(F) = p > 0, then the linear equations defining the projective or affine subspaces in H are
defined over an extension field Fq of Fp, where q ≤ poly(|H|, p). The total bit complexity of computing
these linear equations and constructing the field Fq is polynomial in |H| and log p.

In particular, when d is bounded, the bit complexity of constructing H is polynomial in n/ε (and log p if
char(F) = p > 0).

Remark. The two items in the above theorem bound the complexity of the coefficients that define H. The
same bounds apply to the coefficients in all constructions presented in this paper, and in particular, to those
in Theorem 1.8 and Theorem 1.9 below. These bounds are needed for bounding the bit complexity of the
construction of H, which is crucial for demonstrating the explicitness of H. We also remark that if we do not
impose any restrictions on the complexity of the coefficients, then it is, in fact, straightforward to construct
hitting sets of polynomial size unconditionally [HS80, Lemma 4.2]. This explains why we consider bit
complexity as the complexity measure rather than assuming that each field operation takes unit cost, which
is common in arithmetic complexity.
Remark. A previous version of this paper [Guo21] proved a weaker upper bound where n′ in the definition
of N(k, d, n) is replaced by n. Our new bound in Theorem 1.6 has the advantage that when n− k is small,
we can get a subspace family of size poly(n, 1/ε) even if d grows slowly in n:

• As N(k, d, n) ≤
((k′+1)(n′+1+d)

(k′+1)d
)

≤
((d−1)(n−k+2d−1)

(d−1)d
)
, we can afford any d ≤ f(n) for some

f(n) = ωn(1) when n− k = no(1).

• Similarly, by the bound N(k, d, n) ≤
((n−k)(n′+1+d)

(n−k)d
)

≤
((n−k)(n−k+2d−1)

(n−k)d
)
, we can afford any

d = O(logn) when n− k = O(1).

Lower bound. As a complement of the above result, we establish the following tight lower bound for
projective k-subspace families. It implies that when n − k = nΩ(1), the assumption of d being bounded is
necessary for a projective (n, d)-evasive k-subspace family to have polynomial size.
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Theorem 1.7. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n− 1}. Let F be the family of equidimensional projective
subvarieties of Pn of dimension n − k − 1 and degree at most d. Suppose H is an F-evasive k-subspace
family on Pn. Then

|H| ≥

(n− k)(k + 1) + 1 if d = 1,
max

{
d(n− k)(k + 1) + 1,

(d+n−k
d

)
+ (n− k + 1)k

}
if d > 1.

In particular, |H| is superpolynomial in n when n− k = nΩ(1) and d = ω(1).

Remark (Tightness of the lower bound). When d = 1, the lower bound |H| ≥ (n − k)(k + 1) + 1 in
Theorem 1.7 is achieved by known explicit lossless rank condensers [FS12, FSS14, For14] (see Section 2.2).
For general d, the lower bound in Theorem 1.7 is also tight and matched by non-explicit constructions. See
Section 4 for a discussion.

In general, there is a gap between known upper bounds from explicit constructions and the tight lower
bound. In particular, when d ≤ (n − k)1−δ for some constant δ > 0, our lower bound gives |H| ≥
(n− k)Ω(d) + poly(n) while the upper bound in Theorem 1.6 gives |H| ≤ (n− k)O(d min{k,d}) + poly(n).

Next, we list two applications of our Main Theorem (Theorem 1.6): derandomizing Noether’s
normalization lemma for varieties of low degree, and polynomial identity testing for a special family of
depth-4 arithmetic circuits.

1.2.1 Derandomizing Noether’s Normalization Lemma

Noether’s normalization lemma, introduced by Noether [Noe26], is an important result in commutative
algebra and algebraic geometry with many applications. For example, it is used in the development of
dimension theory and can be used to prove Grothendieck’s generic freeness lemma [Eis95]. It also has
applications in computational algebraic geometry, e.g., computing the dimension of a projective variety
[GH93, GHL+00].

The usual geometric formulation of Noether’s normalization lemma states that for any affine variety
V ⊆ An of dimension r, there exists a surjective finite morphism π : V → Ar. (See Section 2.3 for the
definition of finite morphisms.) Moreover, π may be chosen to be the restriction of a linear map An → Ar.3
There is also a related projective or graded version of the lemma, which states that for any projective variety
V of dimension r, there exists a surjective finite morphism π : V → Pr. A special form of this lemma goes
back to Hilbert [Hil90].

In these versions of Noether’s normalization lemma, it can be shown that with high probability, a random
linear map yields a valid finite morphism π, where “random” means the coefficients of the linear map are
chosen randomly from a sufficiently large finite set S ⊆ F. It is thus a natural question to derandomize the
lemma.

Mulmuley [Mul17] studied a form of Noether’s normalization lemma and proved that derandomizing it
is equivalent to a strengthened form of the black-box derandomization of PIT. There, the ambient projective
space has exponential dimension and the problem is constructing a finite morphism π : V → Pk with
a succinct specification in deterministic polynomial time, where k = poly(dim(V)) and V is an explicit
variety [Mul17]. This problem was later shown to be in PSPACE [FS18, GSS19]. The special case for the
ring of matrix invariants under simultaneous conjugation was solved in quasipolynomial time by Forbes and
Shpilka [FS13].

3For simplicity, we assume the base field is algebraically closed and hence infinite. But the lemma and our derandomization
are valid as long as the field is large enough, depending on the variety V . We remark that Nagata [Nag62] proved a version of
the normalization lemma that is deterministic and does not require the base field to be sufficiently large, but the morphism he
used is highly nonlinear. Moreover, Nagata’s normalization lemma crucially relies on the fact that the variety is affine, while the
normalization lemma we consider here extends to the projective case.
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We consider Noether’s normalization lemma in its original context and completely derandomize it for
projective/affine varieties of bounded degree. The following two theorems summarize our results.

Theorem 1.8. Let n, d ∈ N+, r ∈ {0, 1, . . . , n}, k = n − r − 1, and ε ∈ (0, 1). There exists an explicit
collection L of linear maps An+1 → Ar+1 of size poly(N(k, d, n), n, 1/ε) such that for every subvariety
V ⊆ Pn of dimension r and degree at most d, all but at most ε-fraction of π ∈ L induce a surjective
finite morphism from V to Pr.4 Moreover, L can be computed in time polynomial in |L| (and log p, if
char(F) = p > 0).

Theorem 1.9. Let n, d ∈ N+, r ∈ {0, 1, . . . , n}, k = n − r − 1, and ε ∈ (0, 1). There exists an explicit
collection L of linear maps An → Ar of size poly(N(k, d, n − 1), n, 1/ε) such that for every subvariety
V ⊆ An of dimension r and degree at most d, all but at most ε-fraction of π ∈ L restrict to a surjective
finite morphism from V to Ar. Moreover, L can be computed in time polynomial in |L| (and log p, if
char(F) = p > 0).

Dimension-preserving morphisms vs. finite morphisms. Our construction of finite linear morphisms
preserves the dimension of a variety of low degree while reducing the dimension of the ambient space.
This generalizes the property of lossless rank condensers. However, for the dimension-preserving property,
better constructions are known. For example, it can be shown that most of the linear maps An → At from
a lossless rank condenser H ⊆ Ft×n already preserve the dimension of a variety V ⊆ An. The intuition
here is that V can be locally approximated at a nonsingular point p ∈ V by its tangent space at p. (Note that
such a nonsingular point always exists when V is a nonempty variety.) So any linear map that preserves the
dimension of this tangent space also preserves the dimension of V .

On the other hand, the morphisms we construct are finite morphisms, which are strictly stronger than
morphisms that are dimension-preserving. In particular, a finite morphism π always maps a closed set onto a
closed set in the Zariski topology. Moreover, the preimage π−1(p) of every point p in the image of π is a finite
set. Neither of these two properties is necessarily satisfied by morphisms that are only dimension-preserving.

These properties of finite morphisms may be useful in extractor theory or other areas. For example, in
Theorem 1.9, the cardinality of π−1(p) is bounded by the degree of V for every p ∈ π(V), which translates
into a lower bound for the min-entropy of the output of π when the input random source is distributed over
the variety V .

1.2.2 Depth-4 Polynomial Identity Testing

Depth-4 arithmetic circuits, also known as ΣΠΣΠ circuits, play a very important role in polynomial identity
testing. In a surprising result, Agrawal and Vinay [AV08] proved that a complete derandomization of black-
box PIT for depth-4 circuits implies an nO(log n)-time derandomization of PIT for general circuits of poly(n)
degree.

Dvir and Shpilka [DS07] initialized the approach of applying Sylvester–Gallai type theorems in geometry
to PIT for depth-3 (ΣΠΣ) circuits. Extending this approach, Gupta [Gup14] formulated a conjecture of
Sylvester–Gallai type and proved that his conjecture implies a complete derandomization of black-box PIT
for depth-4 circuits with bounded top fan-in and bottom fan-in (also called ΣΠΣΠ(k, r) circuits, where
k, r = O(1)). Peleg and Shpilka [Shp20, PS22b, PS21] proved that this conjecture holds for k = 3 and
r = 2, and used it to give a polynomial-time black-box PIT algorithm for ΣΠΣΠ(3, 2) circuits. Using
a different approach, Dutta, Dwivedi, and Saxena [DDS21] gave a quasipolynomial-time black-box PIT

4Let N(k, d, n) = 1 when r = n (i.e., k = −1). Similarly, in Theorem 1.9, let N(k, d, n − 1) = 1 when r = n or r = 0 (i.e.,
k = −1 or k = n − 1).
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algorithm for ΣΠΣΠ(k, r) circuits. Finally, in an exciting breakthrough, Limaye, Srinivasan, and Tavenas
[LST24] obtained a subexpoential-time black-box PIT algorithm for all arithmetic circuits of bounded depth.

In [Gup14], Gupta divided ΣΠΣΠ(k, r) into two families: those in a certain Sylvester–Gallai
configuration and those that are not. His conjecture states that the circuits in the first family always
have bounded transcendence degree, depending only on k and r. If the conjecture is true, then the results in
[BMS13, ASSS16] imply a complete derandomization of the black-box PIT for this family. For the second
family of circuits, which we call non-SG circuits, he proved that the black-box PIT can also be derandomized
completely.

Theorem 1.10 ([Gup14]). There exists a deterministic black-box PIT algorithm with time complexity
(dnk)poly(rk2 +k) for non-SG ΣΠΣΠ(k, r) circuits of degree at most d in X1, . . . , Xn over C. In particular,
the algorithm runs in polynomial time when k and r are bounded.

Gupta’s proof of Theorem 1.10 is quite complex and used tools from computational algebraic geometry,
including an effective version of Bertini irreducibility theorem [HS81] and radical membership testing (which
in turn depends on effective Nullstellensatz [Kol88, Dub93]).

We observe that what is needed here is simply an explicit construction of subspaces intersecting certain
varieties with (at most) the expected dimension. Plugging in our explicit construction of variety evasive
subspace families, we obtain an improved black-box PIT algorithm with a simple proof.

Theorem 1.11. There exists a deterministic black-box PIT algorithm with time complexity polynomial in
d ·
(k(n+1+rk)

krk

)
·
(k−1+d

k−1
)

≤ poly(dk, nrk
, rk2rk) (and log p, if char(F) = p > 0) for non-SG ΣΠΣΠ(k, r)

circuits of degree at most d in X1, . . . , Xn over an algebraically closed field F.

In particular, Theorem 1.11 improves the exponent of n in the time complexity from poly(rk2 + k)
to O(rk), and the exponent of d from poly(rk2 + k) to O(k). Moreover, our proof is more direct and
conceptually simpler than the proof in [Gup14].
Remark. In [Muk16], Mukhopadhyay gave a deterministic polynomial-time black-box PIT algorithm for
ΣΠΣΠ(k, r) circuits satisfying a variant of the non-SG assumption. (Its time complexity is similar to
the time complexity in Theorem 1.10.) It appears to us that his assumption in fact implies the non-SG
assumption. The main tool used there is the multivariate resultant, which may be related to our approach
based on Chow forms (see Section 1.3). Indeed, it is known that a multivariate resultant is the Chow form
of a Veronese variety [GKZ94, Chapter 3, Example 2.4].

