
Random Gabidulin Codes Achieve List Decoding Capacity in the
Rank Metric

Zeyu Guo∗ Chaoping Xing† Chen Yuan‡ Zihan Zhang§

Abstract

Gabidulin codes, serving as the rank-metric counterpart of Reed–Solomon codes, constitute
an important class of maximum rank distance (MRD) codes. However, unlike the fruitful positive
results about the list decoding of Reed–Solomon codes, results concerning the list decodability
of Gabidulin codes in the rank metric are all negative so far. For example, in contrast to Reed–
Solomon codes, which are always list decodable up to the Johnson bound in the Hamming
metric, Raviv and Wachter-Zeh (IEEE TIT, 2016 and 2017) constructed a class of Gabidulin
codes that are not even combinatorially list decodable beyond the unique decoding radius in the
rank metric. Proving the existence of Gabidulin codes with good combinatorial list decodability
in the rank metric has remained a long-standing open problem.

In this paper, we resolve the aforementioned open problem by showing that, with high prob-
ability, random Gabidulin codes over sufficiently large alphabets attain the optimal generalized
Singleton bound for list decoding in the rank metric. In particular, they achieve list decoding
capacity in the rank metric.

Our work is significantly influenced by the recent breakthroughs in the combinatorial list
decodability of Reed–Solomon codes, especially the work by Brakensiek, Gopi, and Makam
(STOC 2023). Our major conceptual and technical contributions, which may hold independent
interest, consist of the following: (1) We initiate the study of “higher order MRD codes” and
provide a novel unified theory, which runs parallel to the theory of “higher order MDS codes”
developed by Brakensiek, Gopi, and Makam. (2) We prove a natural analog of the GM-MDS
theorem, proven by Lovett (FOCS 2018) and Yildiz and Hassibi (IEEE TIT, 2019), which we
call the GM-MRD theorem. In particular, our GM-MRD theorem for Gabidulin codes is strictly
stronger than the GM-MDS theorem for Gabidulin codes proven by Yildiz and Hassibi.
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1 Introduction
A rank-metric code is a collection of matrices in Fm×n

q with m ≥ n, where the distance between
two matrices A and B is defined to be the rank of A − B. Introduced by Delsarte [Del78] as a
combinatorial curiosity, rank-metric codes have since developed into a field of study with applica-
tions and connections spanning network coding [KK07, SKK08, KK08, SK09], space-time coding
[LGB03, LK05], cryptography [Gib96, Gib95, Loi10, Loi17], and pseudorandomness [FS12, FG15,
GWX16, GRX21, GVJZ23].

A rank-metric code C, with rate R and relative minimum distance δ, must satisfy the Singleton
bound 1 − R ≥ δ. If the equality 1 − R = δ is attained, then the code C is called a Maximum Rank
Distance (MRD) code. Gabidulin codes [Del78, Gab85, Rot91], an important class of MRD codes,
can be viewed as the linearized versions of Reed–Solomon codes. They are defined through the
evaluation of linearized polynomials within a subspace. This perspective positions Gabidulin codes
as a perfect analogy to Reed–Solomon codes in the rank metric setting. Similar to Reed–Solomon
codes, one can design highly efficient encoding and unique decoding algorithms for Gabidulin codes
by generalizing the Berlekamp–Welch algorithm [KK08]. However, regarding the list decoding
regime, it is unknown whether exist any Gabidulin codes that can be list decoded beyond the
unique decoding radius. In comparison, the celebrated Guruswami–Sudan list decoding algorithm
[GS99] can list decode any Reed–Solomon code up to the Johnson bound. Thus, a long-standing
open problem remains for rank-metric codes:

Open Problem 1.1. Are Gabidulin codes algorithmically or combinatorially list decodable1 beyond
the unique decoding radius in the rank metric?

In this paper, we provide a positive answer to the “combinatorial” aspect of this problem.
Namely, we prove that Gabidulin codes with random evaluation subspaces are combinatorially list
decodable up to the generalized Singleton bound with high probability in the rank metric. Our
approach is inspired by the recent progress regarding the list decodability of random Reed–Solomon
codes.

1.1 List Decodability of Reed–Solomon Codes

In the Hamming metric, the Singleton bound [Sin64] states that any code with a rate R and relative
minimum distance δ must satisfy R + δ ≤ 1. Codes that attain this bound are called Maximally
Distance Separable (MDS) codes. Reed–Solomon codes are a class of Hamming-metric codes that
attain the Singleton bound. This bound was recently generalized to the list decoding setting by
investigating the list decoding of Reed–Solomon codes. Shangguan and Tamo2 [ST20] proposed
the generalized Singleton bound ρ ≤ L

L+1(1 − R), where ρ is the list decoding radius and L is
the list size. Moreover, they showed that such a bound is achievable for L = 2, 3. Since then,
there have been some efforts to prove the tightness of this bound [GLS+21, FKS22, GST23]. A
major breakthrough was made by Brakensiek, Gopi, and Makam [BGM23] in proving that this
generalized Singleton bound holds for any list size L. In particular, their argument demonstrated
that Reed–Solomon codes with random evaluation points defined over Fq (where q is exponential
in the length of the code) can attain the generalized Singleton bound with high probability.

1Combinatorial list decodability refers to the condition where the output list of candidate codewords, within the
list decoding radius, is small, whereas algorithmic list decodability further requires that there exists an efficient
algorithm outputting this list.

2Before the work of Shangguan and Tamo, Rudra and Wootters [RW14] were the first to show that random RS
codes are list decodable beyond the Johnson radius for some parameter regimes. Their methodology is purely analytic
instead of algebraic.
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The exponential size of the field is inevitable [BGM22]. If we accept a ε gap from this bound, i.e.,
ρ = L

L+1(1−R −ε), then the size of the field can be reduced to Oε(n2) [GZ23] and further to Oε(n)
[AGL23]. In the context of constant-sized field sizes, Brakensiek, Dhar, Gopi, and Zhang [BDGZ23]
showed that algebraic geometry codes with random evaluation points defined over Fq, with q =
exp(O(1/ε2)), can be list decoded up to the radius L

L+1(1 − R − ε). The exponential dependence of
q on 1/ε was proved to be necessary (q ≥ exp(Ω(1/ε))) in [AGL24]. Also, based on the frameworks
built by [BGM23, GZ23, AGL23], Ron-Zewi, Venkitesh, and Wootters [RZVW24] recently showed
similar list decodability phenomenon holds for polynomial ideal codes, which includes several well-
studied families of error-correcting codes such as Reed–Solomon codes, folded Reed–Solomon codes,
and multiplicity codes.

Our understanding of the generalized Singleton bound is nearly complete, thanks to the recent
progress mentioned above. One might ask whether this generalized Singleton bound holds for codes
in other metrics, such as the rank metric. We note that a code with a minimum rank distance of d
is also a code with a minimum Hamming distance of at least d. Thus, the argument for the upper
bound of the generalized Singleton bound can be applied straightforwardly. However, proving the
tightness of this upper bound appears to be highly non-trivial.

1.2 List Decodability of Rank-Metric codes and Gabidulin Codes

Let us first review some results concerning the list decoding of rank-metric codes. Ding [Din14]
proposed the Gilbert-Varshamov bound (GV) for the list decoding of rank-metric codes. Specif-
ically, she showed that, with high probability, a random rank-metric code can be list decodable
up to the GV bound, and any rank-metric code cannot be list decodable beyond this GV bound.
In [Din14], the list size for random linear rank-metric codes is given as O

(
(1

ε )
1
ε

)
, a result of the

limited randomness available for these codes. Guruswami and Resch [GR18] adopted the ideas from
[GHK10] to further reduce the list size of random linear rank-metric codes to a constant O(1/ε).
The results mentioned above are not explicit. Meanwhile, Guruswami, Wang, and Xing [GWX16]
presented the first explicit class of rank-metric codes with efficient list decoding algorithms capable
of decoding up to the Singleton bound. Their construction involved carefully selecting a subcode of
the Gabidulin code using a tool known as subspace designs [GK13], thereby reducing the list size
to a constant. Later on, Xing and Yuan [XY18] introduced another explicit class of rank-metric
codes that can be list decoded up to the Singleton bound. Their construction borrowed ideas from
folded Reed–Solomon codes to fold Gabidulin codes in a similar manner. To approach the Singleton
bound, the column-to-row ratio n

m should be close to 0. In the regime where the column-to-row
ratio is constant, the construction from [XY18] remains applicable and can correct up to a 2

3(1−2R)
fraction of errors. By modifying this approach, Liu, Xing, and Yuan [LXY23] presented an explicit
construction of list decodable rank-metric codes with a ratio of 2/3. An open question remains:
Can we explicitly construct a class of rank-metric codes with a column-to-row ratio of 1 that is
list decodable beyond the unique decoding radius? For comparison, the Gilbert–Varshamov (GV)
bound argument suggests that, with high probability, there exist random rank-metric codes with a
column-to-row ratio of 1 that can be list decoded up to a radius of 1 −

√
R, which is strictly larger

than the unique decoding radius of 1−R
2 .

Although there are a few positive results for the list decoding of rank-metric codes, the findings
regarding the list decoding of Gabidulin codes have been predominantly negative so far. Wachter-
Zeh [Wac13] proved that any square Gabidulin codes—where “square” indicates that the column-to-
row ratio is 1—cannot be list decoded beyond a radius of 1−

√
R. Furthermore, Raviv and Wachter-

Zeh [RWZ16, RWZ17] constructed a class of Gabidulin codes that cannot be list decoded to any
radius beyond the unique decoding radius. Despite these negative results, our work demonstrates
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the existence of Gabidulin codes that can be list decoded up to the generalized Singleton bound.
We briefly review some applications based on the list decoding of rank-metric codes or Gabidulin
codes and discuss the implications of our results.

Code-based cryptography. Rank-metric code-based cryptosystems have been studied since
1991 [PT91, CS96]. Rank-metric codes play an important role in designing post-quantum cryp-
tosystems. Two well-known systems, RQC [AMAB+19a] and ROLLO [AMAB+19b], have been
considered for the NIST standardization. The main advantage of rank-metric codes is that the
hard problems in the rank metric, such as the generic decoding problem, seem harder to solve than
their counterparts in the Hamming metric. The random syndrome decoding (RSD) problem, in
particular, assumes that it is computationally hard to decode a random [n, k]Fqm -linear code3 in the
rank metric. Recent developments in attacks based on Göbner bases [BBB+20, BBC+20] have sig-
nificantly impacted the security parameters of cryptosystems relying on the hardness of the search
RSD problem. Given that the search RSD problem is not as hard as previously believed, the list
search version of the RSD problem, which is strictly harder than the search RSD problem, might be
considered. This problem outputs a list of codewords within a given radius of a random [n, k]Fqm -
linear code. The Gabidulin code list search RSD problem was thought to be more challenging
than the list search RSD problem [RJB+20], mainly because only negative results were available
for the list decoding of Gabidulin codes. Faure and Loidreau [FL05] proposed the Faure–Loidreau
(FL) cryptosystem, which is connected with the list decoding of Gabidulin codes. The original
FL cryptosystem was compromised by exploiting the list decoding of interleaved Gabidulin codes.
However, the revised FL cryptosystem, LIGA [RPW21], which relies on the hardness of list decod-
ing Gabidulin codes, is resistant to this attack. The hardness assumption for the list decoding of
Gabidulin codes suggests that it is computationally difficult to find all codewords of a Gabidulin
code within the list decoding radius 1 −

√
R. Prior to our work, it was widely believed that the

output list for this list decoding problem should be exponential. Thus, our work enhances the
understanding of the list decoding of Gabidulin codes, which could significantly impact the design
of rank-metric code-based cryptosystems.

Pseudorandomness. Rank-metric codes and Gabidulin codes have also found applications and
connections in the field of pseudorandomness. In [FG15], Forbes and Guruswami studied various
objects related to “linear-algebraic pseudorandomness.” They specifically proved that bilinear loss-
less two-source rank condensers are equivalent to linear rank-metric codes. Consequently, they
showed that Gabidulin codes translate into optimal two-source rank condensers. Inspired by the
explicit constructions of subcodes of Gabidulin codes that are list decodable in the rank metric
[GX13, GWX16], Guruswami, Resch, and Xing [GRX21] presented an explicit construction of di-
mension expanders, which can be seen as the linear-algebraic analogs of expander graphs. This
construction achieves excellent “lossless” expansion. Cheraghchi, Didier, and Shokrollahi [CDS11]
used Gabidulin codes to construct explicit affine extractors for a restricted family of affine sources
over large fields, which have applications in wiretap protocols. In [GVJZ23], Guo, Volk, Jalan, and
Zuckerman considered (ε, e)-biased sources over Fp. These are random sources X over Fn

p that are
ε-biased against all but a subgroup H of characters, where |H| ≤ e, thereby generalizing affine
sources of small codimension. Using Gabidulin codes, they constructed deterministic extractors
that extract almost all the min-entropy from such sources. This construction was further utilized
as a component in constructing extractors for other algebraic sources.

3See Section 2 for the definition of [n, k]Fqm -linear codes.
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Rank-metric codes have also been connected to other problems studied in theoretical computer
science, such as low-rank recovery [FS12]. Despite these applications, we believe that the potential
use of rank-metric codes in theoretical computer science has not been fully explored. In particular,
given the intimate connection between pseudorandomness and error-correcting codes in the Ham-
ming metric, especially those with good list decodability or list recoverability [GUV09, Vad12], it
is conceivable that rank-metric codes and Gabidulin codes may find similar applications.

1.3 Our Results

Our main results can be divided into three parts:

1. The optimal (combinatorial) list decodability of random Gabidulin codes over sufficiently
large alphabets in the rank metric.

2. The formulation of three notions of “higher order MRD codes”, which we denote as GKP(ℓ),
MRD(ℓ), and LD-MRD(ℓ), and the demonstration of their equivalence.

3. A result we call the GM-MRD theorem, which states that symbolic Gabidulin codes satisfy
GKP(ℓ) for all ℓ.

The first two items constitute a theory parallel to that of Brakensiek, Gopi, and Makam
[BGM23], who demonstrated the optimal list decodability of random Reed-Solomon codes over
sufficiently large alphabets and established the equivalence among three notions of “higher order
MDS codes.” The third item, i.e., the GM-MRD theorem, serves as a rank-metric analog to the
GM-MDS theorem, which was conjectured in [DSY14b] and subsequently proved in [Lov18, YH19b].
In the following, we will explain each of these three items in detail.

1.3.1 Optimal List Decodability of Random Gabidulin Codes

Recall that for ρ ∈ [0, 1], a code C ⊆ Σn over an alphabet Σ is said to be (ρ, ℓ)-list decodable if for
any y ∈ Fn

q , it holds that
|{x ∈ C : d(x,y) ≤ ρn}| ≤ ℓ.

where d(x,y) denotes the distance between x and y. Here ρ is called the list decoding radius and
ℓ is called the list size.

In [ST20], Shangguan and Tamo proved the generalized Singleton bound for list decoding, gen-
eralizing the classical Singleton bound for unique decoding. For linear codes, this generalized
Singleton bound states that if C ⊆ Fn

q is an [n, k]-linear code that is (ρ, ℓ)-list decodable in the
Hamming metric, then it holds that ρ ≤ ℓ

ℓ+1

(
1 − k

n

)
.

Note that the rank distance dR(x,y) between x,y ∈ Fn
qm is always bounded by their the

Hamming distance dH(x,y). This is because x − y, viewed as an m × n matrix over Fq, has
at most dH(x,y) nonzero columns. It follows that a (ρ, ℓ)-list decodable code C ⊆ Fn

q in the
Hamming metric remains (ρ, ℓ)-list decodable in the rank metric. This immediately implies that
the generalized Singleton bound continues to hold in the rank metric:

Lemma 1.2 (Generalized Singleton bound for rank-metric codes). Let C ⊆ Fn
qm be an [n, k]Fqm -

linear code that is (ρ, ℓ)-list decodable in the rank metric. Then it holds that

ρ ≤ ℓ

ℓ + 1

(
1 − k

n

)
.
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The central objects studied in this paper are Gabidulin codes. For integers m ≥ n ≥ k and
elements α1, . . . , αn ∈ Fqm that are linearly independent over Fq, the corresponding Gabidulin code
over Fqm is defined to be the [n, k]Fqm -linear code

Gn,k(α1, . . . , αn) :=
{

(f(α1), . . . , f(αn)) : f(X) =
k∑

i=1
ciX

qi−1
, c1, . . . , ck ∈ Fm

q

}
⊆ Fn

qm .

Our main theorems state that, for random α1, . . . , αn and sufficiently large m, with high prob-
ability, the Gabidulin code Gn,k(α1, . . . , αn) over Fqm are list decodable up to a radius that exactly
attains the generalized Singleton bound.

Theorem 1.3 (Informal version of Theorem 7.2). Let (α1, . . . , αn) be uniformly distributed over
the set of all vectors in Fn

qm whose coordinates are linearly independent over Fq.4 Suppose m ≥
cnkℓ+logq(1/δ), where c is a large enough absolute constant. Then it holds with probability at least
1 − δ that the Gabidulin code Gn,k(α1, . . . , αn) over Fqm is

(
L

L+1 (1 − k/n) , L
)
-list decodable for all

L ∈ [ℓ] in the rank metric.

Corollary 1.4 (Informal version of Corollary 7.3). Let (α1, . . . , αn) be uniformly distributed over
the set of all vectors in Fn

qm whose coordinates are linearly independent over Fq. Suppose m ≥
cnk/ε + logq(1/δ), where c is a large enough absolute constant. Then it holds with probability at
least 1 − δ that the Gabidulin code Gn,k(α1, . . . , αn) over Fqm is

(
1 − R − ε, 1−R

ε

)
-list decodable,

where R = k/n is the rate of the code.

In fact, we prove the stronger statement that Gn,k(α1, . . . , αn) is, with high probability, average-
radius list decodable with the parameters stated in Theorem 1.3 and Corollary 1.4. See Theorem 7.2
and Corollary 7.3 for details. Average-radius list decodability is stronger than standard list decod-
ability, which we will discuss shortly when defining the notion LD-MRD(ℓ).

Field size lower bound. Theorem 1.3 shows that Gabidulin codes over Fqm can attain the
Singleton bound (even in the sense of average-radius list decodability) for some m = Oℓ(n2). To
complement this upper bound, we establish a matching lower bound on the field size via a technique
developed in [AGL24].

Theorem 1.5 (Informal version of Theorem A.1). Let ℓ ≥ 2. Let C ⊆ Fn
qm be a rank-metric code

over Fqm of rate R. If C is
(

ℓ
ℓ+1(1 − R), ℓ

)
-average-radius list decodable (see Definition 1.11) and

R ∈ [c, 1 − c − ℓ/n] for some constant c > 0, then m = Ωℓ(n2).