1.3 Proof Overview

We present an overview of our proof of Theorem 1.6 and that of Theorem 1.7.

Overview of the proof of Theorem 1.6. In the proof of Theorem 1.6, we focus on constructing a k-
subspace family on Pn. The case of An can be easily derived from it by viewing An as an open subset of Pn

and restricting to this subset.
Consider a variety V ⊆ Pn of degree at most d. We want to construct a k-subspace family H on Pn,

independent of V , such that all but at most ε-fraction of W ∈ H evade V . Our key ideas can be summarized
as follows.

Reducing to the equidimensional/irreducible case of dimension n−k−1. As a first step, we reduce
the problem to the special case that V is an equidimensional (or even irreducible) variety of Pn of dimension
n − k − 1, which means every irreducible component of V has dimension exactly n − k − 1. This step is
explained in Section 3.1.
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Hitting the Chow form of V . Denote by G(k, n) the Grassmannian consisting of of all k-subspaces
of Pn. As codim(V) = n− (n− k− 1) > k, a general k-subspace W ∈ G(k, n) is disjoint from V , but we
want to find such W explicitly.

One remarkable fact in algebraic geometry is that there is a single polynomial R̃V on the Grassmannian
G(k, n) that defines precisely the subset of k-subspaces that intersect V . This polynomial R̃V is called the
Chow form of V (in Stiefel coordinates). Chow forms are also known as associated forms, Cayley forms, or
Cayley–van der Waerden–Chow forms in literature. They were introduced by Cayley [Cay60] to represent
curves in P3 and later generalized by Chow and van der Waerden [CvdW37]. See [DS95] for an introduction
to Chow forms and [GKZ94] for an exposition in the context of elimination theory.

To be more specific, for a k-subspace W ∈ G(k, n), we choose a (k + 1) × (n + 1) matrix A that
represents W . The Chow form R̃V is a polynomial of degree (k + 1) deg(V) in (k + 1)(n + 1) variables
with the following property: R̃V vanishes at the matrix A (viewed as a list of (k + 1)(n+ 1) coordinates) if
and only if V ∩W ̸= ∅. Thus, R̃V defines precisely the subset of “bad” k-subspaces that we want to avoid.

Therefore, the problem becomes finding a collection of (k + 1) × (n + 1) matrices of full rank that
“hit” the polynomial R̃V of degree (k + 1) deg(V) ≤ (k + 1)d. Using black-box PIT for low degree
polynomials (see Section 2.1), we are able to construct an (n, d, ε)-evasive k-subspace family of size
polynomial in

((k+1)(n+1+d)
(k+1)d

)
and 1/ε, which is poly(n, 1/ε) when k and d are both bounded. A similar

“dual” construction yields a k-subspace family of size polynomial in
((n−k)(n+1+d)

(n−k)d
)

and 1/ε, which is
poly(n, 1/ε) when both n − k and d are bounded. For applications where d is small and either k or n − k
is small (e.g., Theorem 1.11), these constructions are good enough. However, when k and n − k are both
linear in n, the resulting k-subspace families have exponential size in n, even if d is bounded.

A two-step construction. To obtain a good construction for arbitrary dimension k, we use a connection
with Noether normalization. It is a standard fact in algebraic geometry that a subspace W ⊆ Pn is disjoint
from a variety V iff it defines a projection Pn \W → Pn−dim(W )−1 that restricts to a finite morphism from
V to Pn−dim(W )−1. Thus, we may reformulate our problem as finding finite morphisms π : V → Pn−k−1

that come from projections.
We also need another fact, which states that the codimension of an irreducible subvariety V ⊆ Pn in

span(V) is at most deg(V) − 1, where span(V) denotes the smallest projective subspace containing V (see
Lemma 3.11). Therefore, for irreducible V of degree at most d, there exists a projective subspace Λ of
dimension (at most) dim(V) + d− 1 that contains V .

Our idea is to use a two-step construction. Namely, we first construct a finite morphism π1 : V → Pdim(Λ)

that comes from a projection, and then construct another finite morphism π2 : V ′ → Pn−k−1, where
V ′ := π1(V) ⊆ Pdim(Λ). Composing π1 with π2 yields a desired map from V to Pn−k−1.

The first step is just the problem of constructing lossless rank condensers, which has an optimal solution
[FS12, FSS14] (see Section 2.2). For the second step, we need to hit the Chow form of V ′. Thanks to the
first step, the codimension of V ′ in Pdim(Λ) is only dim(Λ) − dim(V ′) = dim(Λ) − dim(V) ≤ d− 1. As the
codimension is low, we may use black-box PIT for low degree polynomials just like before, and Theorem 1.6
follows.5

Finally, the above connection with Noether normalization also allows us to derive Theorem 1.8 and
Theorem 1.9 easily from Theorem 1.6.

Overview of the proof of Theorem 1.7. Our lower bound (Theorem 1.7) follows from a dimension
counting argument. Let C(r, d, n) be the set of all varieties V ⊆ Pn of dimension r := n−k− 1 and degree
d, which is the set of varieties that we want to evade.

5A preliminary version of this paper [Guo21] used a similar two-step construction but did not exploit the connection with Noether
normalization. It is more redundant and yields a somewhat weaker result than Theorem 1.6.
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Roughly speaking, the idea is to show that (1) C(r, d, n) itself can be realized as a subvariety of some
projective space PN , and (2) for every k-subspace W , the subset of V ∈ C(r, d, n) that W fails to evade is
the intersection of C(r, d, n) with some hyperplane HW of PN .

To see how (1) and (2) above lead to a lower bound, suppose H is a C(r, d, n)-evasive k-subspace
family, i.e., for any V ∈ C(r, d, n), there exists W ∈ H that is disjoint from V . Then the intersection
C(r, d, n) ∩

⋂
W ∈HHW must be empty. On the other hand, taking the intersection with each hyperplane

HW reduces the dimension of a projective variety by at most one. So we have a lower bound |H| ≥
dim(C(r, d, n)) + 1.

How do we realize C(r, d, n) as a subvariety of PN ? It turns out that this is a classical problem in the
study of moduli spaces and a solution was given by Cayley [Cay60] and Chow–van der Waerden [CvdW37]
using the Chow embedding: The Chow embedding C(r, d, n) → PN simply sends a variety V to its Chow
form R̃V , where R̃V is viewed as a point in the projective space PN whose homogeneous coordinates are
given by the coefficients of R̃V .6

A technical issue here is that the image ofC(r, d, n) under the Chow embedding is generally not closed in
the Zariski topology. To fix this issue, the definition of C(r, d, n) needs to be modified so that it contains not
only subvarieties of Pn, but also (effective) algebraic cycles on Pn, which are a generalization of subvarieties.
A theorem of Chow and van der Waerden [CvdW37] then states that the Chow embedding does embed
C(r, d, n) in a projective subspace PN as a subvariety, known as a Chow variety.

Finally, we also need a lower bound for the dimension of the Chow variety C(r, d, n). In fact, the
exact value of dim(C(r, d, n)) was determined by Azcue [Azc92] and independently by Lehmann [Leh17].
Plugging in the value of dim(C(r, d, n)) proves Theorem 1.7.

1.4 Other Related Work

In [DKL14], Dvir, Kollár, and Lovett constructed explicit variety evasive sets, which are large subsets of Fn
q

over a finite field Fq that have small intersection with affine varieties of fixed dimension and bounded degree.
It generalizes an earlier construction of subspace evasive sets of Dvir and Lovett [DL12]. The definition of
evasiveness there is different from ours, but they are related, since a key step in the proofs of [DL12, DKL14]
is proving the intersection of two varieties has dimension zero. We also note that a subspace/variety evasive
set is a single set, defined in a highly nonlinear way, whereas we define a variety evasive subspace family to
be a collection of projective or affine subspaces. Finally, the results in [DL12, DKL14] hold only for affine
subspaces/subvarieties, whereas we give our construction first in the projective setting and then derive the
affine counterpart from it.

Guruswami and Xing in [GX13] introduced a related notion called subspace designs. A subspace
design is a collection H of large subspaces of Fn such that for any small subspace V ⊆ Fn, the number
of W ∈ H satisfying dim(W ∩ V ) > 0 is small (or even the sum

∑
W ∈H dim(W ∩ V ) is small).

An equivalence between subspace designs and lossless rank condensers was proved in [FG15]. Explicit
subspace designs were constructed by Guruswami and Kopparty [GK16] and also by Guruswami, Xing,
and Yuan [GXY18]. They have applications to constructing explicit list-decodable codes with small list
size [GX13, GWX16, KRZSW23, GRZ21] and explicit dimension expanders [FG15, GRX21]. Subspace
designs were also used to prove lower bounds in communication complexity [CGS21].

Jeronimo, Krick, Sabia, and Sombra [JKSS04] gave a randomized algorithm, in the Blum-Shub-Smale
model over fields of characteristic zero, that computes the Chow forms of varieties defined by input
polynomials. The (expected) time complexity of their algorithm is polynomial in the sizes of the arithmetic
circuits encoding the input polynomials and the geometric degree of the polynomial system. See also the
survey by Krick [Kri02].

6The actual Chow embedding we use has a slightly different form, which is essentially equivalent to the one described here.
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Chow varieties of effective zero-cycles and their higher secant varieties are related to lower bounds for
depth-3 arithmetic circuits. They have received a considerable amount of attention in Geometric Complexity
Theory [Lan12, Lan15].

Organization of the paper. Preliminaries and notations are given in Section 2. We prove Theorem 1.6,
Theorem 1.8, and Theorem 1.9 in Section 3. In Section 4, we prove the lower bound (Theorem 1.7) and also
give a non-explicit construction that matches this lower bound. The application to PIT for depth-4 circuits
(Theorem 1.11) is explained in Section 5. Finally, we list some open problems and future directions in
Section 6.

2 Preliminaries and Notations

Define N := {0, 1, 2 . . . } and N+ := {1, 2, . . . }. Let [n] := {1, 2, . . . , n} for n ∈ N. For a set S and k ∈ N,
denote by

(S
k

)
the set of all subsets of S of cardinality k.

Denote by F an algebraically closed field throughout this paper. We use notations like F[Xi,j : i ∈
[n], j ∈ [m]] to denote the polynomial ring over F in a finite set of variables (in this case, in the set of
variables {Xi,j : i ∈ [n], j ∈ [m]}). The vector space of n×m matrices over F is denoted by Fn×m.

For an n×m matrix A and subsets S ⊆ [n], T ⊆ [m], denote by AS,T the submatrix of A whose rows
and columns are selected by S and T respectively, where the orderings of rows and columns are preserved.

2.1 Black-Box PIT for Low Degree Polynomials

For convenience, we strengthen the definition of hitting sets as follows.

Definition 2.1 (ε-hitting set). Let F be a family of polynomials in F[X1, . . . , Xn] and ε ∈ (0, 1). We say a
finite collections of points H ⊆ Fn is an ε-hitting set for F if for any nonzero Q ∈ F , the evaluation Q(α)
is nonzero for all but at most ε-fraction of α ∈ H.

We need an explicit construction of ε-hitting sets for low degree polynomials. This problem has been well
studied [DL78, Zip79, Sch80, KS01, Bog05, Lu12, CTS13, Bsh14, BP20]. For completeness, we present a
construction based on sparse polynomial identity testing.

Recall that a polynomial is s-sparse if it has at most s monomials. We need the following lemma from
[AGKS15].

Lemma 2.2 ([AGKS15, Lemma 4, restated]). For n, s, d ∈ N+ and ε0 ∈ (0, 1), there exist maps
w1, w2, . . . , wN : [n] → [N logN ], where N = poly(n, s, log d, ε−1

0 ), such that for any nonzero s-
sparse polynomial f ∈ F[X1, . . . , Xn] of individual degree at most d, all but at most ε0-fraction of wi

among w1, w2, . . . , wN satisfies f(Y wi(1), . . . , Y wi(n)) ̸= 0. Moreover, the bit complexity of computing
w1, w2, . . . , wN is polynomial in N .