1.3.2 Higher Order MRD Codes

Maximum rank distance (MRD) codes are the counterparts of maximum distance separable (MDS)
codes in the rank metric. Recall for m ≥ n ≥ k, an [n, k]Fqm -linear rank-metric code C is a MRD
code if its minimum (rank) distance d(C) attains the Singleton bound, i.e., d(C) = n − k + 1.

Brakensiek, Gopi, and Makam [BGM23] studied three different definitions of “higher order
MDS codes,” which they call GZP(ℓ), MDS(ℓ), and LD-MDS(ℓ) codes. Amazingly, they proved
that these three notions are equivalent in a certain rigorous sense. This equivalence was crucially
used in their proof that generic Reed–Solomon codes achieve list decoding capacity.

4While we assume that (α1, . . . , αn) is sampled from the set of all vectors with Fq-linearly independent coordinates,
one can also sample it from the whole set Fn

qm given that most vectors in this set have Fq-linearly independent
coordinates. This distinction is unimportant.
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This raises the questions of whether similar notions of “higher order MRD codes” exist, and if
so, whether there is also an equivalence among them. In this paper, we show that the answer to
both questions is yes.

Specifically, we introduce the notions of GKP(ℓ), MRD(ℓ), and LD-MRD(ℓ) codes. Just as
the MRD property strengthens the MDS property, each of these three notions strengthens their
counterpart in the Hamming metric, as studied in [BGM23]. Furthermore, we establish an equiva-
lence among these three notions. This equivalence plays a crucial role in our proof that, with high
probability, random Gabidulin codes achieve list decoding capacity in the rank metric.

Rank-metric codes over a general field F/Fq. Before defining the three notions of “higher
order MRD codes,” we note that, for convenience, we will present these definitions over a general
extension field F of Fq, which may be infinite. This generality allows us to easily discuss the
“symbolic Gabidulin code,” defined over a function field Fq(Z1, . . . , Zn). For infinite F, while it is
no longer possible to view a vector v = (v1, . . . , vn) ∈ Fn as a matrix over Fq and discuss its rank
(since m = [F : Fq] is infinite), we can still define the rank of v as

rankFq (v) := dimFq (spanFq
{v1, . . . , vn}). (1)

With this revised definition of rank, the concept of linear rank-metric codes over Fqm can easily
be extended to those over a general field F/Fq, and fortunately, all necessary facts and properties
continue to hold. For a more comprehensive discussion about linear rank-metric codes over a general
field F/Fq, we refer the readers to Section 2.

▶ GKP(ℓ). Given k ≤ n, a zero pattern is a tuple of sets S = (S1, . . . , Sk) with Si ⊆ [n]. For
an [n, k]F linear code C with a generator matrix G ⊆ Fn×k, we say C attains a zero pattern S if
there exists an invertible matrix MS ∈ Fk×k such that for (i, j) ∈ [k] × [n], the (i, j)-th entry of
MSG is zero if j ∈ Si, i.e., MSG exhibits the zero pattern S.

This notion was driven by applications such as those discussed in [DSY14a, YS13, YSZ14] in
order to find linear MDS codes with sparse generator matrices. A natural question emerges: What
are the zero patterns that linear MDS codes such as Reed–Solomon codes can attain? To understand
this, the notion of generic zero patterns (GZPs) was defined in [BGM23], which originated from
[DSY14a]: A zero pattern S = (S1, . . . , Sk) is called a generic zero pattern if∣∣∣∣∣∣

⋂
i∈Ω

Si

∣∣∣∣∣∣ ≤ k − |Ω| for all nonempty Ω ⊆ [k]. (2)

It is not difficult to prove that (2) is a necessary condition for a linear MDS code to attain the
zero pattern S. It was conjectured in [DSY14a] that for any zero pattern S, there exist MDS codes
with alphabet size q ≥ n + k − 1 attaining S. This conjecture, known as the GM-MDS conjecture,
was later proven by Lovett [Lov18] and independently by Yildiz and Hassibi [YH19b], and has
become the GM-MDS theorem. In fact, their proofs imply the stronger statement that generic
Reed–Solomon codes attain all GZPs. This theorem was further generalized in [BDG23] to any
polynomial codes, whereas the original version only deals with the Reed–Solomon codes. Another
generalization was recently proved in [RZVW24] to establish the near-optimal list decodability of
folded Reed–Solomon codes.

We define a more general notion, which we call generic kernel patterns (GKPs). It appears to
be more suitable for studying rank-metric codes, including MRD codes.
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Definition 1.6 (Generic kernel pattern (GKP)). Given k ≤ n and a finite field Fq, a kernel pattern
is a tuple V = (V1, . . . , Vk) of Fq-linear subspaces of Fn

q , We say a kernel pattern V is a generic
kernel pattern (GKP) if for any nonempty Ω ⊆ [k], it holds that

dim

⋂
i∈Ω

Vi

 ≤ k − |Ω|. (3)

In addition, we say a kernel pattern V has order ℓ if V has exactly ℓ distinct nonzero subspaces.

Next, we define a linear code attaining a kernel pattern.

Definition 1.7. Let C be an [n, k]F-linear code with a generator matrix G × Fk×n. Let V =
(V1, . . . , Vk) be a kernel pattern and (A1, . . . , Ak) be a tuple of k full rank matrices such that
Ai ∈ Fn×dim Vi

q with ⟨Ai⟩ = Vi
5. We say C attains the kernel pattern V if there is an invertible

matrix M ∈ Fk×k such that miGAi = 0 for all i ∈ [k], where mi is the i-th row of M .

The paper [BGM23] formulated a notion of higher order MDS codes called GZP(ℓ). A linear
code is GZP(ℓ) if it is MDS and attains all GZPs of order at most ℓ. We now formulate a rank-metric
counterpart and a strengthening of this notion:

Definition 1.8 (GKP(ℓ)). Given a [n, k]F-linear code C ⊆ Fn with a generator matrix G ∈ Fk×n,
C is said to be GKPq(ℓ), or simply GKP(ℓ), if C is an MRD code and attains all GKPs of order
at most ℓ.

Remark 1.9. GKPs can be seen as a generalization of GZPs. For a GZP S = (S1, . . . , Sk) with
Si ⊆ [n], define V = (V1, . . . , Vk), where

Vi =
{

(v1, . . . , vn) ∈ Fn
q : vj = 0 for j ∈ [n] \ Si

}
.

Then S is a GZP if and only if V is a GKP. Moreover, an [n, k]F-linear code C ⊆ Fn over a field
F/Fq attains S if and only if it attains V. Consequently, GKP(ℓ) codes are also GZP(ℓ).

We also prove an analog of the GM-MDS theorem, which we call the GM-MRD theorem.
Roughly speaking, it states that Gabidulin codes attain all GKPs. This theorem is crucial in
proving our main result that random Gabidulin codes has the optimal list decodability in the rank
metric. A detailed discussion about the GM-MRD theorem is given at the end of this section.

▶ MRD(ℓ). One characterization of an [n, k]F-linear code C ⊆ Fn being MDS is that its
generator matrix G ⊆ Fk×n is an MDS matrix, meaning that any k columns of G are linearly
independent. Strengthening this condition, for any ℓ ≥ 1, Brakensiek et al. [BGM23] defined an
MDS(ℓ) code to be a linear code with a generator matrix G ⊆ Fk×n such that for any subsets
S1, . . . , Sℓ ⊆ [n], each of size at most k, it holds that

dim
(

ℓ⋂
i=1

GSi

)
= dim

(
ℓ⋂

i=1
WSi

)
, (4)

where W is the symbolic matrix (Zi,j)i∈[k],j∈[n] over the function field in the variables Z1,1, . . . , Zk,n,
and GS (resp. WS) denotes the span of the columns of G (resp. W ) with indices in S. Note that

5For a matrix H ∈ Fn×ℓ
q , we denote ⟨H⟩ to be the linear subspace of Fn

q spanned by the columns of H.
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by definition, MDS(ℓ) codes are also MDS(ℓ′) for ℓ′ ≤ ℓ, and MDS(1) codes are just (linear) MDS
codes due to the fact that the symbolic matrix W is an MDS matrix.

To define the rank-metric counterpart of MDS(ℓ), we first express the column span GS in a
linear-algebraic manner for S ⊆ [n] of size at most k. Let IS denote the n × |S| matrix that, when
restricted to the subset of rows with indices in S, becomes the identity matrix, and contains only
zeros outside these rows. Then GIS is precisely the k × |S| submatrix of G formed by the columns
of G with indices in S. Thus, GS is just the column space of GIS .

Suppose F is an extension field of Fq. We extend the notion of MDS(ℓ) by replacing the matrix
IS by an arbitrary full-rank matrix A ∈ Fn×d

q , where d ≤ k. For convenience, we introduce the
notations GA and GV as follows: Define GA := GA ∈ Fk×d. Let V ⊆ Fn

q be the column space of
A over Fq, and denote by GV ⊆ Fk the column space of GA over F. This is well-defined as GV

depends only on V , not on A. Indeed, GV equals the F-span of σG(V ), where σG : Fn → Fk is the
linear map v 7→ Gv.

Definition 1.10 (MRD(ℓ)). Let F be an extension field of Fq. We say an [n, k]F-linear code C ⊆ Fn

is MRDq(ℓ), or simply MRD(ℓ), if for any Fq-linear subspaces V1, . . . , Vℓ of Fn
q , each of dimension

at most k, it holds that

dimF

(
ℓ⋂

i=1
GVi

)
= dimK

(
ℓ⋂

i=1
WVi

)
, (5)

where W is the symbolic matrix (Zi,j)i∈[k],j∈[n] over the function field K := Fq(Z1,1, . . . , Zk,n).

By definition, MRD(ℓ) codes are also MRD(ℓ′) for ℓ′ ≤ ℓ. Moreover, it can be shown that
MRD(1) codes are just (linear) MRD codes due to the fact that the symbolic matrix W has the
MRD property. See Lemma 2.10 and Lemma 2.15.

Finally, we note that the condition (5) implies (4) by choosing the subspaces Vi to be the column
space of ISi over Fq, i.e., the subspace of all vectors v ∈ Fn

q whose coordinates with indices in [n]\Si

are zero. Consequently, all MRD(ℓ) codes are also MDS(ℓ).

▶ LD-MRD(ℓ). Recall that a code C ⊆ Σn is (ρ, ℓ)-list decodable if for any y ∈ Σn, it holds
that |{c ∈ C : d(c,y) ≤ ρn}| ≤ ℓ. Equivalently, for any y ∈ Σn and ℓ + 1 distinct codewords
c0, . . . , cℓ ∈ C,

max
0≤i≤ℓ

d(ci,y) > ρn. (6)

The stronger notion of (ρ, ℓ)-average-radius list decodability is defined in the same way, except that
we replace the maximum of the distances d(ci,y) in (6) by the average of these distances. The
formal definition is given as follows.

Definition 1.11 (Average-radius list decodability). A code C ⊆ Σn is (ρ, ℓ) average-radius list
decodable if for any y ∈ Σn and ℓ + 1 distinct codewords c0, c1, . . . , cℓ ∈ C, it holds that

1
ℓ + 1

ℓ∑
i=0

d(y, ci) > ρn.

Recall that for an [n, k]F linear code C, the list decoding radius ρ of C satisfies the generalized
Singleton bound ρ ≤ ℓ

ℓ+1

(
1 − k

n

)
, both in the Hamming metric and the rank metric. Roth [Rot22]

first studied LD-MDS(ℓ) codes, which he referred to as strongly-
(

ℓ(n−k)
ℓ+1 , ℓ

)
-list decodable codes.

These are linear codes that meet the generalized Singleton bound under the stricter criterion of
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average-radius list decodability. Inspired by Roth’s work, Brakensiek, Gopi, and Makam further
explored LD-MDS(ℓ) codes in their paper [BGM23].

We consider the natural rank-metric counterpart of LD-MDS(ℓ), defined as follows.

Definition 1.12 (LD-MRD(ℓ)). Let F be an extension field of Fq. We say an [n, k]F-linear code
C ⊆ Fn is LD-MRDq(ℓ), or simply LD-MRD(ℓ), if C is

(
ℓ

ℓ+1 (1 − k/n) , ℓ
)
-average-radius list

decodable in the rank metric. In other words, C is LD-MRD(ℓ) if for any y ∈ Fn and ℓ + 1
distinct codewords c0, c1, . . . , cℓ ∈ C, it holds that

ℓ∑
i=0

dR(y, ci) > ℓ(n − k),

where dR(y, ci) = rankFq (y − ci) (see (1) for the definition of rankFq ). We say C is LD-MRD(≤ ℓ)
if it is LD-MRD(ℓ′) for all ℓ′ ∈ [ℓ].

It is straightforward to deduce from the definitions that all LD-MRD(≤ ℓ) codes are MRD
for all ℓ ≥ 1. For a formal proof, see Lemma 2.12. In addition, all LD-MRD(ℓ) codes are also
LD-MDS(ℓ). This follows from the fact that the rank distance dR(x,y) is always bounded by the
Hamming distance dH(x,y).

Equivalence of higher order MRD codes. Similar to the equivalence among the various
notions of higher order MDS codes established in [BGM23], we establish the equivalence among
the three notions of higher order MRD codes.

Theorem 1.13 (1st equivalence theorem). For ℓ ≥ 1, a linear code C over F/Fq is GKP(ℓ) if and
only if it is MRD(ℓ).

Theorem 1.14 (2nd equivalence theorem). For ℓ ≥ 1, a linear code C over F/Fq is MRD(ℓ + 1)
if and only if its dual code C⊥ is LD-MRD(≤ ℓ).

Combining the two theorems yields the following corollary.

Corollary 1.15. Let C be a linear code over F/Fq. Then the following are all equivalent for ℓ ≥ 1:

1. C is GKP(ℓ + 1),

2. C is MRD(ℓ + 1), and

3. C⊥ is LD-MRD(≤ ℓ).

Dimension of generic intersections. In the course of proving the equivalence among the three
notions of higher order MRD codes, we will establish the following formula for the dimension of
the intersection of a collection of subspaces WVi , where W is the symbolic matrix (Zi,j)i∈[k],j∈[n].
This formula is used in both the proof of Theorem 1.13 and that of Theorem 1.14.

Theorem 1.16 (Formula for generic intersection dimension). Let W be the k × n symbolic matrix
(Zi,j)i∈[k],j∈[n] over F := Fq(Z1,1, . . . , Zk,n). Let V1, . . . , Vℓ be subspaces of Fn

q , each of dimension at
most k. Then

dimF

⋂
i∈[ℓ]

WVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 .
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The above formula generalizes a similar formula proven in [BGM23]. More specifically, the
formula in [BGM23] has the same form as (56), except it only considers subspaces of the form WS

for S ⊆ [n] of size at most k, i.e., WS is the span of the columns of W with indices in S. As
discussed, every such WS can be realized as some WV , where we choose V to be the subspace of
all vectors v ∈ Fn

q whose coordinates with indices in [n] \ Si are all zero. On the other hand, there
are many subspaces WV that do not come from any WS . Thus, our formula is more general than
that in [BGM23] and may be of independent interest.

1.3.3 The GM-MRD Theorem

Similar to the GM-MDS theorem, which states that generic zero patterns are all attained by
Reed–Solomon codes, the GM-MRD theorem states that generic kernel patterns are all attained
by Gabidulin codes. We present two versions of the GM-MRD theorem. The first one applies to
symbolic Gabidulin codes, whereas the second one applies to Gabidulin codes over finite fields.

Theorem 1.17 (GM-MRD theorem, informal version of Theorem 4.1). Let 1 ≤ k ≤ n. Let F be
the function field Fq(Z1, . . . , Zn) be a function field. Then the [n, k]F-linear symbolic Gabidulin code
Gn,k(Z1, . . . , Zn) defined by the generator matrix G =

(
Zqi−1

j

)
i∈[k],j∈[n]

∈ Fk×n is GKP(ℓ) for all
ℓ ≥ 1.

In the detailed version (Theorem 4.1) of the above theorem, we also establish a bound on the
degree of det(MV) ∈ F[Z1, . . . , Zn], for each generic kernel pattern V, where MV ∈ Fk×k is an
invertible matrix such that MG exhibits the kernel pattern V. By combining this degree bound
with the Schwartz–Zippel lemma and the union bound, we derive the finite field GM-MRD theorem.

Theorem 1.18 (GM-MRD theorem, finite field version, Theorem 4.2). Let 1 ≤ k ≤ n ≤ m and
ℓ ≥ 1. Let (α1, . . . , αn) be uniformly distributed over the set of all vectors in Fn

qm whose coordinates
are linearly independent over Fq. Then with probability at least 1−3kqnk·min{ℓ,k}+k−m, the [n, k]Fqm -
linear Gabidulin code Gn,k(α1, . . . , αn) is GKP(ℓ).

We note that Yildiz and Hassibi previously proved that Gabidulin codes attain all generic zero
patterns, thus establishing the GM-MDS theorem for Gabidulin codes ([YH19a], see also [YRH20]).
However, as discussed, generic zero patterns form only a subset of generic kernel patterns, making
our GM-MRD theorem formally stronger than the GM-MDS theorem for Gabidulin codes.

Similarly, while various other GM-MDS theorems have been established so far [Lov18, YH19b,
BDG23, RZVW24], including the “ultimate GM-MDS conjecture” formulated in [BDG23], these
theorems all focus on the attainability of zero patterns rather than kernel patterns. Our GM-MRD
theorem is, to our knowledge, the first result that explores the broader category of kernel patterns,
which are more naturally connected with rank-metric codes, including MRD codes. Understanding
the inner connection between our GM-MRD theorem and the various GM-MDS theorems, and even
finding a unifying theory, would be very interesting.

Proof of the GM-MRD theorem and s-admissible tuples. Our proof of the GM-MRD
theorem (Theorem 1.17) follows the same structure of the proofs of the GM-MDS theorem as
presented in [Lov18, YH19b]. The approach involves a careful induction on a collection of Fq-
linear spaces V1, . . . , Vm, along with integers r1, . . . , rm ≥ 1, where ri represents the “slackness”
in the dimension of Vi. The induction step is divided into several cases, enabling us to simplify
each instance gradually. Eventually, we arrive at the boundary instances for which the theorem is
straightforward to verify.
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The proofs in [Lov18, YH19b] are very similar, focusing on subsets of the n evaluation points
Z1, . . . , Zn, whereas we consider “evaluation subspaces” spanned by linear forms in Z1, . . . , Zn over
Fq. In addition, we need to consider q-linearized polynomials and their composition in contrast to
general polynomials and their multiplication as used in the aforementioned works.

A serious difficulty that arises in the proof is the non-commutative nature of the composition
of q-linearized polynomials. More specifically, even though our focus is on subspaces Vi of linear
forms in Z1, . . . , Zn, the induction steps require us to also consider subspaces that are the images
of Vi under q-linearized polynomials f ∈ (Fq[Z1, . . . , Zn])[X], which may include nonlinear forms
in Z1, . . . , Zn. To capture the structure of the tuples (V1, . . . , Vm) that may arise, we introduce the
notion of s-admissible tuples of subspaces (Definition 4.3), where s is a parameter that bounds the
dimension of each subspace Vi. The family of s-admissible tuples is carefully defined to be closed
under the induction steps and to exhibit a useful structure that facilitates the proof. For details,
we refer the reader to Section 4.

Duality of Gabidulin codes. The last ingredient we need is the fact that the dual code of a
Gabidulin code is again a Gabidulin code (Theorem 7.1).

Using the duality, our main theorem—that random Gabidulin codes have the optimal list de-
codability (Theorem 1.3)—follows readily from the equivalence of higher order MRD codes and
the GM-MRD theorem. More specifically, by Corollary 1.15, to prove the claim that a random
Gabidulin code C over a sufficiently large finite field Fqm is LD-MRD(≤ ℓ) with high probability,
we need only demonstrate that its dual code C⊥ is GKP(ℓ + 1) with high probability. However,
the dual code C⊥ is again a random Gabidulin code. Therefore, the claim easily follows from the
finite field GM-MRD theorem (Theorem 4.2).
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2 Preliminaries
We first introduce the basic notation. Define N = {0, 1, . . . }, N+ = {1, 2, . . . }, and [n] = {1, . . . , n}.
Denote by Fq the finite field of size q. We use F to denote a field that is an extension of Fq. Let Fq

be the algebraic closure of Fq.
All vectors are column vectors unless stated otherwise. For v1, . . . , vn in a vector space V over F,

the F-subspace V spanned by v1, . . . , vn is denoted by spanF{v1, . . . , vn}, or simply span{v1, . . . , vn}
if F is clear from the context. The set of m × n matrices over F is denoted by Fm×n. The sum of
two linear subspaces V1, V2 ⊆ Fn is V1 + V2 := {v1 + vi : v1 ∈ V1,v2 ∈ V2}. If V1 ∩ V2 = {0}, we
also write V1 ⊕ V2 instead of V1 + V2. A complement of a subspace V1 ⊆ V in V is another subspace
V2 ⊆ V such that V = V1 ⊕ V2. Denote by V ⊥ ⊆ Fn the dual space of V ⊆ Fn with respect to
the inner product, i.e., V ⊥ = {v ∈ Fn : vTu = 0, ∀u ∈ V }. Note that dim V ⊥ = n − dim V and
(V ⊥)⊥ = V .

We need the following two lemmas about vector spaces.

Lemma 2.1. Let V1, . . . , Vℓ be subspaces of Fn. Then
(⋂ℓ

i=1 Vi

)⊥
=
∑ℓ

i=1 V ⊥
i .
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Proof. First, note that V ⊥
i ⊆

(⋂ℓ
i=1 Vi

)⊥
for all i ∈ [ℓ]. So

∑ℓ
i=1 V ⊥

i ⊆
(⋂ℓ

i=1 Vi

)⊥
. Conversely,

to prove that
∑ℓ

i=1 V ⊥
i ⊇

(⋂ℓ
i=1 Vi

)⊥
, we will show the equivalent statement that

(∑ℓ
i=1 V ⊥

i

)⊥
⊆⋂ℓ

i=1 Vi. Let u ∈
(∑ℓ

i=1 V ⊥
i

)⊥
. Then for all i ∈ [ℓ], we have u ∈ (V ⊥

i )⊥ = Vi. So u ∈
⋂ℓ

i=1 Vi. It

follows that
(∑ℓ

i=1 V ⊥
i

)⊥
⊆
⋂ℓ

i=1 Vi.

Lemma 2.2. Let A1, . . . , Am, B1, . . . , Bm be subspaces of Fn. Then

dim
(

m⋂
i=1

(Ai + Bi)
)

≤ dim
(

m⋂
i=1

Ai

)
+

m∑
i=1

dim(Bi).

Proof. Note that the inequality trivially holds if Bi = {0} for all i ∈ [m]. Then, we replace {0} by
Bi for i = 1, . . . , m and note that the replacement increases RHS by dim Bi and LHS by at most
dim Bi. The claim follows.

q-linearized polynomials. A polynomial of the form f(X) =
∑ℓ

i=0 aiX
qi with coefficients ai in

a commutative algebra A over Fq is called a q-linearized polynomial over A. It has the property
that f(a + b) = f(a) + f(b) and f(ca) = cf(a) for a, b ∈ A and c ∈ Fq. The q-degree of f(X),
denoted by degq(f), is defined to be the largest integer ℓ ≥ 0 such that aℓ ̸= 0. Throughout this
paper, f is always a q-linearized polynomial unless stated otherwise. We often view an extension
field F of Fq as a Fq-linear space. For any Fq-subspace V ⊆ F, define f(V ) := {f(α) : α ∈ V },
which is a Fq-linear subspace of F when f is a q-linearized polynomial.

For α1, . . . , αm ∈ F, where F is an extension field of Fq, the matrix

Mα1,...,αm =
(
αqj−1

i

)
i∈[m],j∈[m]

∈ Fm×m

is called the Moore matrix associated with α1, . . . , αm. The following lemma characterizes its
nonsingularity. For a proof, see, e.g., [Gos97, Lemma 1.3.3].

Lemma 2.3. det(Mα1,...,αm) ̸= 0 if and only if α1, . . . , αm are linearly independent over Fq.
We also need the following lemma regarding polynomials that vanish precisely on an Fq-linear

subspace of F.

Lemma 2.4. Let F be an extension field of Fq and let V ⊆ F be an Fq-linear subspace. Then
f =

∏
α∈V (X − α) ∈ F[X] is a q-linearized polynomial.

Proof. Let m = dim V and let α1, . . . , αm form a basis of V . Define the matrix

M =



α1 αq
1 · · · αqm−1

1 αqm

1
α2 αq

2 · · · αqm−1

2 αqm

2
...

... . . . ...
...

αm αq
m · · · αqm−1

m αqm

m

X Xq · · · Xqm−1
Xqm


∈ F(X)(m+1)×(m+1).

Note that the coefficient of Xqm in det(M) is det(Mα1,...,αm), which is nonzero by Lemma 2.3.
So det(M) is a q-linearized polynomial of degree qm with the leading coefficient det(Mα1,...,αm).
It vanishes at any Fq-linear combination of α1, . . . , αm, i.e., it vanishes on the set V . So g :=
det(Mα1,...,αm)−1 · det(M) is a monic q-linearized polynomial vanishing on V . But f is another
monic polynomial that vanishes on V . So f − g is a polynomial over F of degree less that qm = |V |
that vanishes on V . This implies f − g = 0, i.e., f = g. So f is a q-linearized polynomial.
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For a k × n matrix G over an extension field F of Fq and an n × ℓ matrix A over Fq, define
GA := GA ∈ Fk×ℓ. We denote by ⟨A⟩ the Fq-subspace of Fn

q spanned by the columns of A. For an
Fq-subspace V ⊆ Fn

q and A ∈ Fn×dim V
q such that V = ⟨A⟩, define GV ⊆ Fk to be the column span

of GA over F.

Linear codes. Let F be a field. An [n, k]F linear code (or [n, k]F code for short) is simply a
subspace of Fn of dimension k. The dual code of an [n, k]F code C is the [n, n − k]F code C⊥.

For an [n, k]F code C, a matrix G ∈ Fk×n is said to be a generator matrix of C if C = {GTu : u ∈
Fk}, and a matrix H ∈ F(n−k)×n is said to be a parity check matrix of C if C = {v ∈ Fn : Hv = 0}.
A generator matrix of C is also a parity check matrix of the dual code C⊥. Similarly, a parity
check matrix of C is also a generator matrix of C⊥.

2.1 Rank-Metric Codes and Gabidulin Codes

We first review some basic facts and results about rank-metric codes. The rank distance d(A, B)
between two matrices A, B ∈ Fm×n

q is defined to be the rank of A−B, i.e., d(A, B) := rank(A−B).
Indeed, this defines a distance [Gab85]. A rank-metric code C is a subset of Fm×n

q whose rate and
minimum distance are given by

R(C) :=
logq |C|

nm
and d(C) := min

A,B∈C
A ̸=B

d(A, B).

Without loss of generality, we always assume that m ≥ n, since otherwise we can exchange n and
m. It is convenient to treat an m × n matrix A over Fq as a vector v = (v1, . . . , vn) ∈ Fn

qm by
identifying Fm

q with Fqm (by fixing a basis of Fqm) and viewing each column of A as an element
in Fqm . Then, we have rank(A) = dimFq (spanFq

{v1, . . . , vn}). In this way, a rank-metric code C
may be viewed as a subset of Fn

qm , and we can study linear rank-metric codes, i.e, codes that are
Fqm-subspaces.

Linear rank-metric codes over a general field F/Fq. It is convenient for us to consider a
general notion of linear rank-metric codes C ⊆ Fn over a field F/Fq that can even be infinite. To
properly define this notion, we first define the Fq-rank and the kernel subspace of a vector v ∈ Fn.

Definition 2.5 (Fq-rank). Let F be an extension field of Fq. For v = (v1, . . . , vn) ∈ Fn, define

rankFq (v) := dimFq (spanFq
{v1, . . . , vn}),

called the Fq-rank of v.

Definition 2.6 (Kernel subspace). For v = (v1, . . . , vn) ∈ Fn, define the Fq-kernel subspace (or
simply the kernel subspace) of v to be

kerFq (v) :=
{
u ∈ Fn

q : uTv = 0
}

=
{

(u1, . . . , un) ∈ Fn
q :

n∑
i=1

uivi = 0
}

.

The following lemma can be seen as an alternative definition of the Fq-rank.

Lemma 2.7. rankFq (v) = n − dimFq (kerFq (v)).
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Proof. Consider the Fq-linear map Fn
q → F sending u ∈ Fn

q to uTv. The image of this map is
spanFq

{v1, . . . , vn}, whose dimension is rankFq (v) by definition. The kernel of this map is kerFq (v).
So rankFq (v) = n − dimFq (kerFq (v)).

We can now define the notion of a linear rank-metric code over a field F/Fq.

Definition 2.8 (Linear rank-metric code). Let F be an extension field of Fq. An [n, k]F (linear)
rank-metric code is simply an [n, k]F code C ⊆ Fn equipped with the distance function dR : Fn ×
Fn → N defined by dR(v,v′) := rankFq (v − v′). The minimum distance of C is

d(C) := min
v,v′∈C
v ̸=v′

dR(v,v′) = min
0 ̸=v∈C

rankFq (v).

In analogy with the classical scenario, one can prove the Singleton bound for linear rank-metric
codes.

Theorem 2.9 (Singleton bound). Let C be an [n, k]F rank-metric code. Then d(C) ≤ n − k + 1.6

Proof. There exists a nonzero codeword v = (v1, . . . , vn) ∈ C whose first k −1 coordinates are zero.
So d(C) ≤ rankFq (v) = dimFq (spanFq

{v1, . . . , vn}) = dimFq (spanFq
{vk, . . . , vn}) ≤ n − k + 1.

[n, k]F rank-metric codes C that attain the Singleton bound (i.e., d(C) = n − k + 1) are called
MRD codes. The next lemma gives an alternative characterization of MRD codes, which is crucial
in this paper.

Lemma 2.10. Let G ∈ Fk×n be a generator matrix of an [n, k]F code C. Then the following are
all equivalent:

1. C is MRD.

2. For any A ∈ Fn×k
q of full rank, the matrix GA ∈ Fk×k also has full rank.

3. For any k′ ≤ k and any A′ ∈ Fn×k′
q of full rank, the matrix GA′ ∈ Fk×k′ also has full rank.

Proof. Item 3 obviously implies Item 2. To see the converse, for any A′ ∈ Fn×k′
q of full rank, where

k′ ≤ k, we may extend A′ to a matrix A ∈ Fn×k
q of full rank. As the columns of GA′ form a subset

of the columns of GA, if GA has full rank (i.e., its columns are linearly independent over F), then
so does GA′. So Item 2 implies Item 3.

To see that Item 2 implies Item 1, assume to the contrary that C is not MRD, i.e., there exists
a nonzero codeword v ∈ C ⊆ Fn such that rankFq (v) ≤ n − k. Then, there exists A ∈ Fn×k

q of rank
k such that vT A = 0. The row vector vT can be written as xT G for some nonzero x ∈ Fk. Then
xT GA = 0, implying that GA does not have full rank.

Conversely, to see that Item 1 implies Item 2, assume that GA does not have full rank for
some A ∈ Fn×k

q of full rank. Then there exists nonzero x ∈ Fk such that xT GA = 0. Let
v = GTx = (xT G)T ∈ Fn, which is a nonzero codeword. Then vT A = 0. As A has rank k, we have
rankFq (v) ≤ n − k and hence d(C) ≤ n − k. So C is not MRD.

Lemma 2.11. Let C be an [n, k]F code. If C is MRD, then C⊥ is also MRD.
6We remark that when F = Fqm , there exists a Singleton bound, |C| ≤ qm(n−d+1), that also applies to nonlinear

rank-metric codes C ⊆ Fn [Gab85]. However, this bound is given in terms of the size of the code, not the dimension,
making it inapplicable when F is infinite.
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Proof. By definition, C⊥ is an [n, n − k]F code. Let G ∈ Fk×n be a generator matrix of C,
which is also a parity check matrix of C⊥. Assume to the contrary that C⊥ is not MRD.
Then there exists nonzero v = (v1, . . . , vn) ∈ C⊥ such that rankFq (v) = r ≤ k. By definition,
dimFq (spanFq

{v1, . . . , vn}) = r. Pick z1, . . . , zr ∈ F that form a basis of spanFq
{v1, . . . , vn} over Fq,

and let z = (z1, . . . , zr) ∈ Fr. Then v = Az for some A ∈ Fn×r
q of rank r. As v ̸= 0, we have

z ̸= 0. Finally, as v ∈ C⊥, we have 0 = Gv = GAz. So GA ∈ Fk×r does not have full rank. By
Lemma 2.10, C is not MRD.

We also record the basic fact that the properties of GKP(ℓ), MRD(ℓ), and LD-MRD(≤ ℓ) all
imply the MRD property.

Lemma 2.12. Let ℓ ≥ 1. A code that is GKP(ℓ), MRD(ℓ), or LD-MRD(≤ ℓ) is also MRD.

Proof. By definition, we only need to verify that an LD-MRD(1) code is MRD. Suppose C is
an [n, k]F code that is LD-MRD(1). Then C is (ρ, 1)-average radius list decodable in the rank
metric, where ρ = 1

2(1 − k/n). Let v,v′ ∈ C such that dR(v,v′) = d(C), and let y = v. Then
d(C) = dR(v,v′) = dR(y,v) + dR(y,v′) > 2nρ = n − k. So d(C) ≥ n − k + 1, i.e., C is MRD.

Gabidulin codes. The most famous MRD codes are Gabidulin codes, which are defined by
using the evaluation of linearized polynomials. We briefly review the construction of Gabidulin
codes [Gab85] and extend it to a general field F/Fq.

Definition 2.13 (Gabidulin code over F). Let 0 < k ≤ n be integers. Let F be an extension field
of Fq such that [F : Fq] ≥ n. Let α1, . . . , αn ∈ F be linearly independent over Fq. Define

Gn,k(α1, . . . , αn) :=
{
xf = (f(α1), . . . , f(αn)) : f ∈ F[X] is q-linearized and degq(f) ≤ k − 1

}
.

which is an [n, k]F rank-metric code of minimum distance minf ̸=0,degq(f)<k rankFq (xf ).

For a nonzero codeword xf = (f(α1), . . . , f(αn)) ∈ Gn,k(α1, . . . , αn), using the fact that f is
q-linearized, we have

kerFq (xf ) =
{

(u1, . . . , un) ∈ Fn
q :
(

n∑
i=1

uif(αi)
)

= 0
}

=
{

(u1, . . . , un) ∈ Fn
q : f

(
n∑

i=1
uiαi

)
= 0

}

whose dimension over Fq is bounded by k − 1 since α1, . . . , αn are linearly independent over Fq and
f has at most deg(f) ≤ qk−1 roots. So rankFq (xf ) ≥ n − k + 1 by Lemma 2.7. This shows that
Gabidulin codes are MRD codes.

2.2 The MRD Property of the Generic Linear Code

We now show that the symbolic matrix W = (Zi,j)i∈[k],j∈[n] with variables Zi,j , which can be seen
as a generator matrix of the [n, k]F “generic” linear code over F = Fq(Z1,1, . . . , Zk,n), has the MRD
property. To prove this statement, we need a tool known as the Cauchy–Binet formula.

Fact 2.14 (Cauchy–Binet formula (see, e.g., [Tao23])). Let F be a field and n ≥ r. Let A be an
r × n matrix and B be an n × r matrix over F. For a subset S ⊆ [m] of size r, denote by AS

the r × r submatrix of A whose columns are selected by S, and similarly, denote by BS the r × r
submatrix of B whose rows are selected by S. Then,

det (AB) =
∑

S⊆[n]
|S|=r

det(AS) det(BS).
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Lemma 2.15. Let r ≤ k ≤ n be positive integers. Let W be the k × n matrix (Zi,j)i∈[k],j∈[n]
over the function field Fq(Z1,1, . . . , Zk,n). Let A be an n × r matrix of full rank over Fq. Then
WA ∈ Fq(Z1,1, . . . , Zk,n)k×r has the full rank of r.

Proof. By replacing W with its top r × n submatrix, we may assume k = r. By the Cauchy–Binet
formula,

det (WA) =
∑

S⊆[n]
|S|=r

det(WS) det(AS).

Since A is a full rank matrix over Fq, there exists S ⊆ [n] of size r such that det(AS) ̸= 0. Note that
det(WS) ̸= 0, which follows by expanding det(WS) into a linear combination of monomials and using
the fact that the entries of W are distinct variables Zi,j . So det(WS) det(AS) ̸= 0. For any S′ ⊆ [n]
of size r, every monomial of det(WS′) det(AS′) has the form Z1,i1 · · · Zr,ir where {i1, . . . , ir} = S′.
So the monomials of det(WS) det(AS) are different from those of det(WS′) det(AS′) when S ̸= S′.
It follows that det(WA) ̸= 0, i.e., WA has full rank.

3 Generic Kernel Patterns
In this section, we develop a structural theory regarding the concept of a generic kernel pattern of
order ℓ over a finite field Fq. The notion of generic kernel patterns that we introduce can be viewed
as a natural generalization of generic zero patterns studied in [DSY14b, Lov18, YH19b, BGM23].