Given n, d ∈ N+ and ε ∈ (0, 1), we construct an ε-hitting set for n-variate polynomials of degree at
most d as follows:

1. Let s =
(n+d

d

)
, ε0 = ε/2, and M = ⌈ε−1

0 dN logN⌉, where N is as in Lemma 2.2.

2. Let w1, . . . , wN be as in Lemma 2.2, which can be computed in time poly(N).

3. If char(F) = 0, let S = [M ] ⊆ Z ⊆ F. If char(F) = p > 0, choose the smallest p-power q such
that q ≥ M , and choose S to be a subset of Fq ⊆ F of cardinality M . We remark that Fq can be
constructed deterministically in time poly(M, log p). To see this, note that q ≤ Mp by the minimality

10



of q. If M ≤ p, then Fq is just Fp. On the other hand, if p < M ≤ q, then Fq can be constructed in
time poly(p, [Fq : Fp]) (see, e.g., [Len90]), which is polynomial in M since p < M and q ≤ Mp.

4. Finally, construct the following collection of points in Fn of size MN

T = {(αwi(1), . . . , αwi(n)) : α ∈ S, i ∈ [N ]} ⊆ Fn.

Lemma 2.3. For any nonzero polynomial f ∈ F[X1, . . . , Xn] of degree at most d, we have f(u) ̸= 0 for all
but at most ε-fraction of u ∈ T . The collection T has cardinality poly

((n+d
d

)
, 1/ε

)
and can be computed

in time poly(|T |).

Proof. Let f ∈ F[X1, . . . , Xn] be a nonzero polynomial of degree at most d. Note that f is trivially
s-sparse, where s =

(n+d
d

)
. So by Lemma 2.2, for all but at most ε0-fraction of i ∈ [N ], we have

f̃i := f(Y wi(1), . . . , Y wi(n)) ̸= 0. Consider i ∈ [N ] such that f̃i ̸= 0. Note that f̃i is a univariate
polynomial of degree at most dN logN . So it has at most dN logN ≤ ε0M zeros. Therefore, by the choice
of M , we have f(αwi(1), . . . , αwi(n)) = f̃i(α) ̸= 0 for all but at most ε0-fraction of α ∈ S. It follows that
f(u) ̸= 0 holds for all but at most ε-fraction of u ∈ T , as claimed. The rest of the lemma follows easily
from the construction.

Note that the seed length required to choose a random element in T is log |T | = O(log
(n+d

d

)
+log(1/ε)),

which is optimal up to a constant factor. We have made no effort to optimize the constant hidden in O(·).
Interested readers may find the state-of-the-art result in [BP20], which achieves the optimal constant, at least
when d = no(1).

2.2 Explicit Lossless Rank Condensers

We need the following lemma in the context of lossless rank condensers. The construction in the lemma
was given by Forbes and Shpilka [FS12] and the lemma itself follows implicitly from the analysis of Forbes,
Saptharishi, and Shpilka in [FSS14]. It was also stated explicitly in [For14, Theorem 5.4.3].

Lemma 2.4 ([FSS14, For14]). Let n ∈ N+ and r ∈ [n]. Let ω ∈ F× such that the multiplicative order of ω
is at least n. Define the r × n matrix W = (wi,j)i∈[r],j∈[n] over F[X] by

wi,j = (ωi−1X)j−1.

Then for every n × r matrix M over F of rank r, the polynomial det(WM) ∈ F[X] is nonzero and has
degree at most r(n− r) after dividing out powers of X .

Corollary 2.5. Let n, r,W be as in Lemma 2.4 and ε ∈ (0, 1). Let S ⊆ F× be a finite set of cardinality at
least r(n − r)/ε. For every n × r matrix M over F of rank r, we have rank(W (α)M) = r for all but at
most ε-fraction of α ∈ S, where W (α) denotes the matrix (wi,j(α))i∈[r],j∈[n] over F.

Corollary 2.5 states that the collection {W (α) : α ∈ S} of matrices is a (weak) (r, ε|S|)-lossless
rank condenser, as defined in [FG15]. Note that for each α ∈ S, we have rank(W (α)) = r and hence
W (α) corresponds to an (r − 1)-subspace UW (α) of Pn−1. As explained in the introduction, the collection
H = {UW (α) : α ∈ S} is an (F , ε)-evasive (r − 1)-subspace family on Pn−1, where F is the family of
(n− r− 1)-subspaces of Pn−1. Choosing S of size r(n− r) + 1 and ε = 1 − 1

r(n−r)+1 shows that the lower
bound in Theorem 1.7 is achieved when d = 1.
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2.3 Preliminaries on Algebraic Geometry

We list basic preliminaries and notations on algebraic geometry used in this paper. One can also refer to a
standard text, e.g., [Sha94, Har92].

Affine and projective spaces. For n ∈ N, write An for the affine n-space over F. It is defined to be the set
Fn equipped with the Zariski topology, defined as follows: A subset S ⊆ An is (Zariski-)closed if it is the
set of common zeros of a set of polynomials in F[X1, . . . , Xn]. The complement of a closed set is an open
set. The origin of an affine space is denoted by 0.

Write Pn for the (projective) n-space over F, defined to be the quotient set (An+1 \ {0})/ ∼, where ∼
is the equivalence relation defined by scaling, i.e., u ∼ v if u = cv for some c ∈ F×. The set Pn is again
equipped with the Zariski topology, where a subset is closed if it is the set of common zeros of a set of
homogeneous polynomials in F[X1, . . . , Xn+1]. We use (n + 1)-tuples (x1, . . . , xn+1) to represent points
in Pn, called homogeneous coordinates.

For a vector space V over F of dimension n + 1, where n ∈ N, define the projective space PV =
(V \ {0})/ ∼, where ∼ is again the equivalence relation defined by scaling. By fixing a coordinate system
of V and identifying it with An+1, we may identify PV with Pn.

Varieties. Varieties in this paper refer to either projective or affine varieties. A projective (resp. affine)
variety is simply a closed subset of a projective (resp. affine) subspace. If V1 and V2 are closed subsets of a
projective or affine space and V1 ⊆ V2, we say V1 is a (closed) subvariety of V2.

A variety is reducible if it is the union of finitely many proper subvarieties, and otherwise irreducible.
Affine and projective spaces are irreducible. A variety V can be uniquely written as the union of finitely
many maximal irreducible subvarieties, which are called the irreducible components of V .

A projective or affine variety is called a hypersurface (resp. hyperplane) if it is definable by a single
polynomial (resp. single linear polynomial).

Hilbert’s Nullstellensatz. An ideal I of a commutative ring R is radical if am ∈ I implies a ∈ I
for every a ∈ R and m ∈ N+. For an ideal I of F[X1, . . . , Xn], denote by V(I) the subvariety of An

defined by the polynomials in I . Define V(f1, . . . , fk) = V(⟨f1, . . . , fk⟩) for f1, . . . , fk ∈ F[X1, . . . , Xn].
For a subvariety V of An, denote by I(V) the ideal of F[X1, . . . , Xn] consisting of all the polynomials
vanishing on V . Hilbert’s Nullstellensatz states that the map V 7→ I(V) is an inclusion-reversing one-to-one
correspondence between the subvarieties of An and the radical ideals of F[X1, . . . , Xn], with the inverse
map I 7→ V(I).

For a subvariety V of An, define F[V] := F[X1, . . . , Xn]/I(V), called the coordinate ring of V .

Projective Nullstellensatz. Consider the polynomial ring R = F[X1, . . . , Xn+1]. It can be written as a
direct sum R =

⊕∞
d=0Rd where each Rd denotes the space of degree-d homogeneous polynomials, called

the homogeneous part of degree d of R or simply the degree-d part of R. For an ideal I of R and d ∈ N,
let Id := I ∩ Rd, called the degree-d part of I . We say I is a homogeneous ideal if I =

⊕∞
d=0 Id. For a

homogeneous ideal I of R, we have R/I =
⊕∞

d=0(R/I)d where (R/I)d := Rd/Id.
For a homogeneous ideal I of R, denote by V(I) the subvariety of Pn defined by the homogeneous

polynomials in I . Define V(f1, . . . , fk) = V(⟨f1, . . . , fk⟩) for homogeneous polynomials f1, . . . , fk ∈ R.
For a subvariety V of Pn, denote by I(V) the ideal generated by the homogeneous polynomials vanishing
on V , which is a homogeneous ideal. The projective Nullstellensatz states that the map V 7→ I(V) is an
inclusion-reversing one-to-one correspondence between the nonempty subvarieties of Pn and the radical
homogeneous ideals of R properly contained in ⟨X1, . . . , Xn+1⟩, with the inverse map I 7→ V(I).
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For a subvariety V ⊆ Pn and the corresponding homogeneous ideal I = I(V), we say R/I is the
homogeneous coordinate ring of V .

Morphisms. Let V1 ⊆ An and V2 ⊆ Am be affine varieties. A morphism from V1 to V2 is a map
f : V1 → V2 that is a restriction of a polynomial map An → Am. Such a morphism f is associated with a
ring homomorphism f ♯ : F[V2] → F[V1], making F[V1] an algebra over F[V2]. We say f is finite if F[V1] is
finitely generated as an F[V2]-module.

Let f : V1 → V2 be a map between projective varieties V1 and V2. We say f is a morphism from V1
to V2 if there exists a collection of open subsets {Ui}i∈I of V2 such that V2 =

⋃
i∈I Ui (i.e., {Ui}i∈I is an

open cover of V2) and for each i ∈ I , the restriction f |f−1(Ui) : f−1(Ui) → Ui is a morphism between affine
varieties. Furthermore, if each f |f−1(Ui) is finite, then we say f is finite. Finiteness does not depend on the
choice of the affine open cover. Namely, if f : V1 → V2 is a finite morphism between projective varieties
V1 and V2, and U is an open subset of V2 such that f |f−1(U) : f−1(U) → U is a morphism between affine
varieties, then f |f−1(U) is also finite.

The image of a morphism f : V1 → V2 is denoted by Im(f) or f(V1). The image of a closed set under
a finite morphism is still closed. The composition of two finite morphisms is still finite.

Dimension. The dimension of an irreducible variety V , denoted by dim(V), is the largest integer m such
that there exists a chain of irreducible varieties ∅ ⊊ V0 ⊊ V1 ⊊ · · · ⊊ Vm = V . More generally, the
dimension of a nonempty variety is the maximal dimension of its irreducible components. We define the
dimension of an empty set to be −∞. A variety is equidimensional if its irreducible components have the
same dimension.

If π : V → V ′ is a finite morphism, then dim(V) = dim(π(V)).

Degree. The degree of an irreducible subvariety V of Pn (resp. An), denoted by deg(V), is the number of
intersections of V with a projective (resp. affine) subspace of codimension dim(V) in general position. More
generally, we define the degree of a subvariety of Pn or An to be the sum of the degrees of its irreducible
components.

Projective closure. The affine n-space An may be regarded as an open subset of Pn via the map
(x1, . . . , xn) 7→ (x1, . . . , xn, 1). The complement H∞ := Pn \ An is a hyperplane of Pn defined by
Xn+1 = 0, called the hyperplane at infinity. For an affine subvariety V of An ⊆ Pn, the smallest projective
subvariety of Pn containing V is the projective closure of V , which we denote by Vcl. It is known that
Vcl ∩ An = V , dim(Vcl) = dim(V), and deg(Vcl) = deg(V).

Joins of disjoint projective varieties. For two distinct points p, q ∈ Pn, denote by pq the unique projective
line passing through them. For two disjoint projective subvarieties V1,V2 ⊆ Pn, define the join J(V1,V2)
of V1 and V2 as

J(V1,V2) :=
⋃

p∈V1,q∈V2

pq.

Lemma 2.6 ([Har92, Examples 6.17, 11.36, and 18.17]). J(V1,V2) is a subvariety of Pn of dimension
dim(V1) + dim(V2) + 1 and degree at most deg(V1) · deg(V2).

We also need the following facts.

Lemma 2.7 ([Har92, Exercise 11.6 and Corollary 18.5]). Let V be a nonempty equidimensional subvariety
of Pn and H a hypersurface of Pn not containing an irreducible component of V . Then V ∩ H is an
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equidimensional subvariety of dimension dim(V) − 1 and degree at most deg(V) · deg(H) (or an empty set
if dim(V) = 0).

Corollary 2.8. Let V be a subvariety of Pn of dimension r, where 0 ≤ r < n. Then there exists an
(n− r − 1)-subspace W disjoint from V .

Proof. It suffices to show that there exist hyperplanes H1, . . . ,Hr+1, such that Vi := V ∩ (
⋂i

j=1Hj) is
empty for some i ≤ r + 1. We may inductively choose each Hi such that C ̸⊆ Hi for every irreducible
component C of Vi−1, so that dim(Vi) ≤ dim(Vi−1) − 1 by Lemma 2.7. So Vi = ∅ for some i ≤ r+ 1.

Lemma 2.9 ([Sha94, Section I.6.2, Theorem 6]). Suppose V1 and V2 are subvarieties of Pn and dim(V1) +
dim(V1) ≥ n. Then V1 ∩ V2 ̸= ∅ and dim(V1 ∩ V2) ≥ dim(V1) + dim(V1) − n.

3 Proof of the Main Theorem

In this section, we prove the Main Theorem (Theorem 1.6) together with Theorem 1.8 and Theorem 1.9. In
Section 3.1, we show that it suffices to consider equidimensional or irreducible subvarieties of dimension
n − k − 1. Section 3.2 contains an introduction to Chow forms. In Section 3.3, we present the explicit
constructions and complete the proof of Theorem 1.6. As a product, Theorem 1.8 and Theorem 1.9 are also
proved in Section 3.3.

3.1 Reducing to the Case of Equidimensional or Irreducible Varieties

The following lemma states that to construct k-subspace families that are evasive for subvarieties of Pn, it
suffices to consider equidimensional subvarieties of dimension n− k − 1 (i.e., codimension k + 1).

Lemma 3.1. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n − 1}. Let F be the family of all equidimensional
subvarieties of Pn of dimension n− k − 1 and degree at most d. Then an (F , ε)-evasive k-subspace family
is also (n, d, ε)-evasive.

The proof of Lemma 3.1 is based on the following claim.

Claim 3.2. Let V be an irreducible subvariety of Pn. There exists a subvariety Ṽ ⊆ Pn of dimension n−k−1
and degree at most deg(V) such that any k-subspace of Pn that evades Ṽ also evades V .

Proof. If dim(V) = n− k − 1, then just let Ṽ = V .
Now assume dim(V) < n− k − 1. Let t = (n− k − 1) − dim(V) − 1 and let Ṽ be the join of V and a

t-subspace disjoint from V (which exists by Corollary 2.8). Then Ṽ is a projective subvariety of dimension
n− k− 1 and degree at most deg(V) by Lemma 2.6. Suppose W is a k-subspace that evades Ṽ . Then W is
disjoint from Ṽ ⊇ V . So W also evades V .

Finally, assume dim(V) > n − k − 1. Let t = dim(V) − (n − k − 1). By Lemma 2.7, there exist
t hyperplanes H1, . . . ,Ht of Pn such that V ∩

⋂t
i=1Hi is equidimensional of dimension n − k − 1 and

degree at most deg(V). Let Ṽ = V ∩
⋂t

i=1Hi. Suppose W is a k-subspace that evades Ṽ . Then W ∩ Ṽ =
(W ∩ V) ∩

⋂t
i=1Hi = ∅. Again by Lemma 2.7, we have dim(W ∩ V) ≤ t− 1 = dim(V) + dim(W ) − n.

So W also evades V .

Proof of Lemma 3.1. Consider a projective subvariety V ⊆ Pn of degree at most d. Let V1, . . . ,Vs be the
irreducible components of V . For each i ∈ [s], use Claim 3.2 to choose a projective subvariety Ṽi ⊆ Pn of
dimension n − k − 1 and degree at most deg(Vi) such that any k-subspace that evades Ṽi also evades Vi.
Let Ṽ =

⋃s
i=1 Ṽi. Then Ṽ ∈ F . By construction, any k-subspace that evades Ṽ also evades V . It follows

that an (F , ε)-evasive k-subspace family is also (n, d, ε)-evasive.
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We further reduce to the case of irreducible varieties at the cost of blowing up the parameter ε by a factor
of d. This is useful as we need irreducibility later in Lemma 3.11.

Lemma 3.3. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n− 1}. Let F ′ be the family of all irreducible subvarieties
of Pn of dimension n − k − 1 and degree at most d. Then an (F ′, ε)-evasive k-subspace family is also an
(n, d, dε)-evasive k-subspace family.

Proof. Let F be as in Lemma 3.1. Each V ∈ F has at most d irreducible components, which are all in
F ′ since their degrees are bounded by d. By definition and the union bound, if a k-subspace family H is
(F ′, ε)-evasive, then it is also (F , dε)-evasive. Combining this with Lemma 3.1 proves the lemma.

3.2 Chow Forms

By Lemma 3.1 and Lemma 3.3, we only need to evade equidimensional or irreducible projective subvarieties
of codimension k + 1. The “bad” k-subspaces that intersect such a variety V form a hypersurface of the
Grassmannian defined by a single form called the Chow form of V . We now explain the basic theory of
Chow forms.

Grassmannians. Let n ∈ N and k ∈ {0, 1, . . . , n− 1}. The Grassmannian G(k + 1, n+ 1) is the set of
all (k + 1)-dimensional linear subspaces of An+1. By taking the quotient modulo scalars, it may also be
identified with the set of all k-subspaces of Pn, which we denote by G(k, n).

The Plücker embedding and Plücker coordinates. Consider a linear subspace W ∈ G(k + 1, n + 1).
The simplest way of representing W is using a (k + 1) × (n + 1) matrix A over F such that W equals the
row space of A. We call such a matrix A a generating matrix of W . For convenience, we also say A is a
generating matrix of PW ∈ G(k, n).

The entries of A are called the (primal) Stiefel coordinates of W . However, note that A is not uniquely
determined by W since for any (k + 1) × (k + 1) invertible matrix M over F, the matrix MA is also a
generating matrix of W .

Another way of representing W is using the vector (detA[k+1],S)
S∈([n+1]

k+1 ) of maximal minors of a
generating matrix A of W . For a (k + 1) × (k + 1) invertible matrix M over F, replacing A by MA
corresponds to multiplying all the maximal minors detA[k+1],S by detM ∈ F×. To remove ambiguity,
we could view (detA[k+1],S)

S∈([n+1]
k+1 ) as a point in the projective space P(n+1

k+1)−1, which is then uniquely
determined by W . This leads to the definition of the Plücker embedding.

Definition 3.4 (Plücker embedding). Define ϕ : G(k + 1, n+ 1) → P(n+1
k+1)−1 by

ϕ(W ) = (detA[k+1],S)
S∈([n+1]

k+1 )

where A is a generating matrix of W .

The Plücker embedding embeds the Grassmannian G(k+1, n+1) inP(n+1
k+1)−1 as an irreducible projective

subvariety, as stated by the following theorem. See, e.g., [Har92, Ful97] for proofs.

Theorem 3.5. The Plücker embedding ϕ is a well-defined injective map whose image is an irreducible
projective subvariety of P(n+1

k+1)−1.
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The homogeneous coordinates (detA[k+1],S)
S∈([n+1]

k+1 ) of ϕ(W ) are called the (primal) Plücker
coordinates of W .

Denote by R := F
[
XS : S ∈

([n+1]
k+1

)]
the homogeneous coordinate ring of P(n+1

k+1)−1. The irreducible
projective subvariety ϕ(G(k + 1, n+ 1)) is defined by a homogeneous prime ideal of R, which we denoted
by I . Then R/I is the homogeneous coordinate ring of ϕ(G(k + 1, n+ 1)). The ideal I contains precisely
the polynomial relations that the Plücker coordinates need to satisfy. It is also known that I is generated by
certain quadratic forms, known as the Plücker relations. See [Har92, Ful97] for details.

Dual Plücker coordinates. Alternatively, we could represent a linear subspace W ∈ G(k + 1, n + 1)
by an (n − k) × (n + 1) matrix B over F whose rows specify the linear equations defining W . We call
such a matrix B a parity check matrix of W . For convenience, we also say B is a parity check matrix of
PW ∈ G(k, n).

The entries of B are called the dual Stiefel coordinates of W . This gives another embedding ϕ∨ :
G(k + 1, n+ 1) → P(n+1

n−k)−1 = P(n+1
k+1)−1, defined by

ϕ∨(W ) = (detB[n−k],S)
S∈([n+1]

n−k ).

The homogeneous coordinates (detB[n−k],S)
S∈([n+1]

n−k ) of ϕ∨(W ) are called the dual Plücker coordinates of

W .7 In fact, it is known that dual Plücker coordinates are equivalent to primal Plücker coordinates. Namely,
if W ∈ G(k + 1, n+ 1) has primal Plücker coordinates (cS)

S∈([n+1]
k+1 ), then it has dual Plücker coordinates

(c′
S)

S∈([n+1]
n−k ) with c′

S = (−1)
∑

i∈S
i−
∑

i∈[k+1] i · c[n+1]\S (see, e.g., [JT13]).

Chow forms. Recall that we denote by G(k, n) the set of all k-subspaces of Pn. By identifying G(k +
1, n+ 1) with G(k, n) via W 7→ PW , we regard ϕ and ϕ∨ as maps from G(k, n) to P(n+1

k+1)−1.
We also need the notion of associated hypersurfaces.

Definition 3.6 (Associated hypersurface [GKZ94]). For an irreducible subvariety V ⊆ Pn of dimension
n− k − 1, define the associated hypersurfaces ZV of V to be the set of k-subspaces intersecting V , i.e.,

ZV := {W ∈ G(k, n) : V ∩W ̸= ∅}.

The term “associated hypersurface” is justified by the following theorem.

Theorem 3.7. Let V ⊆ Pn be an irreducible projective subvariety of dimension n − k − 1 and degree
d ∈ N+. Then there exists a nonzero homogeneous polynomial PV ∈ R = F

[
XS : S ∈

([n+1]
k+1

)]
of degree

d such that ϕ(ZV) is defined by PV as a subvariety of ϕ(G(k, n)). That is,

ϕ(ZV) = ϕ(G(k, n)) ∩ V(PV).

Moreover, RV := PV + I ∈ (R/I)d is uniquely determined by V up to scalars.

Theorem 3.7 is explicitly stated as [DS95, Theorem 1.1 and Corollary 2.1]. A proof can be found in
[GKZ94, Section 3.2]. We briefly explain how to find a polynomial PV satisfying Theorem 3.7: Firstly, it can
be shown using the trick of dimension counting via incidence varieties that ϕ(ZV) is an irreducible projective
subvariety of the Grassmannian ϕ(G(k, n)) of codimension one [GKZ94, Section 3.2, Proposition 2.2].
Secondly, the homogeneous coordinate ring R/I of the Grassmannian is known to be a unique factorization

7Many authors use “primal” and “dual” in the opposite way (e.g., [DS95]).
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domain [Ful97, Chapter 9]. These two facts imply that the homogeneous ideal of R/I defining ϕ(ZV) is a
principal ideal. Choose RV to be a generator of this principal ideal, which is unique up to scalars. Then lift
RV ∈ R/I to PV ∈ R.

Now we are ready to define the Chow form of projective subvarieties.

Definition 3.8 (Chow form). Let V ⊆ Pn be an irreducible subvariety of dimension n − k − 1 and degree
d ∈ N+. Define the Chow form of V in Plücker coordinates, or simply the Chow form of V , to be
RV ∈ (R/I)d as in Theorem 3.7.