Recall that a tuple V = (V1, V2, . . . , Vk), where each Vi is a linear subspace of Fn
q , is called a

generic kernel pattern over Fq if for every nonempty set Ω ⊆ [k], we have

dim

⋂
i∈Ω

Vi

 ≤ k − |Ω|.

Furthermore, V is said to be of order ℓ if there are exactly ℓ distinct nonzero subspaces among
V1, V2, . . . , Vk.

We will now establish a general framework to precisely characterize generic kernel patterns of
order at most ℓ, which play a crucial role in understanding the list decodability of Gabidulin codes.
To achieve this, we will develop a linear-algebraic analog of the generalized Hall’s theorem as proved
by Brakensiek, Gopi, and Makam in [BGM23].

We remark that, although the statements and proofs in this section are presented over Fq,
sufficient for our applications, they remain valid over a general field F.

3.1 Generalized Hall’s Theorem for Vector Spaces

We start by proving the following theorem, which can be seen as a linear-algebraic analog of
[DSY14b, Theorem 2].

Theorem 3.1 (Hall’s theorem for vector spaces). Let n and k be integers with n ≥ k ≥ 0. Let
V1, . . . , Vk be subspaces of Fn

q . Suppose

dim

∑
i∈Ω

Vi

 ≥ n − k + |Ω| (7)

holds for all nonempty Ω ⊆ [k]. Then there exist subspaces V ′
i ⊆ Vi, i = 1, . . . , k, such that
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1. dim (
∑

i∈Ω V ′
i ) ≥ n − k + |Ω| for all nonempty Ω ⊆ [k], and

2. dim V ′
i = n − k + 1 for all i ∈ [k].

Proof. Our proof closely follows that of [DSY14b, Theorem 2]. First, if there exist subspaces
Ṽ1 ⊆ V1, . . . , Ṽk ⊆ Vk such that (7) holds for Ṽ1, . . . , Ṽk and at least one subspace Ṽi is a proper
subspace of Vi, then we may replace Vi by Ṽi and prove the claim for the new subspaces Ṽ1, . . . , Ṽk,
which would imply the claim for the original subspaces V1, . . . , Vk. By repeatedly doing this, we
may assume that (V1, . . . , Vk) is minimal (with respect to component-wise inclusion) subject to the
condition (7).

We will show that for the minimal (V1, . . . , Vk) satisfying (7), the claim holds by choosing
V ′

i = Vi for i ∈ [k]. Note that Item 1 is just (7) as V ′
i = Vi. Assume to the contrary that Item 2

does not hold. Then there exists r ∈ [k] such that

dim Vr ≥ n − k + 2 ≥ 2. (8)

This is because we have dim Vi ≥ n − k + 1 for all i ∈ [k] by Item 1 and, as Item 2 does not hold,
the equality is not attained for some i ∈ [k].

Pick linearly independent a, b ∈ Vr and let Va,b be a complement of span{a, b} in Vr, i.e.,
Vr = Va,b ⊕ span{a, b}. For i ∈ [k], define

V a
i =

{
Va,b ⊕ span{a}, if i = r,

Vi, otherwise,
and V b

i =
{

Va,b ⊕ span{b}, if i = r,

Vi, otherwise.

By the minimality of (V1, . . . , Vk), both (V a
1 , . . . , V a

k ) and (V b
1 , . . . , V b

k ) violate (7). Moreover, (7)
is violated only for nonempty sets Ω ⊆ [k] that contain r since V a

i and V b
i agree with Vi if i ̸= r.

Therefore, there exist A, B ⊆ [k] not containing r such that

dim

 ∑
i∈A∪{r}

V a
i

 < n − k + |A| + 1 and dim

 ∑
i∈B∪{r}

V b
i

 < n − k + |B| + 1.

On the other hand, note that
∑

i∈A∪{r} V a
i ⊇

∑
i∈A Vi and dim(

∑
i∈A Vi) ≥ n − k + |A|. So we must

have

dim

 ∑
i∈A∪{r}

V a
i

 = n − k + |A| and
∑

i∈A∪{r}
V a

i =
∑
i∈A

Vi. (9)

Similarly,

dim

 ∑
i∈B∪{r}

V b
i

 = n − k + |B| and
∑

i∈B∪{r}
V b

i =
∑
i∈B

Vi. (10)

It follows that  ∑
i∈A∪{r}

V a
i

 ∩

 ∑
i∈B∪{r}

V b
i

 =
(∑

i∈A

Vi

)
∩
(∑

i∈B

Vi

)
. (11)

As Vr = V a
r + V b

r , we also have ∑
i∈A∪{r}

V a
i

+

 ∑
i∈B∪{r}

V b
i

 =
∑

i∈A∪B∪{r}
Vi. (12)
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Then

2(n − k) + |A| + |B|

(9),(10)= dim

 ∑
i∈A∪{r}

V a
i

+ dim

 ∑
i∈B∪{r}

V b
i


= dim

 ∑
i∈A∪{r}

V a
i

+

 ∑
i∈B∪{r}

V b
i

+ dim

 ∑
i∈A∪{r}

V a
i

 ∩

 ∑
i∈B∪{r}

V b
i


(11),(12)= dim

 ∑
i∈A∪B∪{r}

Vi

+ dim
((∑

i∈A

Vi

)
∩
(∑

i∈B

Vi

))
.

(13)

By (7), we have

dim

 ∑
i∈A∪B∪{r}

Vi

 ≥ n − k + |A ∪ B| + 1. (14)

We claim that
dim

((∑
i∈A

Vi

)
∩
(∑

i∈B

Vi

))
≥ n − k + |A ∩ B| (15)

which will be proved shortly. Then

2(n − k) + |A| + |B| (13)= dim

 ∑
i∈A∪B∪{r}

Vi

+ dim
((∑

i∈A

Vi

)
∩
(∑

i∈B

Vi

))
(14),(15)

≥ 2(n − k) + |A| + |B| + 1,

which is impossible. So Item 2 holds.
It remains to prove (15). In the case where A ∩ B ̸= ∅, this follows immediately from (7) and

the fact that dim ((
∑

i∈A Vi) ∩ (
∑

i∈B Vi)) ≥ dim (
∑

i∈A∩B Vi). Now assume A ∩ B = ∅. By (9) and
(10), we have V a

r ⊆
∑

i∈A Vi and V b
r ⊆

∑
i∈B Vi. This implies

dim
((∑

i∈A

Vi

)
∩
(∑

i∈B

Vi

))
≥ dim

(
V a

r ∩ V b
r

)
= dim Va,b = dim Vr − 2

(8)
≥ n − k = n − k + |A ∩ B|,

which proves (15).

Instead of directly using Theorem 3.1, we will in fact use its dual version, which is stated as
follows.

Corollary 3.2 (Hall’s theorem for vector spaces, the dual version). Let n and k be integers with
n ≥ k ≥ 0. Let V1, . . . , Vk be subspaces of Fn

q . Suppose

dim

⋂
i∈Ω

Vi

 ≤ k − |Ω| (16)

holds for all nonempty Ω ⊆ [k]. Then there exist subspaces V ′
i of Fn

q containing Vi, i = 1, . . . , k,
such that
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1. dim (
⋂

i∈Ω V ′
i ) ≤ k − |Ω| for all nonempty Ω ⊆ [k], and

2. dim V ′
i = k − 1 for all i ∈ [k].

Proof. Let Hi = V ⊥
i ⊆ Fn

q for i ∈ [k]. For any nonempty Ω ⊆ [k], we have (
⋂

i∈Ω Vi)⊥ =
∑

i∈Ω Hi

by Lemma 2.1. So (16) is equivalent to dim (
∑

i∈Ω Hi) ≥ n − k + |Ω|. Applying Theorem 3.1 to
H1, . . . , Hk, we obtain subspaces H ′

i ⊆ Hi such that dim (
∑

i∈Ω H ′
i) ≥ n − k + |Ω| for all nonempty

Ω ⊆ [k] and dim H ′
i = n − k + 1 for all i ∈ [k].

Let V ′
i = (H ′

i)⊥ for i ∈ [k], so that V ′
i ⊇ Vi. For every nonempty Ω ⊆ [k], we have (

⋂
i∈Ω V ′

i )⊥ =∑
i∈Ω H ′

i by Lemma 2.1. So dim (
⋂

i∈Ω V ′
i ) = n − dim (

∑
i∈Ω H ′

i) ≤ k − |Ω|, proving Item 1. And for
i ∈ [k], we have dim V ′

i = dim(H ′
i)⊥ = n − dim H ′

i = k − 1, proving Item 2.

We also need the following equivalence.

Proposition 3.3. Let n and k be integers with n ≥ k ≥ 0. Let V1, . . . , Vℓ be subspaces of Fn
q , each

of dimension at most k. Then the following are equivalent.

1. There exist integers δ1, . . . , δℓ ≥ 0 such that for every nonempty Ω ⊆ [ℓ],

dim

⋂
i∈Ω

Vi

 ≤ k −
∑
i∈Ω

δi. (17)

2. The pattern (T1, . . . , Tk) that consists of δi copies of Vi for i ∈ [ℓ] and additional k −
∑ℓ

i=1 δi

copies of {0} is a generic kernel pattern.7 That is, for every nonempty Ω′ ⊆ [k],

dim

 ⋂
i∈Ω′

Ti

 ≤ k − |Ω′|. (18)

Proof. We first prove that Item 1 implies Item 2. Let d = k −
∑ℓ

i=1 δi. Let Ω′ ⊆ [k] be a nonempty
set. We want to show that (18) holds. If Ω′ contains at least one i ∈ [k] with Ti = {0}, then (18)
holds trivially. So assume Ti ̸= {0} for all i ∈ Ω′. Moreover, we may assume that for each Vi that
appears in (Ti)i∈Ω′ , all the δi copies of Vi also appear, since including these copies does not change
LHS of (18) and can only decrease RHS. With this assumption, (18) just becomes (17).

To prove the other direction, consider any nonempty Ω ⊆ [ℓ]. Let Ω′ be the subset of [k] that
consists of the indices of all the δi copies of Vi in [k] for i ∈ Ω and no other indices. Applying (18)
with the set Ω′ then yields (17).

The following theorem is a linear-algebraic analog of the generalized Hall’s theorem as proved
in [BGM23].

Theorem 3.4 (Generalized Hall’s theorem for vector spaces). Let n and k be integers with n ≥
k ≥ 0. Let V1, . . . , Vℓ be subspaces of Fn

q , each of dimension at most k. Suppose there exist integers
δ1, . . . , δℓ ≥ 0 such that for every nonempty Ω ⊆ [ℓ], (17) holds. Then, there exist subspaces V ′

i ⊇ Vi

of dimension k−δi, i = 1, . . . , ℓ, such that for every nonempty Ω ⊆ [ℓ], (17) also holds for V ′
1 , . . . , V ′

ℓ ,
i.e., dim (

⋂
i∈Ω V ′

i ) ≤ k −
∑

i∈Ω δi.
7We assume that the set of copies of each Vi is disjoint from both the set of copies of any other Vi′ (even if Vi = Vi′ )

and the set of the additional k −
∑ℓ

j=1 δj copies of {0} (even if Vi = {0}).
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Note that Theorem 3.4 can also be viewed as a generalization of Corollary 3.2, taking into
account the “multiplicities” δi. Indeed, Corollary 3.2 can be derived from Theorem 3.4 by setting
ℓ = k and choosing δ1 = · · · = δℓ = 1.

Proof of Theorem 3.4. By (17), we have dim Vi ≤ k − δi for i ∈ [ℓ]. If dim Vi = k − δi holds for
all i ∈ [ℓ], then we are done by choosing V ′

i = Vi. So assume this is not the case. Without loss of
generality, we may assume dim V1 < k − δ1.

We want to extend V1 to a larger subspace V ′
1 of dimension k − δ1 while still satisfying (17) for

all nonempty Ω ⊆ [ℓ]. If δ1 = 0, then we can choose any subspace V ′
1 of dimension k containing

V1. This is because (17) holds for any nonempty Ω ⊆ [ℓ] that excludes 1. Adding 1 to Ω can only
decrease LHS of (17) while RHS remains unchanged.

Now assume δ1 > 0. By Proposition 3.3, there exists a generic kernel pattern (T1, . . . , Tk)
consisting of δi copies of Vi for i ∈ [ℓ] and k −

∑ℓ
i=1 δi copies of {0}. For i ∈ [ℓ], let Ji be the set of

indices j ∈ [k] such that Tj is among the δi copies of Vi. So |Ji| = δi. Fix an arbitrary subspace
V ⊆ Fn

q of dimension k such that V1 ⊆ V .
Let Si = Ti ∩ V for i ∈ [k]. The fact that (T1, . . . , Tk) is a generic kernel pattern implies

that (S1, . . . , Sk) is also a generic kernel pattern as replacing Ti with Si can only decrease LHS of
(18). Applying Corollary 3.2 to S1, . . . , Sk ⊆ V and the ambient space V , we see that there exist
subspaces S′

i of V containing Si, i = 1, . . . , k, such that dim S′
i = k − 1 for i ∈ [k] and

dim

⋂
i∈Ω

S′
i

 ≤ k − |Ω| for nonempty Ω ⊆ [k]. (19)

For i ∈ [ℓ], we define

Ui =
{⋂

j∈Ji
S′

j , if Ji ̸= ∅,

V, otherwise.
(20)

For i ∈ [ℓ], if Ji ̸= ∅, then Ui ⊇
⋂

j∈Ji
Sj = Vi ∩ V . And if Ji = ∅, then Ui = V ⊇ Vi ∩ V . So

Vi ∩ V ⊆ Ui in either case. In particular, as V1 ⊆ V , we have V1 = V1 ∩ V ⊆ U1.
We claim that dim U1 = k − δ1. If J1 = ∅, then δ1 = |J1| = 0 and dim U1 = dim V = k = k − δ1.

So the claim holds in the case. Now consider the case where J1 ̸= ∅. By (19) and (20), we have

dim U1 = dim

 ⋂
i∈J1

S′
i

 ≤ k − |J1| = k − δ1.

Moreover, since each S′
i is a subspace of V of codimension one, we have

dim U1 = dim

 ⋂
j∈J1

S′
i

 ≥ k − |J1| = k − δ1.

This proves the claim that dim U1 = k − δ1.
Next, we show that (17) still holds for all nonempty Ω ⊆ [ℓ] after replacing V1 by U1. We only

need to verify this for nonempty Ω ⊆ [ℓ] that contains 1. Fix such Ω and let Ω′ =
⋃

i∈Ω Ji ⊆ [k].
Note |Ω′| =

∑
i∈Ω |Ji| since the sets Ji are disjoint. Then

k −
∑
i∈Ω

δi = k −
∑
i∈Ω

|Ji| = k − |Ω′|
(19)
≥ dim

 ⋂
i∈Ω′

S′
i


(20)= dim

⋂
i∈Ω

Ui

 ≥ dim

U1 ∩
⋂

i∈Ω\{1}
(Vi ∩ V )

 = dim

U1 ∩
⋂

i∈Ω\{1}
Vi

 ,
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where the last step uses the fact that U1 ⊆ V and the second last step uses the fact that Vi ∩V ⊆ Ui

for i ∈ [ℓ]. So (17) holds with U1 in place of V1.
By repeating the above argument, we obtain subspaces V ′

i ⊇ Vi of dimension k − δi, where
i = 1, . . . , ℓ, that satisfy (17) for all nonempty Ω ⊆ [ℓ]. This completes the proof.

Corollary 3.5. Let n and k be integers with n ≥ k ≥ 0. Let T = (T1, . . . , Tk) be a generic kernel
pattern consisting of δi copies of Vi ⊆ Fn

q for i ∈ [ℓ] and k −
∑ℓ

i=1 δi copies of {0}. Then, there
exist subspaces V ′

i ⊇ Vi of dimension k − δi, i = 1, . . . , ℓ, such that T ′ = (T ′
1, . . . , T ′

k) consisting of
δi copies of V ′

i for i ∈ [ℓ] and k −
∑ℓ

i=1 δi copies of {0} is a generic kernel pattern.

Proof. Combining Proposition 3.3 and Theorem 3.4 proves the corollary.

3.2 Generic Kernel Patterns of Order at Most ℓ

The main result of this subsection is the following statement, which gives a characterization of
general kernel patterns of order at most ℓ.

Lemma 3.6. Let n, k, and d be integers with n ≥ k ≥ d ≥ 0. Let V1, . . . , Vℓ be subspaces of Fn
q ,

each of dimension at most k. Then the following are equivalent.

1. There exists a generic kernel pattern T := (T1, T2, . . . , Tk) consisting solely of copies of
V1, . . . , Vℓ and an additional d copies of {0}.

2. There exist integers δ1, . . . , δℓ ≥ 0 such that ∑ℓ
i=1 δi = k − d and for every nonempty Ω ⊆ [ℓ],

dim

⋂
i∈Ω

Vi

 ≤ k −
∑
i∈Ω

δi. (21)

3. For all partitions P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ], we have

s∑
i=1

dim

 ⋂
j∈Pi

Vj

 ≤ (s − 1)k + d. (22)

Proof. By Proposition 3.3, Item 1 is equivalent to Item 2. And Item 2 implies Item 3 because for
any partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ], we have

s∑
i=1

dim

 ⋂
j∈Pi

Vj

 (21)
≤

s∑
i=1

k −
∑
j∈Pi

δj

 = sk − (k − d) = (s − 1)k + d.

Finally, we prove that Item 3 implies Item 2 via an induction on ℓ. When ℓ = 1, Item 2 and Item 3
are the same. Now consider ℓ ≥ 2 and assume that Item 3 implies Item 2 for ℓ′ < ℓ. We say a
partition P1 ⊔ P2 ⊔ · · · ⊔ Ps of [ℓ] is tight if (22) holds with equality.

Suppose Item 3 holds. We claim that there exist subspaces V ′
i ⊇ Vi of dimension at most k,

i = 1, . . . , ℓ, such that for these new subspaces, which we call padded subspaces, Item 3 still holds
and there exists a partition P1 ⊔ P2 ⊔ · · · ⊔ Ps of [ℓ] with s ≥ 2 that is tight.

The remaining proof consists of two parts: We will first prove the above claim. Then we will
show that Item 2 holds for the padded subspaces V ′

1 , . . . , V ′
ℓ . This suffices since Item 2 then holds

for the original subspaces V1, . . . , Vℓ as well by the fact that
⋂

i∈Ω Vi ⊆
⋂

i∈Ω V ′
i for all nonempty

Ω ⊆ [ℓ].
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For convenience, define VΩ =
⋂

i∈Ω Vi for nonempty Ω ⊆ [ℓ]. Applying Item 3 to the coarsest
partition of [ℓ] shows that dim V[ℓ] ≤ d.

To prove the claim, we repeatedly select pairs (Vi,v), where dim Vi < k and v ∈ Fn
q \ Vi, and

then replace Vi with Vi ⊕ span(v), until one of the partitions of [ℓ] becomes tight.8 If the tight
partition P1 ⊔ · · · ⊔ Ps arising this way satisfies s ≥ 2, then we are done. So assume s = 1, i.e.,
dim V[ℓ] = d. In this case, we show that we can continue padding the subspaces Vi until another
partition with s ≥ 2 becomes tight, while maintaining dim V[ℓ] = d.

For i ∈ [ℓ], applying Item 3 to the partition {i} ⊔ ([ℓ] \ {i}) of [ℓ] shows

dim Vi + dim

 ⋂
j∈[ℓ]\{i}

Vj

 ≤ k + d. (23)

By inclusion-exclusion and the fact that dim V[ℓ] = d, we have that for i ∈ [ℓ],

dim

Vi +
⋂

j∈[ℓ]\{i}
Vj

 = dim Vi + dim

 ⋂
j∈[ℓ]\{i}

Vj

− dim V[ℓ]
(23)
≤ k.

If there exists i ∈ [ℓ] such that dim
(
Vi +

⋂
j∈[ℓ]\{i} Vj

)
= k, then (23) must hold with equality. In

this case, the partition {i} ⊔ [ℓ] \ {i} is tight and we are done. So assume

dim

Vi +
⋂

j∈[ℓ]\{i}
Vj

 < k ≤ n for all i ∈ [ℓ]. (24)

Fix arbitrary i ∈ [ℓ]. By (24), there exists a vector v ∈ Fn
q \(Vi+

⋂
j∈[ℓ]\{i} Vj). Let V ′

i = Vi⊕span(v).
Then

dim

V ′
i ∩

 ⋂
j∈[ℓ]\{i}

Vj


= dim V ′

i + dim

 ⋂
j∈[ℓ]\{i}

Vj

− dim

V ′
i +

 ⋂
j∈[ℓ]\{i}

Vj


= dim Vi + 1 + dim

 ⋂
j∈[ℓ]\{i}

Vj

− dim

Vi +

 ⋂
j∈[ℓ]\{i}

Vj

− 1 (since v /∈ Vi +
⋂

j∈[ℓ]\{i}
Vj)

= dim V[ℓ] = d.

Thus, replacing Vi with V ′
i preserves the fact that dim V[ℓ] = d. We continue this process until a

partition P1 ⊔ · · · ⊔ Ps with s ≥ 2 becomes tight. This proves the claim.
Next, we verify that Item 2 holds for the padded subspaces. For ease of notation, we still denote

the padded subspaces by V1, . . . , Vℓ. Fix a tight partition P1 ⊔ · · · ⊔ Ps of [ℓ] with s ≥ 2, which
exists after padding.

Consider arbitrary i ∈ [s]. Recall that VPi =
⋂

j∈Pi
Vj . Let ki = k − dim VPi , so that dim VPi =

k−ki. Let Wi be a complement of VPi in Fn
q . For each j ∈ Pi, let Tj := Vj ∩Wi. For j ∈ Pi, as Fn

q =
VPi ⊕Wi and Vj ⊇ VPi , we see that Vj = VPi ⊕Tj and dim Tj = dim Vj −dim VPi ≤ k −(k −ki) = ki.

8Note that at least one partition becomes tight when (or before) dim Vi = k for all i ∈ [k]. This is because (1) if
all Vi have dimension k, then we would have

∑ℓ

i=1 dim Vi = ℓk ≥ (ℓ − 1)k + d, and (2) replacing Vi with Vi ⊕ span(v)
increases LHS of (22) by at most one.
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Consider an arbitrary partition Q1⊔· · ·⊔Qt of Pi. As P1⊔· · ·⊔Pi−1⊔Q1⊔· · ·⊔Qt⊔Pi+1⊔· · ·⊔Ps

is a partition of [ℓ], by Item 3, we have

t∑
j=1

dim VQj +
∑

j∈[s]\{i}
dim VPj ≤ (s + t − 2)k + d. (25)

As the partition P1 ⊔ · · · ⊔ Ps of [ℓ] is tight, we also have

s∑
j=1

dim VPj = (s − 1)k + d. (26)

Define TΩ =
⋂

j∈Ω Tj for nonempty Ω ⊆ Pi. Then

t∑
j=1

dim TQj =

 t∑
j=1

dim VQj

− t · dim VPi

=

 t∑
j=1

dim VQj +
∑

j∈[s]\{i}
dim VPj

−
s∑

j=1
dim VPj − (t − 1) dim VPi

(25),(26)
≤ (s + t − 2)k + d − ((s − 1)k + d) − (t − 1)(k − ki) = (t − 1)ki.

This shows that Item 3 holds for the subspaces (Tj)j∈Pi indexed by Pi (instead of by [ℓ]), where
the parameter d is set to zero.

Let ℓi = |Pi|. Note that ℓi < ℓ since s ≥ 2. Identifying Pi with [ℓi] and applying the induction
hypothesis, we see that there exist integers δj ≥ 0 for all j ∈ Pi such that∑

j∈Pi

δj = ki (27)

and for all nonempty Ω ⊆ Pi,
dim TΩ ≤ ki −

∑
j∈Ω

δj . (28)

As i ∈ [s] is arbitrary, we can perform the above procedure for i = 1, . . . , s, which yields δj for all
j ∈ [ℓ]. We now verify that δ1, . . . , δℓ satisfy Item 2. First, observe that

ℓ∑
i=1

δi =
s∑

i=1

∑
j∈Pi

δj
(27)=

s∑
i=1

ki =
s∑

i=1

(
k − dim VPi

)
(26)= k − d.

So it remains to verify (21) for all nonempty Ω ⊆ [ℓ]. Fix nonempty Ω ⊆ [ℓ]. Let I = {i ∈ [s] :
Pi ∩ Ω ̸= ∅}. Consider i ∈ I. Recall that for j ∈ Pi, the complement Tj of VPi in Vj is chosen to be
Vj ∩ Wi, where Wi is a complement of VPi in Fn

q . It follows that for any J ⊆ Pi,

⋂
j∈J

Vj = VPi ⊕

⋂
j∈J

Tj

 = VPi ⊕ TJ . (29)

23



Then, we have

dim

⋂
i∈Ω

Vi

 = dim

⋂
i∈I

⋂
j∈Pi∩Ω

Vj

 (29)= dim
(⋂

i∈I

(VPi ⊕ TPi∩Ω)
)

≤ dim
(⋂

i∈I

VPi

)
+
∑
i∈I

dim (TPi∩Ω) (by Lemma 2.2)

(28)
≤ dim

(⋂
i∈I

VPi

)
+
∑
i∈I

ki −
∑

j∈Pi∩Ω
δj


= dim

(⋂
i∈I

VPi

)
−
∑
i∈I

dim VPi + k|I| −
∑
j∈Ω

δj (as dim VPi = k − ki)

= dim
(⋂

i∈I

VPi

)
+

∑
i∈[s]\I

dim VPi −
∑
i∈[s]

dim VPi + k|I| −
∑
j∈Ω

δj

(26)= dim
(⋂

i∈I

VPi

)
+

∑
i∈[s]\I

dim VPi − ((s − 1)k + d) + k|I| −
∑
j∈Ω

δj

≤ (s − |I|)k + d − ((s − 1)k + d) + k|I| −
∑
j∈Ω

δj

= k −
∑
j∈Ω

δj ,

where the second last step follows by applying (22) to the partition of [ℓ] consisting of the set⋃
i∈I Pi and the sets Pj for j ∈ [s] \ I. So Item 2 holds, which concludes the proof.

Remark 3.7. The proof of the above lemma closely follows that of [BGM23, Lemma 2.8], which
gives a characterization of general zero patterns of order at most ℓ. However, some details differ due
to our focus on vector spaces instead of plain sets. For example, the proof of [BGM23, Lemma 2.8]
uses the pigeonhole principle to argue that one can continue padding a collection of sets until some
partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ] with s ≥ 2 becomes tight. For us, such a simple argument does
not work, as extending a subspace Vi to Vi ⊕ span{v} for a vector v ̸∈ Vi would introduce elements
that are not in Vi ∪ {v}. Instead, our proof for the feasibility of padding is based on the inequality
(23), derived in turn from Item 3 of Lemma 3.6. We find our argument to be more general and
believe it may be of independent interest.

4 The GM-MRD Theorem
In this section, we prove the GM-MRD theorem, which states that symbolic Gabidulin code over
F = Fq(Z1, . . . , Zn) is GKP(ℓ) for all ℓ. For the convenience of applications, we have formulated
the theorem as follows.

Theorem 4.1 (GM-MRD theorem). Let 1 ≤ k ≤ n be integers. Let F = Fq(Z1, . . . , Zn) and
G =

(
Zqi−1

j

)
i∈[k],j∈[n]

∈ Fk×n. For every generic kernel pattern V = (V1, . . . , Vk) and matrices
A1, . . . , Ak, where Ai ∈ Fn×dim Vi

q and ⟨Ai⟩ = Vi, there exists a matrix MV ∈ Fk×k such that

1. MV is invertible,
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2. miGAi = 0 for all i ∈ [k], where mi denotes the i-th row of MV , and

3. The entries of MV are polynomials in Z1, . . . , Zn over Fq of degree at most qk−1.

In particular, the symbolic Gabidulin code Gn,k(Z1, . . . , Zn) over F is GKP(ℓ) for all ℓ ≥ 1.

Theorem 4.1 implies the following result, which states that a random Gabidulin code over a
large enough finite field is, with high probability, GKP(ℓ) for all ℓ.

Theorem 4.2 (GM-MRD theorem, finite field version). Let 1 ≤ k ≤ n ≤ m be integers. Let ℓ ≥ 1.
Let (α1, . . . , αn) be uniformly distributed over the set of all vectors in Fn

qm whose coordinates are
linearly independent over Fq. Then with probability at least 1 − 3kqnk·min{ℓ,k}+k−m, the Gabidulin
code Gn,k(α1, . . . , αn) over Fqm is GKP(ℓ).

Proof. Note that we may permute the subspaces Vi in a generic kernel pattern V = (V1, . . . , Vk)
without affecting whether Gn,k(α1, . . . , αn) attains V. Up to permutation, each generic kernel
pattern V of order at most ℓ can be represented by a list of subspaces V1, . . . , Vℓ′ of dimension at
most k − 1, where ℓ′ ≤ min{ℓ, k}, together with their multiplicities δ1, . . . , δℓ′ ∈ [k]. Each Vi can
be represented by a matrix Ai ∈ Fn×(k−1)

q satisfying Vi = ⟨Ai⟩, for which there are at most qn(k−1)

choices. So the number of generic kernel patterns we need to consider is bounded by

N :=
min{ℓ,k}∑

ℓ′=1
(kqn(k−1))ℓ′ ≤

min{ℓ,k}∑
ℓ′=1

qnkℓ′ ≤ 2qnk·min{ℓ,k}.

First assume that (α1, . . . , αn) is uniformly distributed over Fn
qm at random. Consider a fixed

generic kernel pattern V. Let MV be as in Theorem 4.1, whose entries are polynomials in Z1, . . . , Zn

over Fq. For (α1, . . . , αn) ∈ Fn
qm and i ∈ [k], we have miGAi = 0 by Item 2 of Theorem 4.1,

where mi is the i-th row of MV |Z1=α1,...,Zn=αn and G is the generator matrix
(
αqi−1

j

)
i∈[k],j∈[n]

of Gn,k(α1, . . . , αn). By Item 3 of Theorem 4.1, the degree of det (MV) is at most kqk−1. By
the Schwartz–Zippel lemma, det (MV |Z1=α1,...,Zn=αn) = 0 holds with probability at most δ :=
kqk−1/qm = kqk−m−1. And when det (MV |Z1=α1,...,Zn=αn) ̸= 0, we know that Gn,k(α1, . . . , αn)
attains V.

By the union bound, the probability that Gn,k(α1, . . . , αn) attains all generic kernel patterns of
order at most ℓ, i.e., it is GKP(ℓ), is at least 1−N δ, assuming that α := (α1, . . . , αn) is drawn from
the uniform distribution U over Fn

qm . But α is actually drawn from the uniform distribution US over
S, where S denotes the set of all vectors in Fn

qm whose coordinates are linearly independent over
Fq. However, note that Prα∼U [α ̸∈ S] ≤ (1 + q + · · · + qn−1)/qm ≤ qn−m. So the statistical distance
between U and US is bounded by qn−m. So for α ∼ US , the probability that Gn,k(α1, . . . , αn) is
GKP(ℓ) is at least

1 − N δ − qn−m ≥ 1 − 2qnk·min{ℓ,k} · kqk−m−1 − qn−m ≥ 1 − 3kqnk·min{ℓ,k}+k−m,

which complete the proof.

4.1 Proof of the GM-MRD Theorem

In the following, fix n ∈ N+ and let F = Fq(Z1, . . . , Zn). For a subset S ⊆ F, denote by Fq[S]
the Fq-subalgebra of F generated by the elements in S. In particular, Fq[S] ⊆ Fq[Z1, . . . , Zn] if
S ⊆ Fq[Z1, . . . , Zn].
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Definition 4.3. We say a tuple (Vi)i∈[m] of Fq-subspaces Vi of Fq[Z1, . . . , Zn] is s-admissible if
there exist Fq-subspaces V, W of spanFq

{Z1, . . . , Zn} and a nonzero q-linearized polynomial f ∈
(Fq[W ])[X] in X such that

1. spanFq
{Z1, . . . , Zn} = V ⊕ W ,

2. dim V ≤ s, and

3. V1, . . . , Vm ⊆ f(V ).

Note that in the above definition, as f is q-linearized, the map u 7→ f(u) defines an isomorphism
between the Fq-linear spaces V and f(V ).

We can apply an invertible linear transformation to spanFq
{Z1, . . . , Zn} over Fq, mapping V

to spanFq
{Z1, . . . , Zdim V } and W to spanFq

{Zdim V +1, . . . , Zn}. Thus, Definition 4.3 states that,
after applying an invertible linear transformation over Fq, the spaces V1, . . . , Vm are contained in
f(spanFq

{Z1, . . . , Zd}) for some d ≤ s, and f is a q-linearized polynomial whose coefficients are
in Fq[Zd+1, . . . , Zn]. Importantly, f is evaluated only on the Fq-linear span of Z1, . . . , Zd while its
coefficients do not depend on Z1, . . . , Zd. This fact is crucially used in the proof of Theorem 4.7
(specifically in Case 3 of the proof).

The following lemma follows straightforwardly from the definition.

Lemma 4.4. Let (Vi)i∈[m] be s-admissible and let V ′
i be an Fq-subspace of Vi for i ∈ [m]. Then

(V ′
i )i∈[m] is also s-admissible.

For k ≥ m ≥ 1 and s ≥ 0, define

Vk,m,s :=
{

((Vi, ri))i∈[m] : (Vi)i∈[m] is s-admissible, ri ∈ N+, dim(Vi) + ri ≤ k,
m∑

i=1
ri = k

}
.

For each S = ((Vi, ri))i∈[m] ∈ Vk,m,s, we associate with it a matrix MS ∈ Fk×k, defined as follows.

Definition 4.5 (Matrix MS). Let S = ((Vi, ri))i∈[m] ∈ Vk,m,s. For i ∈ [m], let

fi(X) =
∏

α∈Vi

(X − α)qk−dim(Vi)−ri =
k−ri∑
j=0

ai,jXqj (30)

which is a q-linearized polynomial in X with coefficients in Fq[Z1, . . . , Zn] ⊆ F by Lemma 2.4.
Define the matrix

MS =


M1
M2

...
Mm

 ∈ Fk×k (31)

where

Mi =


ai,0 ai,1 · · · ai,k−ri−1 ai,k−ri

0 · · · 0
0 aq

i,0 · · · aq
i,k−ri−2 aq

i,k−ri−1 aq
i,k−ri

· · · 0
...

... . . . ...
...

... . . . 0
0 0 · · · aqri−1

i,0 aqri−1

i,1 aqri−1

i,2 · · · aqri−1

i,k−ri

 ∈ Fri×k. (32)

In other words, for (j, j′) ∈ [ri]×[k], the (j, j′)-th entry of Mi is the coefficient of Xqj′−1 in fi(X)qj−1 .
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We will derive Theorem 4.1 from the following theorem.

Theorem 4.6. Let S = ((Vi, 1))i∈[k] ∈ Vk,k,s such that for all nonempty Ω ⊆ [k],

dim

⋂
i∈Ω

Vi

 ≤ k − |Ω|.

Then det(MS) ̸= 0.

Theorem 4.6 is, in turn, derived from the following more general statement.

Theorem 4.7. Let S = ((Vi, ri))i∈[m] ∈ Vk,m,s. Then det(MS) ̸= 0 iff for all nonempty Ω ⊆ [m],

dim

⋂
i∈Ω

Vi

+
∑
i∈Ω

ri ≤ max
i∈Ω

{dim(Vi) + ri}. (33)

Note that Theorem 4.6 follows from Theorem 4.7 by choosing m = k and ri = 1 for i ∈ [m].
We now derive Theorem 4.1 from Theorem 4.6.

Proof of Theorem 4.1 given Theorem 4.6. Consider generic kernel pattern V = (V1, . . . , Vk) and
matrices A1, . . . , Ak, where Ai ∈ Fn×dim Vi

q and ⟨Ai⟩ = Vi. Let {e1, . . . , en} be the standard basis
of Fn

q . Let σ : Fn
q → spanFq

{Z1, . . . , Zn} be the Fq-linear isomorphism sending ej to Zj for j ∈ [n].
Define V ′

i = σ(Vi) for i ∈ [k]. Let S = ((V ′
i , 1))i∈[k]. As V = (V1, . . . , Vk) is a generic kernel

pattern and σ is an Fq-linear isomorphism, we see that S ∈ Vk,k,n and that dim (
⋂

i∈Ω V ′
i ) ≤ k − |Ω|

for nonempty Ω ⊆ [k]. So det(MS) ̸= 0 by Theorem 4.6, where MS ∈ Fk×k is as defined in
Definition 4.5. By definition, for i ∈ [k], each entry of the i-th row of MS is a coefficient of fi,
where fi(X) =

∏
α∈V ′

i
(X − α)qk−dim(V ′

i
)−1

. As each α ∈ V ′
i is a linear form in Z1, . . . , Zn over Fq, we

conclude that the entries of MS are polynomials in Z1, . . . , Zn over Fq of degree at most qk−1.
Choose MV to be MS . Then Item 1 and Item 3 of Theorem 4.1 hold by the above discussions.