More generally, for an equidimensional subvariety V =
⋃s

i=1 Vi ⊆ Pn of dimension n−k−1 and degree
d, where V1, . . . ,Vs are the irreducible components of V , the Chow form of V is RV :=

∏s
i=1 RVi ∈ (R/I)d.

It is uniquely determined by V up to scalars.

As a k-subspace intersects V =
⋃s

i=1 Vi iff it intersects some Vi, we see from Theorem 3.7 that the Chow
form RV of an equidimensional projective subvariety V of dimension n− k− 1 vanishes precisely at the set
of k-subspaces that intersect V .
Example 1. Let k = 0. Let V ⊆ Pn be a hypersurface defined by a nonzero homogeneous polynomial
P ∈ F[X1, . . . , Xn+1] = R. The ideal I of R is zero in this case. And the Chow form RV of V is simply P
(up to a scalar).
Example 2. Let V ∈ G(n − k, n + 1) and W ∈ G(k + 1, n + 1). Choose matrices A,B ∈ F(k+1)×(n+1)

such that A is a generating matrix of W and B is a parity check matrix of V . Then PV ∩ PW ̸= ∅ iff
dim(V ∩W ) > 0, which holds iff det(ABT ) = 0. On the other hand, we have

det(ABT ) =
∑

S∈([n+1]
k+1 )

det(A[k+1],S) · det((BT )S,[k+1]) =
∑

S∈([n+1]
k+1 )

det(A[k+1],S) · det(B[k+1],S),

where the first equation is known as the Cauchy–Binet formula (see, e.g., [FSS14]). So PPV ∈ R1 is a linear
polynomial whose coefficients are given by the dual Plücker coordinates (detB[k+1],S)

S∈([n+1]
k+1 ) of V (up

to a scalar). The degree-one part I1 of I is zero as I is generated by quadratic forms. So the Chow form
RPV ∈ (R/I)1 = R1 is simply PPV .

Chow forms in Stiefel coordinates. We may also express the Chow form in Stiefel coordinates, i.e., in
the entries of a generating matrix of a linear subspace. This expression has the advantage that it is an actual
polynomial rather than a member of the abstract vector space (R/I)d.

Formally, let A∗ be a (k + 1) × (n+ 1) variable matrix whose (i, j)-th entry is a variable Yi,j . Define
the ring homomorphism

ϕ♯ : R = F
[
XS : S ∈

(
[n+ 1]
k + 1

)]
→ F[Yi,j : i ∈ [k + 1], j ∈ [n+ 1]]

that sends each variable XS to det(A∗
[k+1],S). Define the Chow form of V in Stiefel coordinates to be

R̃V := ϕ♯(PV) ∈ F[Yi,j : i ∈ [k + 1], j ∈ [n+ 1]]

where PV ∈ Rd is a lift of RV ∈ (R/I)d. Note that I is precisely the kernel of ϕ♯. So R̃V is uniquely
determined by V up to scalars. By construction, for any W ∈ G(k + 1, n + 1) and generating matrix
A = (ai,j)i∈[k+1],j∈[n+1] of W , we have PV(ϕ(W )) = R̃V(A) := R̃V(a1,1, . . . , ak+1,n+1). So R̃V
vanishes at A iff PW ∈ G(k, n) intersects V .
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Chow forms in dual Stiefel coordinates. Similarly, we may express the Chow form in dual Stiefel
coordinates, i.e., in the entries of a parity check matrix of a linear subspace.

More specifically, choose a homogeneous polynomial QV ∈ F
[
XS : S ∈

([n+1]
n−k

)]
that defines the set of

k-subspaces intersecting V in terms of dual Plücker coordinates. As primal and dual Plücker coordinates are
equivalent, QV can be obtained from the polynomial PV above by simply negating and renaming variables.
Next, compose QV with a ring homomorphism that substitutes dual Plücker coordinates with dual Stiefel
coordinates. The resulting polynomial, which we denote by R̃∨

V ∈ F[Yi,j : i ∈ [n−k], j ∈ [n+ 1]], is called
the Chow form of V in dual Stiefel coordinates.

We note that the Chow form R̃V in primal Stiefel coordinates is a homogeneous polynomial of degree
(k+1)d in (k+1)(n+1) variables, whereas the Chow form R̃∨

V in dual Stiefel coordinates is a homogeneous
polynomial of degree (n− k)d in (n− k)(n+ 1) variables. This suggests that it is more convenient to use
the Chow form in primal (resp. dual) Stiefel coordinates when k is small (resp. n− k is small).8

3.3 Explicit Constructions of Variety Evasive Subspace Families

Let n, d ∈ N+, k ∈ {0, 1, . . . , n − 1}, and ε ∈ (0, 1). In this subsection, we prove the Main Theorem
(Theorem 1.6) by constructing explicit projective or affine k-subspace families that are (n, d, ε)-evasive.

We first prove Theorem 1.6 in the projective case, and then derive the affine case from it by viewing
An as an open subset of Pn. For the projective case, we present two constructions. The first one is simple
and only uses ε-hitting sets for low degree polynomials (Lemma 2.3). But the size of the resulting subspace
family is polynomial only when both d and k (or n − k) are bounded. Next, we give a more sophisticated
construction, which yields subspace families of polynomial size as long as d is bounded.

3.3.1 Simple Construction

We first present a simple construction of (n, d, ε)-evasive k-subspace families on Pn.
First assume k + 1 ≤ n− k. In this case, construct a k-subspace family H on Pn as follows:

1. Use Lemma 2.3 to compute an ε-hitting set T for the family of polynomials f ∈ F[Yi,j : i ∈ [k+1], j ∈
[n + 1]] of degree at most (k + 1)d such that |T | = poly

(((k+1)(n+1+d)
(k+1)d

)
, 1/ε

)
. Think of T as a

collection of (k + 1) × (n+ 1) matrices over F.

2. Initialize H = ∅. For each matrix A ∈ T , if A has full row rank k + 1, add to H the k-subspace
W ∈ G(k, n) with the generating matrix A.

Next, assume k + 1 > n − k. In this case, construct H in a similar way, but use parity check
matrices instead of generating matrices. Namely, compute an ε-hitting set T for the family of polynomials
f ∈ F[Yi,j : i ∈ [n−k], j ∈ [n+1]] of degree at most (n−k)d such that |T | = poly

(((n−k)(n+1+d)
(n−k)d

)
, 1/ε

)
.

Think of T as a collection of (n − k) × (n + 1) matrices over F. For each matrix A ∈ T , add to H the
k-subspace W ∈ G(k, n) with the parity check matrix A.

This construction does give an (n, d, ε)-evasive k-subspace family, as stated by the following lemma.

Lemma 3.9. The k-subspace family H constructed above is (n, d, ε)-evasive and has size polynomial in
min

{((k+1)(n+1+d)
(k+1)d

)
,
((n−k)(n+1+d)

(n−k)d
)}

and 1/ε. Moreover, the total time complexity of computing the linear
equations defining the k-subspaces in H is polynomial in |H| (and log p, if char(F) = p > 0).

8While both RV and R∨
V may be viewed as elements of (R/I)d, the two (injective) maps RV 7→ R̃V and R∨

V 7→ R̃∨
V come

from different linear embedding of (R/I)d in vector spaces of polynomials. As a result, the representation of V by the polynomial
R̃V and the representation by R̃∨

V are not equally succinct in general.
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Proof. We only show that H is (n, d, ε)-evasive since the rest of the lemma is obvious from the construction.
Let F be the family of all equidimensional subvarieties of Pn of dimension n − k − 1 and degree at most
d. By Lemma 3.1, it suffices to prove that H is (F , ε)-evasive. Consider any V ∈ F . We want to show that
V ∩W = ∅ for all but at most ε-fraction of W ∈ H.

First assume k + 1 ≤ n − k, or equivalently,
((k+1)(n+1+d)

(k+1)d
)

≤
((n−k)(n+1+d)

(n−k)d
)
. The Chow form R̃V

of V in Stiefel coordinates is a nonzero homogeneous polynomial in F[Yi,j : i ∈ [k + 1], j ∈ [n + 1]] of
degree (k + 1) deg(V) ≤ (k + 1)d. By the choice of T , for all but at most ε-fraction of A ∈ T , we have
R̃V(A) ̸= 0, which implies V ∩W = ∅, where A is a generating matrix of W .

By construction, H is the collection of k-subspaces corresponding to the matrices A ∈ T of full row
rank. So we have ignored the matrices that do not have full row rank. But this does not increase the fraction
of “bad” W ∈ H since if A does not have full row rank, then the maximal minors of A are all zero, and
R̃V(A) must be zero. It follows that V ∩W = ∅ for all but at most ε-fraction of W ∈ H, as desired.

Now assume k+1 > n−k. The proof in this case is similar and we omit the details. The only difference
is that we use the Chow form R̃∨

V in dual Stiefel coordinates instead of R̃V .

3.3.2 Improved Construction

Before presenting the improved construction, we first introduce some notions from algebraic geometry.

Projections. Suppose W is a k-subspace of Pn, and ℓ1, . . . , ℓn−k ∈ F[X1, . . . , Xn+1] are n − k
homogeneous linear polynomials such that W = V(ℓ1, . . . , ℓn−k). Then we have a map π : Pn \ W →
Pn−k−1 defined by

π : x 7→ (ℓ1(x), . . . , ℓn−k(x))

which is well-defined since ℓ1, . . . , ℓn−k never simultaneously vanish on Pn \W . We say π is a projection
from Pn \ W to Pn−k−1 and W is its center. Note that if we lift π to the linear map π′ : An+1 → An−k

sending x ∈ An+1 to (ℓ1(x), . . . , ℓn−k(x)) ∈ An−k, then the center W is simply P ker(π′).
We need the following lemma, whose proof can be found in [Sha94].

Lemma 3.10 ([Sha94, Section I.5.3, Theorem 7]). Suppose π : Pn \ W → Pm is a projection with center
W and V is a subvariety of Pn disjoint from W . Then π restricts to a finite morphism from V to Pm.

Nondegenerate varieties. For a subvariety V ⊆ Pn, denote by span(V) the smallest projective subspace
that contains V . We say V is nondegenerate if it is not contained in a hyperplane of Pn, or equivalently,
span(V) = Pn.

We need the following fact from algebraic geometry (see, e.g., [EH87, Proposition 0] or [Har92,
Corollary 18.12]).

Lemma 3.11. The codimension of a nondegenerate irreducible subvariety V of Pn is at most deg(V) − 1.

A two-step construction. We now give an improved construction of (n, d, ε)-evasive k-subspace families
on Pn as follows.

1. If k ≤ d − 2, just use the previous simple construction. So assume k > d − 2. Let k′ = d − 2 < k,
n′ = k′ + n− k < n, and ε0 = ε/(2d).

2. Use Corollary 2.5 to construct a collection H1 of (n′ + 1) × (n + 1) matrix over F such that
|H1| = poly(n, d/ε) and for every (n+ 1) × (n′ + 1) matrix M over F of rank n′ + 1, all but at most
ε0-fraction of B ∈ U satisfies rank(BM) = n′ + 1.
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We abuse the notation and view H1 as a collection of linear maps from An+1 to An′+1. Then for any
linear subspace W ⊆ An+1 of dimension n′ + 1, we have dim(π(W )) = dim(W ) = n′ + 1 for all
but at most ε0-fraction of π ∈ H1.

3. Construct a collection H2 of linear maps from An′+1 to An−k as follows. First assume d > 1.
Use Lemma 3.9 to construct an (n′, d, ε0)-evasive k′-subspace family H′

2 on Pn′ of size polynomial
in min

{((k′+1)(n′+1+d)
(k′+1)d

)
,
((n−k)(n′+1+d)

(n−k)d
)}

and 1/ε0. For each k′-subspace W ∈ H2, compute
a surjective linear map πW : An′+1 = An−k+k′+1 → An−k such that W = P ker(πW ). Let
H2 = {πW : W ∈ H′

2}.
If d = 1, just let H2 be the singleton consisting of the identity map on An′+1 = An−k.