It remains to verify Item 2. Let i ∈ [k]. Suppose the i-th row of MV = MS is mi = (c1, . . . , ck),
or equivalently, fi(X) =

∑k
j=1 cjXqj−1 . Consider arbitrary v = (v1, . . . , vn) ∈ Vi ⊆ Fn

q . As
G =

(
Zqi−1

j

)
i∈[k],j∈[n]

, we have

miGv = (fi(Z1), . . . , fi(Zn))v = fi

 n∑
j=1

viZi

 = 0, (34)

where the second equality holds since fi is q-linearized, and the last equality holds since fi vanishes
on V ′

i and
∑n

j=1 viZi = σ(v) ∈ V ′
i . Choosing v to be the columns of Ai in (34) shows that

miGAi = 0. So Item 2 holds.

4.2 Proof of Theorem 4.7

It remains to prove Theorem 4.7. To this end, we introduce the following lemma, which characterizes
the nonsingularity of a matrix MS in terms of the compositions of q-linearized polynomials.

Lemma 4.8. Let S = ((Vi, ri))i∈[m] ∈ Vk,m,s. For i ∈ [m], let fi be given as in (30). Then,
det(MS) = 0 if and only if there exist q-linearized polynomials g1, . . . , gm ∈ F[X], not all zero, such
that the q-degree of each gi is at most ri − 1 and ∑m

i=1 gi ◦ fi = 0.
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Proof. Suppose det(MS) = 0. Then there exists nonzero y ∈ Fk such that y · MS = 0. Write
y = (y1, . . . ,ym) ∈ Fk with yi = (yi,1, . . . , yi,ri) ∈ Fri . For i ∈ [m], let fi(X) ∈ F[X] and Mi ∈ Fri×k

be as in (30) and (32) respectively, and let gi(X) =
∑ri

j=1 yi,jXqj−1 ∈ F[X]. By definition, yi · Mi

is precisely the vector of the first k coefficients of the q-linearized polynomial
ri∑

j=1
yi,j · fi(X)qj−1 = (gi ◦ fi)(X).

So 0 = y · MS =
∑m

i=1 yi · Mi is the vector of the first k coefficients of the q-linearized polynomial∑m
i=1 gi ◦ fi. By definition, for i ∈ [m], we have degq(fi) = k − ri and degq(gi) ≤ ri − 1. It follows

that the q-degree of
∑m

i=1 gi ◦ fi is at most k − 1. So
∑m

i=1 gi ◦ fi = 0.
Conversely, suppose there exist q-linearized polynomials g1, . . . , gm ∈ F[X], not all zero, such

that the q-degree of each gi is at most ri − 1 and
∑m

i=1 gi ◦ fi = 0. Find the nonzero vector
y = (y1, . . . ,ym) ∈ Fk via yi = (yi,1, . . . , yi,ri) ∈ Fri and gi(X) =

∑ri
j=1 yi,jXqj−1 . Reversing the

above proof shows y · MS = 0. So det(MS) = 0.

Now we are ready to prove Theorem 4.7. Our proof is based on an induction on the parameter
(k, m, s) in the lexicographical order, following the approach in [YH19b]. The main difference is
that the product of polynomials is replaced by the composition of q-linearized polynomials, which is
not commutative. Consequently, we need to adapt the proof in [YH19b] to circumvent this obstacle.

Proof of Theorem 4.7. We first prove the “only if” direction. Assume that for some nonempty
Ω ⊆ [m], the inequality (33) does not hold. We will show that det(MS) = 0. Let V0 =

⋂
i∈Ω Vi,

r0 =
∑

i∈Ω ri and k′ = maxi∈Ω{dim(Vi) + ri}. Then dim(V0) + r0 > k′ as (33) does not hold.
Let M∗ be the r0 × k submatrix of MS obtained by removing all blocks Mi for i /∈ Ω. By the

definitions (30) and (32), the first k − k′ columns of M∗ are zero. We remove these k − k′ columns
and denote by M ′ the resulting r0 × k′ matrix. The matrix M ′ consists of the blocks M ′

i for i ∈ Ω,
placed vertically, each given by

M ′
i =


bi,0 bi,1 · · · bi,k′−ri−1 bi,k′−ri

0 · · · 0
0 bq

i,0 · · · bq
i,k′−ri−2 bq

i,k′−ri−1 bq
i,k′−ri

· · · 0
...

... . . . ...
...

... . . . 0
0 0 · · · bqri−1

i,0 bqri−1

i,1 bqri−1

i,2 · · · bqri−1

i,k′−ri

 ∈ Fri×k′ (35)

where each bi,j is determined via bi,j = ai,j+k−k′ and ai,j+k−k′ denotes the coefficient of Xqj+k−k′

in fi(X) =
∏

α∈Vi
(X − α)qk−dim(Vi)−ri . Therefore,

∏
α∈Vi

(X − α)qk−dim(Vi)−ri =
k′−ri∑
j=0

bi,j

(
Xqk−k′

)qj

. (36)

Pick a basis α1, . . . , αh of V0 over Fq, where h = dim V0. Let α′
i = αqk−k′

i for i ∈ [h]. Then
α′

1, . . . , α′
h are linearly independent over Fq. Let H = (α′qj−1

ℓ )j∈[k′],ℓ∈[h] ∈ Fk′×h. Then H has full
rank by Lemma 2.3. For each i ∈ Ω, as V0 ⊆ Vi, the polynomial in (36) vanishes at α1, . . . , αh, i.e.,∑k′−ri

j=0 bi,jα′qj

ℓ = 0 for ℓ ∈ [h]. Equivalently, M ′
iH = 0 for i ∈ Ω. So M ′H = 0. Therefore,

rank(M∗) = rank(M ′) ≤ k′ − min{k′, h} = max{0, k′ − dim V0} < r0.
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So M∗ does not have full row rank. It follows that MS does not have full row rank either. So
det(MS) = 0.

Next, we prove the “if” direction via an induction on (k, m, s) with respect to the lexicographical
order:

If m = 1, then r1 = k and V1 = {0}. In this case, the matrix MS is the k × k identity matrix
by the definitions (30), (31), and (32). In particular, det(MS) ̸= 0.

If s = 0, then all Vi are zero since (Vi)i∈[m] is s-admissible. In this case, (33) implies that m = 1
and r1 = k. So MS is again the k × k identity matrix and det(MS) ̸= 0.

Now suppose k ≥ m ≥ 2 and s ≥ 1. Assume the “if” direction holds for all (k′, m′, s′) that are
smaller than (k, m, s) in lexicographical order. Let S = ((Vi, ri))i∈[m] ∈ Vk,m,s such that (33) holds
for all nonempty Ω ⊆ [m]. We will show that det(MS) ̸= 0 by dividing the proof into the following
three cases:

Case 1: There exists Ω1 ⊆ [m] such that 2 ≤ |Ω1| ≤ m − 1 and

dim

 ⋂
i∈Ω1

Vi

+
∑
i∈Ω1

ri = max
i∈Ω1

{dim(Vi) + ri}. (37)

In this case, let Ω2 = {0} ∪ ([m] \ Ω1). Then 2 ≤ |Ω1|, |Ω2| ≤ m − 1. Define V0 =
⋂

i∈Ω1 Vi and
r0 =

∑
i∈Ω1 ri. Then (37) becomes

dim(V0) + r0 = max
i∈Ω1

{dim(Vi) + ri}. (38)

As (Vi)i∈[m] is s-admissible, there exist Fq-subspaces V, W ⊆ spanFq
{Z1, . . . , Zn} and a nonzero

q-linearized polynomial f ∈ (Fq[W ])[X] in X such that spanFq
{Z1, . . . , Zn} = V ⊕ W , dim V ≤ s,

and V1, . . . , Vm ⊆ f(V ). Fix a complement V 0 of V0 in f(V ), so that f(V ) = V0 ⊕ V 0. For i ∈ Ω1,
let V ′

i = Vi ∩ V 0, which is a complement of V0 in Vi. Let S1 = ((V ′
i , ri))i∈Ω1 and S2 = ((Vi, ri))i∈Ω2 .

As dim(V ′
i )+ri = dim(Vi)−dim(V0)+ri

(38)
≤ r0 for i ∈ Ω1 and

∑
i∈Ω1 ri = r0, we have S1 ∈ Vr0,|Ω1|,s.

As
k =

m∑
i=1

ri =
∑
i∈Ω1

ri +
∑

i∈[m]\Ω1

ri = r0 +
∑

i∈[m]\Ω1

ri =
∑
i∈Ω2

ri,

dim(Vi) + ri ≤ k for i ∈ [m] \ Ω1, and dim(V0) + r0
(38)= maxi∈Ω1{dim(Vi) + ri} ≤ k, we also have

S2 ∈ Vk,|Ω2|,s.
Next, we check that S1 = ((V ′

i , ri))i∈Ω1 and S2 = ((Vi, ri))i∈Ω2 both satisfy the condition (33).
Indeed, for any nonempty Ω ⊆ Ω1,

dim

⋂
i∈Ω

V ′
i

+
∑
i∈Ω

ri = dim

⋂
i∈Ω

Vi

− dim(V0) +
∑
i∈Ω

ri

(33)
≤ max

i∈Ω
{dim(Vi) − dim(V0) + ri} = max

i∈Ω
{dim(V ′

i ) + ri}.

And for any nonempty Ω ⊆ Ω2, if 0 /∈ Ω, then (33) holds for S2 and Ω since Ω ⊆ [m]. Otherwise,

29



let Ω′ = Ω \ {0} ⊆ [m] \ Ω1, and we have

dim

⋂
i∈Ω

Vi

+
∑
i∈Ω

ri = dim

 ⋂
i∈Ω′∪Ω1

Vi

+
∑

i∈Ω′∪Ω1

ri

(33)
≤ max

i∈Ω′∪Ω1
{dim(Vi) + ri}

(38)= max
i∈Ω

{dim(Vi) + ri},

where the first equality holds since V0 =
⋂

i∈Ω1 Vi, r0 =
∑

i∈Ω1 ri, and the union Ω′ ∪Ω1 is a disjoint
union.

For i ∈ {0} ∪ [m], let fi be the q-linearized polynomial defined in (30). That is,

fi(X) =
∏

α∈Vi

(X − α)qk−dim(Vi)−ri ∈ (Fq[Vi])[X].

We now build from S1 = ((V ′
i , ri))i∈Ω1 a new tuple S∗

1 , defined as

S∗
1 = ((f0(V ′

i ), ri))i∈Ω1

Denote by f |V the isomorphism a 7→ f(a) from V to f(V ). Let V ′ = f |−1
V (V 0) ⊆ V and W ′ =

W ⊕ f |−1
V (V0). Then spanFq

{Z1, . . . , Zn} = V ′ ⊕ W ′, f(V ′) = V 0, and f(W ′) = f(W ) ⊕ V0.
Here f is a nonzero q-linearized polynomial with coefficients in Fq[W ]. And f0 is a nonzero q-
linearized polynomial with coefficients in Fq[V0]. As V0 ⊆ f(W ′) and the coefficients of f are in
Fq[W ] ⊆ Fq[W ′], we see that Fq[V0] ⊆ Fq[W ′]. It follows that f0 ◦ f is a nonzero q-linearized
polynomial with coefficients in Fq[W ′]. Note that for i ∈ Ω1, we have

f0(V ′
i ) ⊆ f0(V 0) = (f0 ◦ f)(V ′),

where dim V ′ ≤ dim V ≤ s. By definition, the tuple (f0(V ′
i ))i∈Ω1 is s-admissible.

Also, note that f0 defines an isomorphism from V 0 to f(V 0), mapping each V ′
i to f0(V ′

i ). As
S1 = ((V ′

i , ri))i∈Ω1 is in Vr0,|Ω1|,s and satisfies (33), the same holds for S∗
1 = ((f0(V ′

i ), ri))i∈Ω1 .
Applying the induction hypothesis to S∗

1 and S2 shows that det(MS∗
1
) and det(MS2) are nonzero.

For i ∈ Ω1, let ti = r0 − dim(V ′
i ) − ri = (dim(V0) + r0) − (dim(Vi) + ri)

(38)
≥ 0, and define the

q-linearized polynomial

f∗
i (X) =

∏
α∈f0(V ′

i )
(X − α)qti =

∏
α∈f0(V ′

i )
(X − α)qr0−dim(V ′

i
)−ri

whose q-degree is

degq(f∗
i ) = dim(V ′

i ) + ti = dim(Vi) − dim(V0) + ti = r0 − ri. (39)

For i ∈ Ω1,

fi(X) =
∏

α∈Vi

(X − α)qk−dim(Vi)−ri =
∏

β∈V ′
i

∏
α∈V0

(X − α − β)qk−dim(V0)−r0+ti

=
∏

β∈V ′
i

f0(X − β)qti =
∏

β∈V ′
i

(f0(X) − f0(β))qti

=
∏

α∈f0(V ′
i )

(f0(X) − α)qti = (f∗
i ◦ f0)(X).

(40)
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We now prove det(MS) ̸= 0 by applying Lemma 4.8. Consider arbitrary q-linearized polynomials
g1, . . . , gm ∈ F[X] such that the q-degree of qi(X) is at most ri − 1 for i ∈ [m] and

∑m
i=1 gi ◦ fi = 0.

Define g0 =
∑

i∈Ω1 gi ◦ f∗
i . Note that

degq(g0) ≤ max
i∈Ω1

{
degq(f∗

i ) + degq(gi)
} (39)

≤ max
i∈Ω1

{(r0 − ri) + (ri − 1)} = r0 − 1.

Also, it holds that

0 =
m∑

i=1
gi ◦ fi

(40)=
∑
i∈Ω1

gi ◦ f∗
i ◦ f0 +

∑
i∈[m]\Ω1

gi ◦ fi =
∑
i∈Ω2

gi ◦ fi, (41)

where the last equality holds since
∑

i∈Ω1 gi ◦ f∗
i = g0. By Lemma 4.8, (41), and the fact that

det(MS2) ̸= 0, we have gi = 0 for all i ∈ Ω2. In particular, g0 = 0. Therefore,∑
i∈Ω1

gi ◦ f∗
i = g0 = 0. (42)

By Lemma 4.8, (42), and the fact that det(MS∗
1
) ̸= 0, we have gi = 0 for all i ∈ Ω1. So gi = 0 for

all i ∈ [m]. By Lemma 4.8, we conclude that det(MS) ̸= 0.

Case 2: There exists an unique integer i ∈ [m] such that dim(Vi) + ri = k.
Without loss of generality, suppose i = m. Let M1, . . . , Mm be as in (32). Since

dim(Vm) + rm = k > dim(Vi) + ri for i = 1, . . . , m − 1, (43)

by the definitions (30), (31), and (32), the entries in first column of MS are all zero except that the
(1, 1)-th entry of the block Mm is the coefficient of X in fm =

∏
α∈Vm

(X − α), which we denote by
c ∈ F. Note that c =

∏
α∈Vm/{0}(−α) ̸= 0. Let M ′ ∈ F(k−1)×(k−1) be the submatrix of MS obtained

by removing the first column of MS and the first row of the block Mm. By the above observation
about MS ,

det(MS) = ±c · det(M ′). (44)

Assume rm > 1. Let S ′ = ((Vi, r′
i))i∈[m], where r′

i = ri for i ∈ [m − 1] and r′
m = rm − 1. By

(43) and the fact
∑m

i=1 r′
i = k − 1, we have S ′ ∈ Vk−1,m,s. Next, we verify that S ′ satisfies (33) for

nonempty Ω ⊆ [m]. If m ̸∈ Ω, this holds since S satisfies (33) and r′
i = ri for i ∈ [m − 1]. On the

other hand, if m ∈ Ω, then

dim

⋂
i∈Ω

Vi

+
∑
i∈Ω

r′
i = dim

⋂
i∈Ω

Vi

+

∑
i∈Ω

ri

−1
(33)
≤ max

i∈Ω
{dim(Vi)+ri}−1 (43)= max

i∈Ω
{dim(Vi)+r′

i}.

So again S ′ satisfies (33). By the induction hypothesis, det(MS′) ̸= 0.
The matrix MS′ consists of the blocks M ′

i for i ∈ [m], placed vertically, each given by

M ′
i =


bi,0 bi,1 · · · bi,(k−1)−r′

i−1 bi,(k−1)−r′
i

0 · · · 0
0 bq

i,0 · · · bq
i,(k−1)−r′

i−2 bq
i,(k−1)−r′

i−1 bq
i,(k−1)−r′

i
· · · 0

...
... . . . ...

...
... . . . 0

0 0 · · · bqr′
i
−1

i,0 bqr′
i
−1

i,1 bqr′
i
−1

i,2 · · · bqr′
i
−1

i,(k−1)−r′
i

 ∈ Fr′
i×(k−1)
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where each bi,j is determined via

∏
α∈Vi

(X − α)q(k−1)−dim(Vi)−r′
i =

(k−1)−r′
i∑

j=0
bi,jXqj

, (45)

or equivalently ∏
α∈Vi

(X − α)qk−dim(Vi)−r′
i =

k−r′
i∑

j=1
bq

i,j−1Xqj
. (46)

By (45) and (46), we have bi,j = ai,j if i = m and bi,j = a
1/q
i,j+1 if i ∈ [m − 1]. By the definition of

M ′, we see that each entry of M ′ is exactly the q-th power of the corresponding entry of MS′ . As
the map x 7→ xq is a ring endomorphism of F, this implies det(M ′) = det(MS′)q. As det(MS′) is
nonzero, so is det(M ′). Then det(MS) ̸= 0 by (44).

Now assume rm = 1. Let S ′ = ((Vi, ri))i∈[m−1]. In this case, we have S′ ∈ Vk−1,m−1,s by (43)
and the fact that

∑m−1
i=1 ri = k − 1. The tuple S ′ satisfies (33) since S does. By the induction

hypothesis, we have det(MS′) ̸= 0. Also, similar to the case where rm > 1, each entry of M ′ is
again the q-th power of the corresponding entry of MS′ , and this implies det(M ′) = det(MS′)q ̸= 0.9
Again, we conclude that det(MS) ̸= 0 by (44).

Case 3: Neither Case 1 nor Case 2 holds. In other words, for any nonempty Ω ⊆ [m] such that
2 ≤ |Ω| ≤ m − 1,

dim

⋂
i∈Ω

Vi

+
∑
i∈Ω

ri ≤ max
i∈Ω

{dim(Vi) + ri} − 1 (47)

and there exist distinct i1, i2 ∈ [m] such that

dim(Vi1) + ri1 = dim(Vi2) + ri2 = max
i∈[m]

{dim(Vi) + ri}. (48)

Without loss of generality, assume i1 = m − 1 and i2 = m. First, note that if Vm−1 = Vm, then

dim(Vm−1 ∩ Vm) + rm−1 + rm = dim(Vm) + rm−1 + rm > max{dim(Vm−1) + rm−1, dim(Vm) + rm}

contradicting (33) with Ω = {m − 1, m}. So Vm−1 ̸= Vm.
As (Vi)i∈[m] is s-admissible, there exist Fq-subspaces V, W ⊆ spanFq

{Z1, . . . , Zn} and a nonzero
q-linearized polynomial f ∈ (Fq[W ])[X] in X such that spanFq

{Z1, . . . , Zn} = V ⊕ W , dim V ≤ s,
and V1, . . . , Vm ⊆ f(V ). As Vm−1 ̸= Vm, either Vm−1 ̸= f(V ) or Vm ̸= f(V ). Without loss
of generality, assume Vm ̸= f(V ). Note that applying an invertible linear transformation to the
variables Z1, . . . , Zn over Fq induces a ring isomorphism of Fq[Z1, . . . , Zn] ∋ det(MS), which pre-
serves the (non)zeroness of det(MS). By applying such a linear transformation, we may assume
V = spanFq

{Z1, . . . , Zd}, f |−1
V (Vm) ⊆ spanFq

{Z1, . . . , Zd−1} and W = spanFq
{Zd+1, . . . , Zn}, where

d := dim V ≤ s.
Let π : V = spanFq

{Z1, . . . , Zd} → spanFq
{Z1, . . . , Zd−1} be the projection sending u =∑d

i=1 ciZi to u|Zd=0 =
∑d−1

i=1 ciZi. As f ∈ (Fq[W ])[X] does not depend on Zd, we have

f(α)|Zd=0 = f(α|Zd=0) = f(π(α)) for α ∈ V. (49)
9The only difference is that when rm > 1, we replace (Vm, rm) by (Vm, rm − 1); whereas when rm = 1, we remove

the pair (Vm, rm) = (Vm, 1) and also decrease m by one.
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For i ∈ [m], let Ṽi = f |−1
V (Vi), Ṽ ′

i = π(Ṽi) ⊆ spanFq
{Z1, . . . , Zd−1} and V ′

i = f(Ṽ ′
i ) = f(π(Ṽi)).

Note that
V ′

m = f(π(Ṽm)) = f(Ṽm) = Vm (50)

where the second equality holds since Ṽm = f |−1
V (Vm) ⊆ spanFq

{Z1, . . . , Zd−1}. More generally, for
i ∈ [m],

dim V ′
i = dim f(π(Ṽi)) = dim π(Ṽi) ≥ dim(Ṽi) − 1 = dim(Vi) − 1. (51)

For i ∈ [m], we have∏
α∈Vi

(X − α|Zd=0)qk−dim(Vi)−ri =
∏

α∈Ṽi

(X − f(α)|Zd=0)qk−dim(Vi)−ri

(49)=
∏

α∈Ṽi

(X − f(π(α)))qk−dim(Vi)−ri

=
∏

α∈V ′
i

(X − α)qk−dim(Vi)−ri+dim(Ṽi)−dim(V ′
i

)

=
∏

α∈V ′
i

(X − α)qk−dim(V ′
i

)−ri
.

(52)

Let V ′ = spanFq
{Z1, . . . , Zd−1} ⊆ V and W ′ = spanFq

{Zd, . . . , Zn} ⊇ W . Then V ′
i =

f(π(Ṽi)) ⊆ f(V ′) for i ∈ [m]. Note that f is a q-linearized polynomial with coefficients in
Fq[W ] ⊆ Fq[W ′]. Also note that dim V ′ = d − 1 ≤ s − 1. By definition, (V ′

i )i∈[m] is (s − 1)-
admissible. Let S ′ = (V ′

i , ri)i∈[m]. As dim V ′
i ≤ dim Ṽi = dim Vi for i ∈ [m], we have by definition

that S ′ ∈ Vk,m,s−1.
Next, we verify that S ′ satisfies (33) for all nonempty Ω ⊆ [m]. If |Ω| = 1, then (33) holds

trivially for S ′. For Ω = [m], (33) also holds for S ′ since

dim

 ⋂
i∈[m]

V ′
i

+
∑

i∈[m]
ri ≤ dim

 ⋂
i∈[m]

Vi

+
∑

i∈[m]
ri ≤ max

i∈[m]
{dim(Vi) + ri}

(48)= dim(Vm) + rm

(50)= dim(V ′
m) + rm

≤ max
i∈[m]

{dim(V ′
i ) + ri},

where the second inequality holds since S satisfies (33) with Ω = [m]. Finally, for nonempty
Ω ⊆ [m] with 2 ≤ |Ω| ≤ m − 1, (33) holds for S ′ since

dim

⋂
i∈Ω

V ′
i

+
∑
i∈Ω

ri ≤ dim

⋂
i∈Ω

Vi

+
∑
i∈Ω

ri

(47)
≤ max

i∈Ω
{dim(Vi) + ri} − 1

(51)
≤ max

i∈[m]
{dim(V ′

i ) + ri}.

By (52) and the definitions (30), (31), and (32), it holds that det(MS′) = det(MS)|Zd=0. And by
the induction hypothesis, we have det(MS′) ̸= 0. So det(MS) ̸= 0.
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5 Equivalence Between GKP(ℓ) and MRD(ℓ)
In this section, we will establish the equivalence between GKP(ℓ) and MRD(ℓ) over a general field
F/Fq. As a key technical ingredient, we will prove our formula for generic intersection dimension
(see Theorem 1.16), generalizing a similar formula established in [BGM23]. Our proofs closely
follow the arguments of Brakensiek–Gopi–Makam [BGM23].

5.1 Formula for Generic Intersection Dimension: Proof of Theorem 1.16

We first show that a generic linear code attains all generic kernel patterns. Our proof of this fact
follows closely that of [BGM23, Proposition 2.1].

Proposition 5.1. Let W be the k × n matrix (Zi,j)i∈[k],j∈[n] over F := Fq(Z1,1, . . . , Zk,n). Let
C ⊆ Fn be the [n, k]F code with W as a generator matrix. Then C attains any generic kernel
pattern. In other words, C is GKP(ℓ) for all ℓ ≥ 1.

Proof. Let (V1, . . . , Vk) be a generic kernel pattern, i.e., dim (
⋂

i∈Ω Vi) ≤ k − |Ω| for any nonempty
Ω ⊆ [k]. By Corollary 3.2, we can find V ′

i ⊆ Fn
q of dimension k − 1 such that Vi ⊆ V ′

i and
dim(

⋂
i∈Ω V ′

i ) ≤ k − |Ω| for any nonempty Ω ⊆ [k]. By replacing Vi with V ′
i , we may assume that

dim Vi = k − 1.
For i ∈ [k], choose Ai ∈ Fn×dim Vi

q such that Vi = ⟨Ai⟩. We want to show that there exists an
invertible matrix M ∈ Fk×k, whose i-th row is denoted by mi, such that miWAi = 0 for i ∈ [k].
Consider arbitrary i ∈ [k]. Since dim Vi = k − 1, we have rank(WAi) = k − 1 by Lemma 2.15. This
implies that the solution space mi is one-dimensional, i.e., mi is uniquely determined up to scaling.
In fact, we may write each entry of mi as a polynomial in the entries of a nonsingular maximal
minor P of WAi by applying Cramer’s rule and clearing the common denominator det(P ). As this
holds for all i ∈ [k], det(M) may be expressed as a polynomial in Zij . By the GM-MRD theorem
(Theorem 4.1), det(M) is nonzero even after assigning Zqj−1

i to Zi,j for i ∈ [k] and j ∈ [n]. So
det(M) ̸= 0, i.e., M is invertible.10

Next, we establish an intersection dimension formula for GKP(ℓ) codes. Recall that for a k × n
matrix G over a field F/Fq and an n × ℓ matrix A over Fq, we denote GA := GA ∈ Fk×ℓ and define
GV ⊆ Fk to be the column span of GA.

Theorem 5.2. Let F be an extension field of Fq. Let C be an [n, k]F code that is GKP(ℓ) with a
generator matrix G ∈ Fk×n. Let V1, . . . , Vℓ be subspaces of Fn

q , each of dimension at most k. Then

dimF

⋂
i∈[ℓ]

GVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 . (53)

Proof. We first prove that LHS ≥ RHS. For any nonempty S ⊆ [ℓ], it holds that GVS
⊆
⋂

i∈S GVi ,
where VS :=

⋂
i∈S Vi. Therefore, for any partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ], we have⋂

i∈[s]
GVPi

⊆
⋂

i∈[ℓ]
GVi . (54)

10One can also prove det(M) ̸= 0 directly by adapting the proof of Theorem 4.1, avoiding the use of symbolic
Gabidulin codes.
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Also note that by Lemma 2.1, ⋂
i∈[s]

GVPi
=

∑
i∈[s]

G⊥
VPi

⊥

. (55)

As C is a GKP(ℓ) code, C is a MRD code. So we have dim GVPi
= dim VPi for i ∈ [s]. It follows

that

dim

⋂
i∈[ℓ]

GVi

 (54)
≥ dim

 ⋂
i∈[s]

GVPi

 (55)= k − dim

∑
i∈[s]

G⊥
VPi

 ≥ k −
∑
i∈[s]

dim
(
G⊥

VPi

)

= k −
∑
i∈[s]

(k − dim VPi) =
∑
i∈[s]

dim

 ⋂
j∈Pi

Vj

− (s − 1)k.

So LHS ≥ RHS in (53).
Next, we prove that LHS ≤ RHS in (53). Denote RHS of (53) by d, i.e.,

d = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 .

Then for all partitions P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ],
s∑

i=1
dim

 ⋂
j∈Pi

Vj

 ≤ (s − 1)k + d.

Thus, by Lemma 3.6, there exist integers δ1, . . . , δℓ ≥ 0 such that
∑ℓ

i=1 δi = k − d and for all
nonempty Ω ⊆ [ℓ],

dim

⋂
i∈Ω

Vi

 ≤ k −
∑
i∈Ω

δi.

By Proposition 3.3, we know that the pattern (T1, . . . , Tk) with δi copies of Vi for i ∈ [ℓ] and d
additional copies of {0} is a generic kernel pattern. Without loss of generality, assume the d copies
of {0} are Tk−d+1, · · · , Tk. For i ∈ [k], choose Ai ∈ Fn×dim Ti

q such that Ti = ⟨Ai⟩.
As C is GKP(ℓ), there exists an invertible matrix M ∈ Fk×k such that miGAi = 0 for all

i ∈ [k], where mi denotes the i-th row of M . As M is invertible, we have dimF
(⋂

i∈[ℓ](MG)Vi

)
=

dimF
(⋂

i∈[ℓ] GVi

)
. Thus, to prove that LHS ≤ RHS in (53), i.e., dimF

(⋂
i∈[ℓ] GVi

)
≤ d, it suffices

to show that for any z ∈
⋂

i∈[ℓ](MG)Vi , only the last d coordinates of z could be nonzero.
Let z = (z1, . . . , zk) ∈

⋂
i∈[ℓ](MG)Vi . Consider arbitrary i ∈ [k − d]. Then Ti is a copy of Vj

for some j ∈ [ℓ]. As z ∈ (MG)Vj = (MG)Ti , we have zi = miGAiu for some u ∈ Fdim Vi . But
miGAi = 0. So zi = 0. This proves the claim that only the last d coordinates of z could be
nonzero, thereby completing the proof.

Combining Proposition 5.1 and Theorem 5.2 yields our formula for generic intersection dimen-
sion.

Corollary 5.3 (Theorem 1.16, restated). Let W be the k × n matrix (Zi,j)i∈[k],j∈[n] over F :=
Fq(Z1,1, . . . , Zk,n). Let V1, . . . , Vℓ be subspaces of Fn

q , each of dimension at most k. Then

dimF

⋂
i∈[ℓ]

WVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 . (56)
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5.2 Proof of Theorem 1.13

We are now ready to prove Theorem 1.13, which establishes an equivalence between GKP(ℓ) and
MRD(ℓ). The direction from GKP(ℓ) to MRD(ℓ) follows easily from our intersection dimension
formula for GKP(ℓ) codes.

Theorem 5.4. Let C be an [n, k]F code over a field F/Fq. If C is GKP(ℓ), then it is MRD(ℓ).

Proof. By Proposition 5.1, the “generic” linear code over Fq(Z1,1, . . . , Zk,n) defined by the generator
matrix W = (Zi,j)i∈[k],j∈[n] is also GKP(ℓ). Let G ∈ Fk×n be a generator matrix of C. By
Theorem 5.2, for any subspaces V1, . . . , Vℓ ⊆ Fn

q of dimension at most k, we have dim(
⋂

i∈[ℓ] GVi) =
dim(

⋂
i∈[ℓ] WVi), i.e., C is MRD(ℓ).

Next, we prove the implication from MRD(ℓ) to GKP(ℓ).

Theorem 5.5. Let F be an extension field of Fq. Let C be an [n, k]F code that is MRD(ℓ). Let
T = (T1, . . . , Tk) be a generic kernel pattern of order at most ℓ. Then C attains T .

Proof. By Corollary 3.5, by padding the subspaces if necessary, we may assume that there exist
subspaces V1, . . . , Vℓ ⊆ Fn

q and integers δ1, . . . , δℓ ≥ 0 such that dim Vi = k − δi for all i ∈ [ℓ] and T
consists of δi copies of Vi and d := k −

∑
i∈[ℓ] δi additional copies of {0}.

Since T is a generic kernel pattern of order at most ℓ, by Lemma 3.6, for all partitions P1 ⊔
P2 ⊔ · · · ⊔ Ps = [ℓ], ∑

i∈[s]
dim

 ⋂
j∈Pi

Vj

 ≤ (s − 1)k + d. (57)

For the finest partition {1} ⊔ {2} ⊔ · · · ⊔ {ℓ}, the above inequality is indeed an equality because
dim(Vi) = k − δi and thus

ℓ∑
i=1

dim(Vi) = sk −
ℓ∑

i=1
δi = (s − 1)k + d. (58)

Let G ∈ Fk×n be a generator matrix of C. Then we have

dim
(

ℓ⋂
i=1

GVi

)
= dim

(
ℓ⋂

i=1
WVi

)
=

ℓ∑
i=1

dim(Vi) − (s − 1)k = d,

where the first equality holds since C is MRD(ℓ) and the other equalities follow from Theorem 1.16,
(57), and (58). So by Lemma 2.1,

dim
(

ℓ∑
i=1

G⊥
Vi

)
= k − dim

(
ℓ⋂

i=1
GVi

)
= k − d. (59)

On the other hand, as C is MRD, we have dim G⊥
Vi

= k − dim GVi = k − dim Vi = δi for i ∈ [ℓ].
Therefore

k − d
(59)= dim

(
ℓ∑

i=1
G⊥

Vi

)
≤

ℓ∑
i=1

dim
(
G⊥

Vi

)
=

ℓ∑
i=1

δi = k − d

which implies that dim
(∑ℓ

i=1 G⊥
Vi

)
=
∑ℓ

i=1 dim
(
G⊥

Vi

)
. Therefore„ the sum

∑ℓ
i=1 G⊥

Vi
is a direct

sum, i.e.,
∑ℓ

i=1 G⊥
Vi

=
⊕ℓ

i=1 G⊥
Vi

. For i ∈ [ℓ], let Bi =
{
v

(i)
1 , . . . ,v

(i)
δi

}
be a basis of G⊥

Vi
. Then

B := B1 ⊔ · · · ⊔ Bℓ is a basis of
∑ℓ

i=1 G⊥
Vi

. Extending B to a basis B′ = B ⊔ {u1, . . . ,ud} of Fk.
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To show that C attains T , by permuting the subspaces Ti, we may assume that

T =
(
V

(1)
1 , . . . , V

(δ1)
1 , . . . , V

(1)
ℓ , . . . , V

(δℓ)
ℓ , {0}, . . . {0}

)
,

where V
(j)

i denotes the j-th copy of Vi. Choose M ∈ Fk×k such that the first k − d columns of
MT are v

(i)
j for i ∈ [ℓ] and j ∈ [δi] (given in lexicographic order of (i, j)), and the last d columns

of MT are u1, . . . ,ud. Then M is invertible since the columns of MT form a basis of Fk. By the
construction of M , we have miGAi = 0 for all i ∈ [k], where mi denotes the i-th row of M and
Ai ∈ Fn×dim Ti

q satisfies Ti = ⟨Ai⟩. Therefore, C attains the kernel pattern T .

Corollary 5.6. Let C be an [n, k]F code over a field F/Fq. If C is MRD(ℓ), then it is GKP(ℓ).

Combining Theorem 5.4 and Corollary 5.6 proves Theorem 1.13.

6 Equivalence Between MRD(ℓ) and LD-MRD(≤ ℓ−1) up to Duality
In this section, we will show that a linear code C is MRD(ℓ) if and only if its dual code is
LD-MRD(≤ ℓ − 1). Our proofs resemble the arguments of Brakensiek–Gopi–Makam [BGM23].

6.1 An Alternative Characterization of MRD(ℓ) Over F/Fq

We start by providing an alternative characterization of MRD(ℓ) codes. First, we need the following
lemma.

Lemma 6.1. Let F be an extension field of Fq and let G ∈ Fk×n. For i = 1, . . . , ℓ, let Vi be a
subspace of Fn

q and let Ai ∈ Fn×dim Vi
q such that Vi = ⟨Ai⟩. Then

dim

⋂
i∈[ℓ]

GVi

 =
∑
i∈[ℓ]

dim GVi − rank
(
G{Ai}i∈[ℓ]

)
, (60)

where we define the matrix G{Ai}i∈[ℓ] :=


GA1 GA2
GA1 GA3

... . . .
GA1 GAℓ

.

Proof. If dim GVi < dim Vi for some i ∈ [ℓ], then some columns of GAi are linear combinations
of other columns. In this case, we may delete the corresponding columns from Ai and update Vi

correspondingly without affecting the two sides of (60). By repeatedly performing the deletions, we
may assume that dim GVi = dim Vi for all i ∈ [ℓ]. In particular, RHS of (60) equals the dimension
of

U :=
{
u ∈ F

∑
i∈[ℓ] dim Vi such that G{Ai}i∈[ℓ] · u = 0

}
since the number of linearly independent constraints in the linear system G{Ai}i∈[ℓ] ·u = 0 is exactly
rank

(
G{Ai}i∈[ℓ]

)
.

It remains to find an isomorphism σ : U →
⋂

i∈[ℓ] GVi between the two F-linear spaces. Let σ

send u = (u1,u2, . . . ,uℓ) ∈ U with ui ∈ Fdim Vi to −GA1 · u1. Note that the definition of U and
that of G{Ai}i∈[ℓ] imply that for u = (u1,u2, . . . ,uℓ) ∈ U ,

−GA1 · u1 = GA2 · u2 = · · · = GAℓ · uℓ. (61)
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It follows that the image of U under σ is indeed contained in
⋂

i∈[ℓ] GVi . Moreover, for any y ∈⋂
i∈[ℓ] GVi , by the fact that dim GVi = dim Vi for i ∈ [ℓ], there exists unique (u1, . . . ,uℓ) with

ui ∈ Fdim Vi such that y = −GA1 · u1 = GA2 · u2 = · · · = GAℓ · uℓ. The map y 7→ (u1, . . . ,uℓ) is
then the inverse of σ.