4. Initialize H = ∅. For each (π1, π2) ∈ H1 × H2, if dim(ker(π2 ◦ π1)) = k + 1, add the k-subspace
P ker(π2 ◦ π1) to H.9

We use the construction above to prove the Main Theorem (Theorem 1.6) in the projective case. For
convenience, we restate it in the following form.

Theorem 3.12 (Main Theorem in the projective case). The k-subspace family H constructed above is
(n, d, ε)-evasive and has size poly(N(k, d, n), n, 1/ε). Moreover, the total time complexity of computing
the linear equations defining the k-subspaces in H is polynomial in |H| (and log p, if char(F) = p > 0).

Proof. The theorem follows from Lemma 3.9 if k ≤ d− 2. So assume k > d− 2. We only show that H is
(n, d, ε)-evasive since the rest of the theorem is obvious from the construction.

Let F be the family of all irreducible subvarieties of Pn of dimension n − k − 1 and degree at most d.
By Lemma 3.3, it suffices to prove that H is (F , 2ε0)-evasive. Consider any V ∈ F . We want to show that
V ∩W = ∅ for all but at most (2ε0)-fraction of W ∈ H.

By definition, V is a nondegenerate irreducible subvariety of span(V). By Lemma 3.11, the codimension
of V in span(V) is at most d− 1. Therefore,

dim(span(V)) ≤ dim(V) + d− 1 = (n− k − 1) + (d− 1) = n′.

Let Λ ⊆ Pn be an n′-subspace that contains span(V). By the choice of H1, all but at most ε0-fraction of
π1 ∈ H1 satisfies P ker(π1) ∩ Λ = ∅. Fix π1 that satisfies this condition. Then P ker(π1) is disjoint from
V ⊆ Λ. By Lemma 3.10, π1 induces a finite morphism π̄1 : V → Pn′ .

Let V ′ = π̄1(V) ⊆ Pn′ . Then V ′ is a projective subvariety of dimension dim(V) = n−k− 1 and degree
at most d.10 By the choice of H2, all but at most ε0-fraction of π2 ∈ H2 satisfies P ker(π2) ∩ V ′ = ∅. Fix
π2 that satisfies this condition. (If d = 1 and π2 is the identity map, we regard P ker(π2) as an empty set, in
which case this condition is also satisfied.) By Lemma 3.10, π2 induces a finite morphism π̄2 : V ′ → Pn−k−1.
So we have a finite morphism π̄2 ◦ π̄1 : V → Pn−k−1. Note that π̄2 ◦ π̄1 is defined by restricting a projection
with center P ker(π2 ◦ π1) to V . As π̄2 ◦ π̄1 is well-defined on V , its center P ker(π2 ◦ π1) is disjoint from V
and this also forces dim ker(π2 ◦ π1) = k + 1 by Lemma 2.9.

By the above argument and the construction of H, all but at most 2ε0-fraction of the k-subspaces in H
are disjoint from V , as desired.

9In fact, dim(ker(π2 ◦ π1)) = k + 1 always holds since π1 and π2 are surjective. The fact that π1 ∈ H1 is surjective can be
seen from the construction of lossless rank condensers in Corollary 2.5.

10The degree bound follows from, e.g., an inductive application of [Mum76, Proposition 5.5].
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3.3.3 Derandomization of Noether’s Normalization Lemma

We now prove Theorem 1.8 and Theorem 1.9. For convenience, we restate the theorems below.

Theorem 1.8. Let n, d ∈ N+, r ∈ {0, 1, . . . , n}, k = n − r − 1, and ε ∈ (0, 1). There exists an explicit
collection L of linear maps An+1 → Ar+1 of size poly(N(k, d, n), n, 1/ε) such that for every subvariety
V ⊆ Pn of dimension r and degree at most d, all but at most ε-fraction of π ∈ L induce a surjective
finite morphism from V to Pr.11 Moreover, L can be computed in time polynomial in |L| (and log p, if
char(F) = p > 0).

Proof. If r = n, just use the identity map on An+1 = Ar+1. So assume r < n. Use Theorem 3.12
to construct an (n, d, ε)-evasive k-subspace family H on Pn of size poly(N(k, d, n), n, 1/ε). For each
k-subspace W ∈ H, compute a surjective linear map πW : An+1 → Ar+1 such that W = P ker(πW ). Let
L = {πW : W ∈ H}. Then L is a desired collection of linear maps by Lemma 3.10.

Theorem 1.9. Let n, d ∈ N+, r ∈ {0, 1, . . . , n}, k = n − r − 1, and ε ∈ (0, 1). There exists an explicit
collection L of linear maps An → Ar of size poly(N(k, d, n − 1), n, 1/ε) such that for every subvariety
V ⊆ An of dimension r and degree at most d, all but at most ε-fraction of π ∈ L restrict to a surjective
finite morphism from V to Ar. Moreover, L can be computed in time polynomial in |L| (and log p, if
char(F) = p > 0).

Proof. If r = n, just use the identity map on An = Ar. If r = 0, use the only map An → A0. So assume
0 < r < n. Regard An as an open subset of Pn via (x1, . . . , xn) 7→ (x1, . . . , xn, 1). Similarly, regard Ar as
an open subset of Pr via (x1, . . . , xr) 7→ (x1, . . . , xr, 1). LetH∞ be the hyperplane at infinity of Pn defined
by Xn+1 = 0.

Use Theorem 3.12 to construct an (n − 1, d, ε)-evasive k-subspace family H on H∞ ∼= Pn−1 of
size poly(N(k, d, n − 1), n, 1/ε). For each W ∈ H, choose n − k = r + 1 homogeneous linear
polynomials ℓ1, . . . , ℓr+1 ∈ F[X1, . . . , Xn+1] such that ℓr+1 = Xn+1, ℓ1, . . . , ℓr ∈ F[X1, . . . , Xn], and
W = V(ℓ1, . . . , ℓr+1). This is possible asW ⊆ H∞ = V(Xn+1). These r+1 linear polynomials determine
a projection πW : Pn \W → Pr, defined by

x = (x1, . . . , xn+1) 7→ (ℓ1(x), . . . , ℓr+1(x)) = (ℓ1(x), . . . , ℓr(x), xn+1).

As xn+1 = 1 for x ∈ An, we have πW (An) ⊆ Ar. Restricting πW on An yields a map πW |An : An → Ar,
which is a linear map as ℓ1, . . . , ℓr are homogeneous linear polynomials in F[X1, . . . , Xn]. Let L =
{πW |An : W ∈ H}.

Let V be a subvariety of An of dimension r and degree at most d. Its projective closure Vcl has dimension
dim(V) = r and degree deg(V) ≤ d. By the definition of Vcl, none of the irreducible components of Vcl
is fully contained in H∞. So by Lemma 2.7, the projective subvariety Vcl ∩ H∞ has dimension r − 1 and
degree at most d.

By the choice of H, all but at most ε-fraction of W ∈ H are disjoint from Vcl ∩ H∞ and hence from
Vcl. So we just need to prove that for every W ∈ H disjoint from Vcl and the corresponding projection πW ,
the map πW |V : V → Ar is a surjective finite morphism. This follows from Lemma 3.10 and the fact that
V = Vcl ∩ (πW )−1(Ar).

11Let N(k, d, n) = 1 when r = n (i.e., k = −1). Similarly, in Theorem 1.9, let N(k, d, n − 1) = 1 when r = n or r = 0 (i.e.,
k = −1 or k = n − 1).
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3.3.4 Proof of the Main Theorem in the Affine Case

We now prove Theorem 1.6 in the affine case. Recall that we may view An as an open subset of Pn via the
map (x1, . . . , xn) 7→ (x1, . . . , xn, 1). In this way, Pn becomes the disjoint union of An and the hyperplane
at infinity H∞ defined by Xn+1 = 0.

We use the following lemma to reduce the affine case to the projective case.

Lemma 3.13. Let n, d ∈ N+, k ∈ {0, 1, . . . , n− 1}, and ε′ ∈ (0, 1/2). Suppose H is an (n, d, ε′)-evasive
k-subspace family on Pn. Then

H′ = {W ∩ An : W ∈ H,W ̸⊆ H∞}

is an (n, d, ε)-evasive affine k-subspace family on An, where ε = ε′/(1 − ε′) ≤ 2ε′. Moreover,

H′′ = {W ∈ H : W ̸⊆ H∞} = {Wcl : W ∈ H′}

is an (n, d, ε)-evasive k-subspace family on Pn.

Proof. By (n, d, ε′)-evasiveness of H, at most ε′-fraction of W ∈ H are fully contained in H∞. Throwing
away those k-subspaces fully contained in H∞ increases the error parameter ε′ by at most a factor of
1/(1 − ε′). Therefore, H′′ = {W ∈ H : W ̸⊆ H∞} is (n, d, ε)-evasive. We want to prove that
H′ = {W ∩ An : W ∈ H′′} is also (n, d, ε)-evasive.

Consider a subvariety V ⊆ An of degree at most d. Let V1, . . . ,Vs be the irreducible components of V .
The projective closure Vcl of V has the irreducible components (V1)cl, . . . , (Vs)cl. Consider a k-subspace
W ∈ H′′ that evades Vcl. We just need to prove that W ∩ An evades V . This is true since for each i ∈ [s],

dim((W ∩ An) ∩ Vi) ≤ dim(W ∩ (Vi)cl) ≤ dim(W ) + dim((Vi)cl) − n = dim(W ∩ An) + dim(Vi) − n

where the second inequality holds since W evades Vcl and the last equality uses the fact W ̸⊆ H∞.

The affine case of Theorem 1.6 now follows easily.

Proof of Theorem 1.6 in the affine case. If k = n, just choose H = An. Now assume k < n. Construct an
(n, d, ε/2)-evasive k-subspace family H on Pn using Theorem 3.12. Then

H′ := {W ∩ An : W ∈ H,W ̸⊆ H∞}

is an (n, d, ε)-evasive affine k-subspace family onAn by Lemma 3.13. The nonhomogeneous linear equations
defining W ∩ An ∈ H′ can be easily computed from the homogeneous linear equations defining W ∈ H by
letting Xn+1 = 1.

The proof of Theorem 1.6 is now complete.

Strengthening Theorem 1.6 in the affine case. For projective subvarieties V1,V2 ⊆ Pn such that
dim(V1) + dim(V2) ≥ n, the minimum possible dimension of V1 ∩ V2 is dim(V1) + dim(V2) −n, as stated
by Lemma 2.9. Nevertheless, for two affine subvarieties V1,V2 ⊆ An, it is possible that the intersection of
V1 and V2 is empty even if its expected dimension dim(V1) + dim(V2) −n is nonnegative. For example, the
intersection of two distinct and parallel affine hyperplanes V1,V2 ⊆ An is always empty even if n ≥ 2. The
reason this happens is that, while the dimension of (V1)cl ∩ (V2)cl is n− 2 (as expected), this intersection is
fully contained in the hyperplane H∞, which is excluded from An.

One may strengthen the definition of evading (Definition 1.1) by requiring the intersection of V1 with
every irreducible component of V2 to have exactly the expected dimension. It is possible to construct explicit

22



affine k-subspace families satisfying Theorem 1.6 even under this stronger definition of evading. We sketch
the ideas as follows but omit the details.

First construct an (n− 1, d, ε′)-evasive (k− 1)-subspace family H′ onH∞ ∼= Pn−1 for some sufficiently
small ε′ depending on ε. Then extend each W ∈ H′ to a collection of k-subspaces by picking p ∈ An and
taking the k-subspace J(W,p), where the coordinates of p are chosen from an ε′-hitting set for polynomials
of degree at most d given by Lemma 3.9. Call the resulting k-subspace family H. It is easy to prove that H
is (n, d,O(ε′))-evasive.

Furthermore, the affine k-subspace family {W ∩ An : W ∈ H} is (n, d, ε)-evasive even under the
stronger definition of evading. To see this, consider an affine subvariety V ⊆ An of degree at most d. For
most W ∈ H, we have:

• For each irreducible component Vi of V , the dimension of (Vi)cl ∩W is as expected by (n, d,O(ε′))-
evasiveness of H and Lemma 2.9. Call this dimension di, which is −∞ if (Vi)cl ∩W = ∅.

• Moreover, the dimension of ((Vi)cl ∩H∞) ∩ (W ∩H∞) is at most di − 1 by (n− 1, d, ε′)-evasiveness
of H′.

• Therefore, Vi ∩ (W ∩ An) has the expected dimension di for each irreducible component Vi of V .

4 Lower Bound

We prove Theorem 1.7 in this section. The main tool is the notion of Chow varieties, which parameterize
projective subvarieties. More precisely, they parametrize a generalization of projective subvarieties, called
(effective) algebraic cycles on a projective space.

Algebraic cycles. An algebraic r-cycle (or simply r-cycle) on Pn is a formal linear combination D =∑
ciVi of finitely many irreducible subvarieties Vi ⊆ Pn of dimension r, where the coefficients ci are

integers. The degree of D is deg(D) :=
∑
ci deg(Vi). The support of D is supp(D) :=

⋃
ci ̸=0 Vi. An

r-cycle is effective if all its coefficients are nonnegative. Denote by C(r, d, n) the set of all effective r-cycles
of degree d on Pn.

Chow varieties. Let k ∈ {0, 1, . . . , n − 1} and r = n − k − 1. The definition of Chow forms naturally
extends to effective r-cycles. Namely, for an effective r-cycle D =

∑r
i=1 ciVi of degree d on Pn, define the

Chow form of D to be RD :=
∏r

i=1 Rci
Vi

.
Note that RD is a vector in (R/I)d and is uniquely determined by D up to scalars. Write [RD] for the

point in P(R/I)d represented by RD. Then we have map ψ : C(r, d, n) → P(R/I)d, given by

ψ : D 7→ [RD],

called the Chow embedding ofC(r, d, n). Indeed, it embedsC(r, d, n) in P(R/I)d as a projective subvariety,
as stated by the following theorem of Chow and van der Waerden [CvdW37].

Theorem 4.1 ([CvdW37]). The map ψ is injective and its image is Zariski-closed.

A proof can also be found in [GKZ94, Chapter 4]. We identify C(r, d, n) with its image under ψ and
view it as a projective variety. This variety is called the Chow variety of effective r-cycles of degree d on Pn.
Example 3. Let V be the subspace of homogeneous polynomials in F[X1, . . . , Xn+1] of degree d. Then
C(n− 1, d, n) is simply the projective space PV (see Example 1).

Example 4. C(r, 1, n) is the Grassmannian G(r+ 1, n+ 1) (or G(r, n)) embedded in P(n+1
r+1)−1 = P(n+1

k+1)−1

via ϕ∨ (see Example 2).
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The dimension of Chow varieties. When d = 1, the Chow variety C(r, d, n) is just the Grassmannian
G(r + 1, n + 1) (see Example 4) and its dimension is well known to be (r + 1)(n − r) [Har92]. When
d > 1, the dimension of C(r, d, n) was determined by Azcue in his Ph.D. thesis [Azc92] and independently
by Lehmann [Leh17]. We state their result as follows.

Theorem 4.2 ([Azc92, Leh17]). For d > 1 and 0 ≤ r < n, the dimension of C(r, d, n) is

max
{
d(r + 1)(n− r),

(
d+ r + 1
r + 1

)
− 1 + (r + 2)(n− r − 1)

}
.

This theorem was previously proved by Eisenbud and Harris [EH92] for the special case r = 1.
Remark. To prove Theorem 1.7, we only need a lower bound for the dimension of the Chow variety, which is
much easier to prove than Theorem 4.2. Indeed, it is not difficult to see that d(r+ 1)(n− r) is the dimension
of the space of unions of d r-subspaces of Pn, and

(d+r+1
r+1

)
− 1 + (r+ 2)(n− r− 1) is the dimension of the

space of degree-d hypersurfaces in (r + 1)-subspaces of Pn.

Lower bound via dimension counting. We now restate Theorem 1.7 and prove it using a dimension
counting argument.

Theorem 1.7. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n− 1}. Let F be the family of equidimensional projective
subvarieties of Pn of dimension n − k − 1 and degree at most d. Suppose H is an F-evasive k-subspace
family on Pn. Then

|H| ≥

(n− k)(k + 1) + 1 if d = 1,
max

{
d(n− k)(k + 1) + 1,

(d+n−k
d

)
+ (n− k + 1)k

}
if d > 1.

In particular, |H| is superpolynomial in n when n− k = nΩ(1) and d = ω(1).

Proof. Consider an arbitrary k-subspaceW ∈ H. We may think of each point in P(R/I)d as a homogeneous
polynomial of degree d in Plücker coordinates modulo scalars and the ideal I of Plücker relations. We know
Plücker coordinates always satisfy the Plücker relations. So it makes sense to talk about if a point in P(R/I)d

vanishes atϕ(W ) or not, as it does not depend on the choice of the homogeneous polynomial representing this
point. Note that the constraint of p ∈ P(R/I)d vanishing at ϕ(W ) is a linear equation in the homogeneous
coordinates of p. So the set of points in P(R/I)d vanishing at ϕ(W ) is a hyperplane of P(R/I)d, which we
denote by HW .

Let r = n− k − 1. Assume |H| ≤ dim(C(r, d, n)). Then we have

C(r, d, n) ∩
⋂

W ∈H
HW ̸= ∅

since taking the intersection with a hyperplane reduces the dimension of a projective subvariety by at most
one (Lemma 2.7 or Lemma 2.9). So there exists an effective r-cycle D =

∑s
i=1 ciVi ∈ C(r, d, n), where

c1, . . . , cs > 0, such that ψ(D) = [RD] vanishes at ϕ(W ) for all W ∈ H.
Let V = supp(D) =

⋃s
i=1 Vi. Note V ∈ F since deg(V) ≤ deg(D) = d. For all W ∈ H, we know

RD =
∏s

i=1 Rci
Vi

vanishes at ϕ(W ), or equivalently, RV =
∏s

i=1 RVi vanishes at ϕ(W ). This implies
V ∩W ̸= ∅ for all W ∈ H. As V ∈ F , this contradicts our assumption about H. We conclude

|H| ≥ dim(C(r, d, n)) + 1.

The dimension of C(r, d, n) is (r + 1)(n − r) when d = 1 and is given by Theorem 4.2 when d > 1.
Plugging in r = n− k − 1 proves the theorem.
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A non-explicit construction. Next, we show that the lower bound in Theorem 1.7 is tight by matching it
with a non-explicit construction.

First, we need a bound for the degree of C(r, d, n). Define M(r, d, n) by

M(r, d, n) :=

((r + 1)(n− r))!
∏r+1

i=1
(i−1)!

(n−r+i−1)! if d = 1,
3λ if d > 1.

where λ := min
{(n+d

d

)r+1
,
(n+d

d

)n−r
,
((n+1

r+1)+d−1
d

)}
− 1.

Lemma 4.3. The degree of C(r, d, n) in P(R/I)d is at most M(r, d, n).

Proof. When d = 1, C(r, d, n) is the Grassmannian G(r, n) and its degree under the Plücker embedding is
known to be exactly M(r, d, n) [Kle76].

Now assume d > 1. In this case, we use the following argument in [Cat92]. Green and Morrison
[GM86] proved that the Chow variety C(r, d, n) is defined by equations of degree at most three. It follows
from Lemma 2.7 (or Bézout’s inequality [Hei83]) that the degree of C(r, d, n) in P(R/I)d is bounded by
3dim(P(R/I)d). So it remains to prove that dim(P(R/I)d) ≤ λ.

Recall thatR = F
[
XS : S ∈

([n+1]
k+1

)]
where k = n−r−1. So dim(Rd) =

((n+1
k+1)+d−1

d

)
=
((n+1

r+1)+d−1
d

)
.

Therefore,

dim(P(R/I)d) ≤ dim(PRd) =
((n+1

r+1
)

+ d− 1
d

)
− 1.

On the other hand, the linear map RV 7→ R̃V embeds P(R/I)d in PV , where V ⊆ F[Yi,j : i ∈ [k + 1], j ∈
[n + 1]] is the linear space of multihomogeneous polynomials of degree (d, . . . , d) in the k + 1 groups of
variables {Yi1 , . . . , Yi,n+1}, i = 1, . . . , k + 1. Therefore,

dim(P(R/I)d) ≤ dim(PV ) =
(
n+ d

d

)k+1

− 1 =
(
n+ d

d

)n−r

− 1.

Similarly, using the linear map R∨
V 7→ R̃∨

V , we get dim(P(R/I)d) ≤
(n+d

d

)r+1 − 1.

The following theorem gives a non-explicit construction of H whose cardinality matches the lower bound
dim(C(r, d, n)) + 1 in Theorem 1.7.

Theorem 4.4. Let n, d ∈ N+, k ∈ {0, 1, . . . , n− 1}, r = n− k − 1, t = dim(C(r, d, n)), and δ > 0. Let
F be the family of equidimensional projective subvarieties of Pn of dimension n− k− 1 and degree at most
d. Let S be a finite subset of F such that

|S| ≥ M(r, d, n) · t(k + 1)d/δ.

Let H = {W1, . . . ,Wt+1} ⊆ G(k, n) where the entries of the generating matrices of W1, . . . ,Wt+1 are
chosen independently at random from S. Then with probability at least 1 − δ, H is an F-evasive k-subspace
family on Pn.

Proof. Whenever H fails to be F-evasive, there exists an effective r-cycle D of degree at most d such that
supp(D) intersects W for all W ∈ H. By adding extra r-subspaces to D if necessary, we may assume the
degree of D is exactly d, i.e., D ∈ C(r, d, n).
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As argued in the proof of Theorem 1.7, for a k-subspace W ∈ G(k, n), the support of D ∈ C(r, d, n)
intersects W iff D lies in a hyperplane HW of P(R/I)d corresponding to W . So we just need to prove that
the condition

C(r, d, n) ∩
⋂

W ∈H
HW = ∅

holds with probability at least 1 − δ. Suppose W1, . . . ,Wi−1 are already chosen. Let C = C(r, d, n) ∩⋂i−1
j=1HWj . By induction, it suffices to show that dim(C ∩ HWi) ≤ dim(C) − 1 holds with probability at

least 1 − δ/t. (Again, the dimension of an empty set is assumed to be −∞.)
Consider an irreducible component C0 of C. Fix D =

∑s
j=1 cjVj ∈ C0. The Chow form R̃D =∏s

j=1 R̃
cj

Vj
is a nonzero polynomial of degree (k + 1)d. Let M be the randomly chosen generating matrix

of Wi. By the Schwartz–Zippel Lemma [Sch80, Zip79], R̃D(M) ̸= 0 holds with probability at least
1 − (k + 1)d/|S|. When this occurs, we have D ̸∈ HWi and hence dim(C0 ∩ HWi) ≤ dim(C0) − 1
by Lemma 2.7. The number of irreducible components of C = C(r, d, n) ∩

⋂i−1
j=1HWj is bounded by

deg(C) ≤ deg(C(r, d, n)) ≤ M(r, d, n), where the first inequality uses Lemma 2.7 and the second inequality
holds by Lemma 4.3. By the union bound, the probability that dim(C ∩HWi) ≤ dim(C) − 1 does not occur
is bounded by

M(r, d, n) · (k + 1)d/|S| ≤ δ/t

as desired.

Remark. While the cardinality |H| in Theorem 4.4 is optimal, an unsatisfying issue here is that the elements
in S are huge when d > 1. In particular, when min{k, n− k} is linear in n, these elements have exponential
bit-length even if d > 1 is bounded. This is due to the poor bound M(r, d, n) for the number of irreducible
components that we use. We suspect that this bound can be greatly improved.12 In [Kol96, Exercise 3.28],
Kollár outlined a method of proving a more effective bound for the number of irreducible components
of C(r, d, n). Guerra [Gue99] extended this method for Chow varieties associated with general projective
varieties. Unfortunately, it is not clear to us if this method can be extended to bound the number of irreducible
components of the intersection C(r, d, n) ∩

⋂i−1
j=1HWj . So we leave it as an open problem to obtain a more

effective bound for the entries of the generating matrices in Theorem 4.4.

5 Application to PIT for Depth-4 Circuits

In this section, we use explicit variety evasive subspace families to obtain a black-box PIT algorithm for
non-SG ΣΠΣΠ(k, r) circuits, thereby proving Theorem 1.11. The proof only uses the simple construction
of variety evasive subspace families (Lemma 3.9).

We first define ΣΠΣΠ(k, r) circuits and non-SG ΣΠΣΠ(k, r) circuits.

Definition 5.1 (ΣΠΣΠ(k, r) circuit). An algebraic circuit C over F is a ΣΠΣΠ(k, r) circuit if it has the
form

C(X1, . . . , Xn) =
k′∑

i=1
Fi =

k′∑
i=1

di∏
j=1

Qi,j (1)

where k′ ≤ k, d1, . . . , dk′ ∈ N+, Fi =
∏di

j=1Qi,j for i ∈ [k′], and each Qi,j is a polynomial in X1, . . . , Xn

of degree at most r over F. The degree of the circuitC is defined to be max{deg(Fi) : i ∈ [k′]}. In addition:

• C is minimal if
∑

i∈I Fi ̸= 0 for all nonempty proper subset I ⊆ [k′].
12It suffices to bound the number of the irreducible components of C(r, d, n)∩

⋂i−1
j=1 HWj whose general member is a subvariety

(or even an irreducible subvariety) of Pn.
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• C is homogeneous if all the polynomials Fi are homogeneous of the same degree.

• Let gcd(C) := gcd(F1, . . . , Fk′). We say C is simple if gcd(C) = 1. In general, we have C =
gcd(C) · sim(C) where sim(C) is a simple ΣΠΣΠ(k, r) circuit, called the simple part of C. Note the
simple part of a minimal ΣΠΣΠ(k, r) circuit is still minimal.

The polynomial computed by C is again denoted by C by an abuse of notation.

Definition 5.2 (Non-SG circuit). We say a minimal, simple, and homogeneous ΣΠΣΠ(k, r) circuit
C(X1, . . . , Xn) =

∑k′
i=1 Fi as in (1) is non-SG if there exists i ∈ [k′] such that⋂

j∈[k′]\i

V(Fj) ̸⊆ V(Fi)

where V(F ) denotes the subvariety of Pn defined by F . More generally, a minimal and simple ΣΠΣΠ(k, r)
circuit C(X1, . . . , Xn) =

∑k′
i=1 Fi of degree d is non-SG if its homogenization

C̃(X1, . . . , Xn+1) =
k′∑

i=1
Fi(X1/Xn+1, . . . , Xn/Xn+1) ·Xd

n+1 =
k′∑

i=1

d′
i∏

j=1
Q̃i,j

is non-SG, where d′
i = di + (d− deg(Fi)) and Q̃i,j equals the homogenization of Qi,j if j ≤ di and equals

Xn+1 if j > di. A minimal ΣΠΣΠ(k, r) circuit C is non-SG if sim(C) is non-SG. Finally, a ΣΠΣΠ(k, r)
circuit is non-SG if it has an equivalent minimal non-SG ΣΠΣΠ(k, r) circuit.

We restate our result (Theorem 1.11) and then give a proof.

Theorem 1.11. There exists a deterministic black-box PIT algorithm with time complexity polynomial in
d ·
(k(n+1+rk)

krk

)
·
(k−1+d

k−1
)

≤ poly(dk, nrk
, rk2rk) (and log p, if char(F) = p > 0) for non-SG ΣΠΣΠ(k, r)

circuits of degree at most d in X1, . . . , Xn over an algebraically closed field F.

Proof. If n ≤ k − 1, we may simply use Lemma 2.3 to construct a 1
2 -hitting set of size polynomial in(n+d

n

)
≤
(k−1+d

k−1
)

for n-variate polynomials of degree at most d, and then run the corresponding black-box
PIT algorithm. So assume n > k − 1.

Consider a nonzero non-SG ΣΠΣΠ(k, r) circuit C of degree at most d. We want to design a black-box
PIT algorithm for C. By replacing C with an equivalent minimal non-SG circuit, we may assume C is
minimal. Let D = gcd(C) and E = sim(C). Let C̃, D̃, and Ẽ be the homogenization of C, D, and E
respectively. Then D̃ = gcd(C̃), Ẽ = sim(C̃), and C̃ = D̃ · Ẽ.

Let H be an affine (k − 1)-subspace family on An of size poly(
(k(n+1+rk)

krk

)
, d) such that H′ := {Wcl :

W ∈ H} is an (n, rk, 1
4d)-evasive (k − 1)-subspace family on Pn. Such a family H can be computed using

Lemma 3.13 and Lemma 3.9. We claim

1. D̃|W ̸= 0 for all but at most 1
4 -fraction of W ∈ H′, and

2. Ẽ|W ̸= 0 for all but at most 1
4 -fraction of W ∈ H′.

Assume these two claims hold. Then for at least half of W ∈ H, we have C̃|Wcl ̸= 0 and hence C|W =
C̃|Wcl∩An ̸= 0, where we use the facts that C̃(X1, . . . , Xn, 1) equals C(X1, . . . , Xn) andWcl ∩An is dense
in Wcl. The restriction of C to each W ∼= Ak−1 is a (k − 1)-variate polynomial of degree at most d. So to
test if C|W is zero, we just need to use Lemma 2.3 to construct a hitting set in W of size poly(

(k−1+d
k−1

)
) for

(k − 1)-variate polynomials of degree at most d. Take the union of these hitting sets to obtain a hitting set
of size poly(

(k(n+1+rk)
krk

)
, d,
(k−1+d

k−1
)
) and we are done.

27



So it remains to prove the two claims. Note D̃ is the product of at most d factors whose degrees are
bounded by r. The first claim then follows from the (n, rk, 1

4d)-evasiveness of H′ and the union bound.
Now we prove the second claim. By definition, Ẽ is a non-SG ΣΠΣΠ(k, r) circuit. Suppose it has the

form

Ẽ =
k′∑

i=1
Fi =

k′∑
i=1

di∏
j=1

Qi,j (2)

where each Qi,j is a homogeneous polynomial of degree at most r. As Ẽ is non-SG, there exists i0 ∈ [k′]
such that ⋂

i∈[k′]\i0

V(Fi) ̸⊆ V(Fi0)

Without loss of generality, we may assume i0 = k′. Note V(Fi) =
⋃di

j=1 V(Qi,j) for i ∈ [k′]. So there exists
(j1, . . . , jk′−1) ∈ [d1] × · · · × [dk′−1] such that

k′−1⋂
i=1

V(Qi,ji) ̸⊆ V(Fk′).

Let V0 be an irreducible component of
⋂k′−1

i=1 V(Qi,ji) such that V0 ̸⊆ V(Fk′). Let d0 = dim(V0) ≥ 0. By
Lemma 2.7, we have d0 ≥ n− k′ + 1 and the variety V0 ∩ V(Fk′) =

⋃dk′
j=1(V0 ∩ V(Qk′,j)) has dimension

at most d0 − 1. For each j ∈ [dk′ ], the degree of V0 ∩ V(Qk′,j) is at most rk by Lemma 2.7 (or by Bézout’s
inequality [Hei83]). By (n, rk, 1

4d)-evasiveness of H′ and the union bound, all but at most 1
4 -fraction of

W ∈ H′ evade V0 ∩ V(Qk′,j) for j = 1, 2, . . . , dk′ .
Consider any W ∈ H′ that evades V0 ∩ V(Qk′,j) for j = 1, 2, . . . , dk′ . We just need to prove Ẽ|W ̸= 0,

or equivalently, W ̸⊆ V(Ẽ). Assume to the contrary that W ⊆ V(Ẽ). Then W ∩ V0 ⊆ V(Ẽ). So

W ∩ V0 = W ∩ V0 ∩ V(Ẽ) = W ∩ V0 ∩ V

 dk′∏
j=1

Qk′,j

 =
dk′⋃
j=1

(W ∩ V0 ∩ V(Qk′,j)) (3)

where the second equality holds since Ẽ ≡
∏dk′

j=1Qk′,j modulo the ideal I0 := ⟨Q1,j1 , . . . , Qk′−1,jk′−1
⟩ by

(2) and V0 ⊆
⋂k′−1

i=1 V(Qi,ji) = V(I0). We know the dimension of
⋃dk′

j=1(V0 ∩ V(Qk′,j)) is at most d0 − 1.
So by the choice of W , the dimension of

⋃dk′
j=1(W ∩ V0 ∩ V(Qk′,j)) is at most (k − 1) + (d0 − 1) − n.

However, by Lemma 2.9, the dimension of W ∩ V0 is at least (k − 1) + d0 − n ≥ 0, where we use the fact
d0 ≥ n− k′ + 1 ≥ n− k + 1. This contradicts (3). So Ẽ|W ̸= 0.

6 Open Problems and Future Directions

We have seen that constructing explicit variety evasive subspace families is a natural problem that generalizes
important problems in algebraic pseudorandomness and algebraic complexity theory, including deterministic
black-box polynomial identity testing (evading varieties of codimension one) and constructing explicit lossless
rank condensers (evading varieties of degree one). It is closely connected with advanced topics in algebraic
geometry such as Chow forms and Chow varieties, and has applications to derandomizing PIT and non-
explicit results in algebraic geometry like Noether’s normalization lemma.

There are many interesting open problems and potential future directions. We list some of them here.

1. Theorem 1.6 focuses on subvarieties of bounded degree in a projective or affine space. Are there
other interesting families of varieties for which we could construct explicit variety evasive subspace
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families? Families that are defined computation-theoretically may be particularly interesting, as many
results of this kind are already known for polynomial identity testing.

2. Can explicit variety evasive subspace families be used to derandomize other non-explicit results in
algebraic geometry?

3. Can our explicit construction in Theorem 1.6 be improved? In the case k = 0 and the case d = 1, there
are optimal or essentially optimal constructions, and our construction indeed degenerates into these
constructions. In general, however, there is a significant gap between the upper bound in Theorem 1.6
and the lower bound in Theorem 1.7.

4. Extending the notion of strong lossless rank condensers [FG15], one could strengthen the definition
of (F , ε)-evasive subspace families in Definition 1.3 by bounding the total deviation of the dimension
instead of the number of bad subspaces. At the same time, one could consider the setting where
there is a gap between dim(V1) and codim(V2), as in typical applications of subspace designs
[GX13, GRZ21, GRX21]. Alternatively, one could relax the definition by allowing dim(V1 ∩ V2) to
be slightly greater than dim(V1)+dim(V2)−n, which is related to the notion of lossy rank condensers
in [FG15]. It is natural to study explicit constructions of these variants and their applications, which
can be seen as extensions of the theory of “linear-algebraic pseudorandomness” [FG15] to a nonlinear
setting.

5. Could our lower bound (Theorem 1.7) be extended to the affine case or to a “lossy” relaxation of the
problem?

6. Is there a more effective bound for the entries of the generating matrices that are used in the non-explicit
construction (Theorem 4.4)?

7. When n− k = O(1), our lower bound (Theorem 1.7) is only polynomial in n and d. So one question
is if there are explicit constructions of polynomial size when n− k = O(1).
As a concrete special case, consider the problem of constructing an explicit affine (n − 2)-subspace
family H on An such that H is evasive for degree-d curves that are images of morphisms A1 → An.
Note that for φ : A1 → An corresponding to a ring homomorphism φ♯ : F[X1, . . . , Xn] → F[Y ],
an affine (n − 2)-subspace defined by affine linear polynomials ℓ1 and ℓ2 evades the curve Im(φ) iff
φ♯(ℓ1) and φ♯(ℓ2) have no common root. Using resultants, we could reduce this problem to black-box
PIT for symbolic determinants. Unconditionally, Theorem 1.6 also yields an explicit construction of
polynomial size when d = O(logn). We are not aware of any unconditional derandomization whose
time complexity is subexponential in min{n, d}, however.
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