Corollary 6.2. Let F be an extension field of Fq. Let C be an [n, k]F code that is MRD, and let G ∈
Fk×n be a generator matrix of C. Let V1, V2, . . . , Vℓ be subspaces of Fn

q , each of dimension at most
k. Then dim

(⋂ℓ
i=1 GVi

)
≥ dim

(⋂ℓ
i=1 WVi

)
, where W = (Zi,j)i∈[k],j∈[n] ∈ F(Z1,1, . . . , Zk,n)k×n.

Proof. For i ∈ [ℓ], choose Ai ∈ Fn×dim Vi
q such that Vi = ⟨Ai⟩. As C is MRD, we have dim GVi =

dim Vi for i ∈ [ℓ]. By Lemma 2.15, we also have dim WVi = dim Vi for i ∈ [ℓ]. Then by Lemma 6.1,
it suffices to prove that rank

(
G{Ai}i∈[ℓ]

)
< rank

(
W{Ai}i∈[ℓ]

)
. This holds since G{Ai}i∈[ℓ] can be

obtained from W{Ai}i∈[ℓ] by assigning the (i, j)-th entry of G to Zi,j for (i, j) ∈ [k] × [n]. Such an
assignment does not increase the rank since if the determinant of a submatrix is nonzero after the
assignment, then it must have been nonzero before the assignment.

The next lemma presents an alternative characterization of MRD(ℓ) codes, which appears
weaker but is, in fact, equivalent.

Lemma 6.3. Let F be an extension field of Fq. Let C be an [n, k]F code with a generator matrix
G ∈ Fk×n. Let ℓ ≥ 1. Then the following are equivalent:

1. C is MRD(ℓ).

2. C is MRD and for all subspaces V1, V2, . . . , Vℓ ⊆ Fn
q , each of dimension at most k, we have⋂ℓ

i=1 GVi = 0 iff ⋂ℓ
i=1 WVi = 0, where W = (Zi,j)i∈[k],j∈[n] ∈ F(Z1,1, . . . , Zk,n)k×n.

Proof. Item 1 implies Item 2 by the definition of MRD(ℓ). Conversely, we show that if Item 1 does
not hold, neither does Item 2.

Suppose C is not MRD(ℓ). Further assume that C is MRD since otherwise Item 2 certainly
does not hold. Then there exist subspaces V1, V2, . . . , Vℓ ⊆ Fn

q , each of dimension at most k, such
that dim

(⋂ℓ
i=1 GVi

)
̸= dim

(⋂ℓ
i=1 WVi

)
. By Corollary 6.2, we have

dim
(

ℓ⋂
i=1

GVi

)
> d := dim

(
ℓ⋂

i=1
WVi

)
. (62)

We know by Lemma 6.1 and Lemma 2.15 that

rank
(
W{Ai}i∈[ℓ]

)
=

∑
i∈[ℓ]

dim WVi

− d =

∑
i∈[ℓ]

dim Vi

− d. (63)

This means we can find d columns c1, . . . , cd of W{Ai}i∈[ℓ] that can be written as linear combina-
tions of the remaining columns. Remove the corresponding d columns in total from A1, . . . , Aℓ to
obtain A′

1, . . . , A′
ℓ, where A′

i is a submatrix of Ai, so that W{A′
i}i∈[ℓ] is obtained from W{Ai}i∈[ℓ] by

removing c1, . . . , cd. Then rank
(
W{A′

i}i∈[ℓ]

)
= rank

(
W{Ai}i∈[ℓ]

)
. Let V ′

i = ⟨A′
i⟩ for i ∈ [ℓ]. Then

38



∑
i∈[ℓ] dim V ′

i =
(∑

i∈[ℓ] dim Vi

)
− d. By Lemma 6.1 and Lemma 2.15, we have

dim
(

ℓ⋂
i=1

WV ′
i

)
=

∑
i∈[ℓ]

dim WV ′
i

− rank
(
W{A′

i}i∈[ℓ]

)
=

∑
i∈[ℓ]

dim V ′
i

− rank
(
W{A′

i}i∈[ℓ]

)

=

∑
i∈[ℓ]

dim Vi

− d − rank
(
W{Ai}i∈[ℓ]

) (63)= 0.

On the other hand, removing a column from Ai decreases dim Vi = dim⟨Ai⟩ by one and decreases
rank

(
G{Ai}i∈[ℓ]

)
by zero or one. It follows from (60) that

dim

⋂
i∈[ℓ]

GV ′
i

 ≥ dim

⋂
i∈[ℓ]

GVi

− d
(62)
> d − d = 0.

So Item 2 does not hold.

6.2 Proof of Theorem 1.14

We now prove Theorem 1.14, which establishes an equivalence between LD-MRD(≤ ℓ) and MRD(ℓ+
1) up to duality. First, we show the implication from LD-MRD(≤ ℓ) to MRD(ℓ + 1).

Theorem 6.4. Let C be an [n, k]F code over a field F/Fq. If C is LD-MRD(≤ ℓ), then C⊥ is
MRD(ℓ + 1).

Proof. We will prove the contrapositive: If C⊥ is not MRD(ℓ + 1), then C is not LD-MRD(≤ ℓ).
If C⊥ is not MRD, then C is not either by Lemma 2.11. This, in turn, implies that C is not
LD-MRD(≤ ℓ), since all LD-MRD(≤ ℓ) codes are MRD. So we may assume that C⊥ is MRD.

Let H ∈ F(n−k)×n be a parity check matrix of C. Then H is also a generator matrix of C⊥. By
Corollary 6.2 and Lemma 6.3, the fact that C⊥ is MRD but not MRD(ℓ + 1) implies that there
exist subspaces V0, . . . , Vℓ ⊆ Fn

q , each of dimension at most n − k, such that⋂
0≤i≤ℓ

HVi ̸= {0} and
⋂

0≤i≤ℓ

WVi = {0}. (64)

For all partitions P1 ⊔P2 ⊔· · ·⊔Ps = {0, 1, . . . , ℓ}, by Theorem 1.16 and the fact that
⋂

0≤i≤ℓ WVi =
{0}, we have

s∑
i=1

dim VPi ≤ (s − 1)(n − k), (65)

where VPi =
⋂

j∈Pi
Vj . Fix nonzero y ∈

⋂
0≤i≤ℓ HVi , which is possible as

⋂
0≤i≤ℓ HVi ̸= {0}.

For 0 ≤ i ≤ ℓ, choose Ai ∈ Fn×dim Vi
q such that Vi = ⟨Ai⟩. As y ∈

⋂
0≤i≤ℓ HVi , there exist vectors

u0, . . . ,uℓ with ui ∈ Fdim Vi such that HA0u0 = HA1u1 = · · · = HAℓuℓ = y. Let vi = Aiui for
0 ≤ i ≤ ℓ, so that Hvi = y. Define the partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = {0, 1, . . . , ℓ} such that
j, j′ ∈ {0, 1, . . . , ℓ} are in the same set of the partition iff vj = vj′ . For i ∈ [s], let vPi := vj for any
j ∈ Pi. Then we have s distinct vectors vP1 , . . . ,vPs ∈ Fn.

Consider arbitrary i ∈ [s]. For all j ∈ Pi and x ∈ V ⊥
j ⊆ Fn

q , we have xTvPi = xTvj =
xT Ajuj = 0 since xT Aj = 0. As this holds for all j ∈ Pi and x ∈ V ⊥

j , we have that xTvPi = 0 for
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all x ∈
∑

j∈Pi
V ⊥

j =
(⋂

j∈Pi
Vj

)⊥
= V ⊥

Pi
. (Here

∑
j∈Pi

V ⊥
j =

(⋂
j∈Pi

Vj

)⊥
holds by Lemma 2.1.) So

V ⊥
Pi

⊆ kerFq (vPi). It follows by Lemma 2.7 that

rankFq (vPi) = n − dim(kerFq (vPi)) ≤ n − dim
(
V ⊥

Pi

)
= dim VPi . (66)

So we have
s∑

i=1
rankFq (vPi)

(66)
≤

s∑
i=1

dim VPi

(65)
≤ (s − 1)(n − k). (67)

For i ∈ [s], let zi = vPi −vP1 . Note that Hzi = HvPi − HvP1 = y−y = 0. So z1, . . . ,zs ∈ C. And

s∑
i=1

dR(−vP1 , zi) =
s∑

i=1
rankFq (zi − (−vP1)) =

s∑
i=1

rankFq (vPi)
(67)
≤ (s − 1)(n − k). (68)

If s = 1, we get from (67) that rankFq (vP1) = 0, implying that vP1 = 0. But this is impossible since
y = HvP1 is nonzero. So s ≥ 2. By (68), C is not LD-MRD(s − 1). As s ≤ ℓ + 1, we see that C is
not LD-MRD(≤ ℓ).

Next, we show the other direction.

Theorem 6.5. Let C be an [n, k]F code over a field F/Fq. If C⊥ is MRD(ℓ + 1), then C is
LD-MRD(≤ ℓ).

Proof. We will instead prove the following equivalent statement: Suppose C is MRD but not
LD-MRD(≤ ℓ). Then C⊥ is not MRD(ℓ + 1).

Let H ∈ F(n−k)×n be a parity check matrix of C. Then H is also a generator matrix of C⊥.
Since C is not LD-MRD(≤ ℓ), there exist L ≤ ℓ, z ∈ Fn, and distinct z0, . . . ,zL ∈ Fn such that

L∑
i=0

rankFq (zi − z) ≤ L(n − k) and Hz0 = · · · = HzL = 0.

Let vi = zi − z ∈ Fn for 0 ≤ i ≤ L. Then v0, . . . ,vL are distinct vectors satisfying

L∑
i=0

rankFq (vi) ≤ L(n − k) and Hv0 = · · · = HvL. (69)

Let y := Hv0, which equals Hvi for all 0 ≤ i ≤ L. Assume that y = 0. Then Hvi = 0 for all
0 ≤ i ≤ L. So v0, . . . ,vL are codewords of C. As C is MRD, all of these codewords vi except the
zero codeword satisfy rankFq (vi) ≥ n − k + 1. But this contradicts (69). So y ̸= 0. Moreover, we
may assume that rankFq (vi) ≤ n − k for all 0 ≤ i ≤ L, because if this were not the case, we could
remove some vi and (69) would still hold (for smaller L).

Consider arbitrary i ∈ {0, . . . , L}. Write vi = (vi,1, . . . , vi,n). Let ri = rankFq (vi). We know ri =
spanFq

{vi,1, . . . , vi,n} by definition. Pick ui,1, . . . , ui,ri ∈ F that form a basis of spanFq
{vi,1, . . . , vi,n}

over Fq, and let ui = (ui,1, . . . , ui,ri) ∈ Fri . Then there exists a unique matrix Ai ∈ Fn×ri
q such that

vi = Aiui. Let Vi = ⟨Ai⟩, i.e., Vi is the column span of Ai over Fq. Let V ′
i be the column span of

Ai over F. By definition, we have

1. dimFq Vi = dimF V ′
i = ri = rankFq (vi) ≤ n − k.

2. vi = Aiui ∈ V ′
i .
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3. HVi = {HAiu : u ∈ Fri} = {Hx : x ∈ V ′
i }. In particular, Hvi ∈ HVi .

As y = Hv0 = · · · = HvL, we have y ∈
⋂

0≤i≤L HVi . Let W = (Zi,j)i∈[n−k],j∈[n]. First consider
the case where

⋂
0≤i≤L WVi = {0}. Note that,

dim

 ⋂
0≤i≤L

HVi

 > 0 = dim

 ⋂
0≤i≤L

WVi


since we already know y ̸= 0 and y ∈

⋂
0≤i≤L HVi . So C⊥ is not MRD(ℓ + 1).

Now consider the case where
⋂

0≤i≤L WVi ̸= {0}. By Theorem 1.16, we have

dim

 ⋂
0≤i≤L

WVi

 =
s∑

i=1
dim(VPi) − (s − 1)(n − k) > 0 (70)

for some partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = {0, 1, . . . , L}, where VPi =
⋂

j∈Pi
Vj . Note that this partition

is not the finest partition of {0, 1 . . . , L} since

L∑
i=0

dim Vi − L(n − k) =
L∑

i=0
rankFq (vi) − L(n − k)

(69)
≤ 0.

So s < L + 1.
Define the F-subspace V ⊆

∏L
i=0 Fri to be

V =
{

(c0, . . . , cL) ∈
L∏

i=0
Fri : HA0c0 = · · · = HALcL

}
.

Then σ : (c0, . . . , cL) 7→ HA0c0 maps V to
⋂

0≤i≤L HVi . As C⊥ is MRD (since C is) and dim Vi ≤
n − k for 0 ≤ i ≤ L, for every w ∈

⋂
0≤i≤L HVi , there exists unique x = (c0, . . . , cL) ∈ V such that

σ(x) = w, i.e., σ : V →
⋂

0≤i≤L HVi is an isomorphism of F-linear spaces. In particular,

dim

 ⋂
0≤i≤L

HVi

 = dim V. (71)

Define
V ′ =

{
(c0, . . . , cL) ∈ V : Ajcj = Aj′cj′ for i ∈ [s] and j, j′ ∈ Pi

}
⊆ V.

Note that (u0, . . . ,uL) ∈ V \ V ′ since v0 = A0u0, . . . ,vL = ALuL are distinct and s < L + 1. So

dim V > dim V ′. (72)

Consider (c0, . . . , cL) ∈ V ′ and i ∈ [s]. For j, j′ ∈ Pi, we have Ajcj = Aj′cj′ ∈ V ′
j ∩ V ′

j′ . So for
j ∈ Pi, it holds that

cj ∈
⋂

j′∈Pi

V ′
j′ =: V ′

Pi
.

As each V ′
j is the F-span of the Fq-linear space Vj , here V ′

Pi
is the F-span of the Fq-linear space

VPi =
⋂

j∈Pi
Vj .11 So σ maps V ′ to

⋂
i∈[s] HVPi

. And for every w ∈
⋂

i∈[s] HVPi
, the inverse

11Each V ′
j may be identified with Vj ⊗Fq F. We are using the fact that

⋂
j∈Pi

(Vj ⊗Fq F) =
(⋂

j∈Pi
Vj

)
⊗Fq F. See

[Naj19].
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c = (c0, . . . , cL) = σ−1(w) ∈ V satisfies that Ajcj = Aj′cj′ for i ∈ [s] and j, j′ ∈ Pi by the
uniqueness of c. So σ restricts to an isomorphism from V ′ to

⋂
i∈[s] HVPi

. Therefore,

dim V ′ = dim

 ⋂
i∈[s]

HVPi

 ≥ dim

 ⋂
i∈[s]

WVPi

 (56)
≥

s∑
i=1

dim(VPi) − (s − 1)(n − k)

(70)= dim

 ⋂
0≤i≤L

WVi

 (73)

where the second step uses Corollary 6.2. Then dim
(⋂

0≤i≤L HVi

)
> dim

(⋂
0≤i≤L WVi

)
by (71),

(72), and (73). So C⊥ is not MRD(ℓ + 1).

Combining Theorem 6.4 and Theorem 6.5 proves Theorem 1.14.

7 Putting It Together
The last tool we need is the duality of Gabidulin codes, as stated by the following theorem. For
the proof, see [BHL+22, Lemma 2.7.2].12

Theorem 7.1 (Duality of Gabidulin codes). Let F be an extension field of Fq, and let α1, . . . , αn ∈ F
be linearly independent over Fq. Then there exists (β1, . . . , βn) ∈ Fn \ {0} such that

n∑
i=1

αqj−1

i βqh−1

i = 0 for (j, h) ∈ [k] × [n − k]. (74)

The choice of (β1, . . . , βn) satisfying (74) is unique up to a scalar in F\{0}. Moreover, β1, . . . , βn are
linearly independent over Fq, and

(
βqi−1

j

)
i∈[n−k],j∈[n]

is a parity check matrix of Gn,k(α1, . . . , αn),
i.e.,

Gn,k(α1, . . . , αn)⊥ = Gn,n−k(β1, . . . , βn).

We are now ready to prove our main theorems (Theorem 1.3 and Corollary 1.4) on the list
decodability of random Gabidulin codes:

Theorem 7.2. Let δ > 0. Let 1 ≤ k ≤ n ≤ m be integers such that qm ≥ 3(n−k)qnk·min{ℓ+1,k}+k/δ.
Let ℓ ∈ [k]. Let (α1, . . . , αn) be uniformly distributed over the set of all vectors in Fn

qm whose
coordinates are linearly independent over Fq. Then it holds with probability at least 1 − δ that the
Gabidulin code Gn,k(α1, . . . , αn) over Fqm is LD-MRD(≤ ℓ), i.e., it is

(
L

L+1 (1 − k/n) , L
)
-average

radius list decodable (and hence also
(

L
L+1 (1 − k/n) , L

)
-list decodable) for all L ∈ [ℓ].

Proof. Let S be the set of all (α1, . . . , αn) ∈ Fn whose coordinates are linearly independent over
Fq. Define an equivalence relation ∼ on S by letting α ∼ α′ iff α = cα′ for some c ∈ F \ {0}.
Denote the equivalence class of α by [α] and denote the set of the equivalence classes by S/ ∼. By
Theorem 7.1, for α = (α1, . . . , αn) ∈ S, we can find its dual basis β = (β1, . . . , βn) ∈ S by solving
(74), and [β] is uniquely determined by α. Also note that scaling α does not affect [β]. So we obtain
a map from S/ ∼ to itself that sends [α] to [β], where α and β satisfy Theorem 7.1. Moreover, by

12[BHL+22, Lemma 2.7.2] assumes F to be a finite extension over Fq. However, the same proof applies to any
extension field F of Fq without modification.
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applying Theorem 7.1 again, but with k replaced by n − k, we can solve α from β using (74) and
hence get the map [β] 7→ [α]. The two maps are inverse to each other by definition. So the map
[α] 7→ [β] is a permutation of S/ ∼.

Now let α be uniformly distributed over S. From the discussion above, we see that [β], which
is uniquely determined by α via (74), is uniformly distributed over S/ ∼. Moreover, the Gabidulin
code Gn,n−k(β1, . . . , βn) depends only on the equivalence class [β] of β = (β1, . . . , βn), since scaling
β corresponds to scaling the rows of the generator matrix

(
βqi−1

j

)
i∈[n−k],j∈[n]

, which does not change
the code.

By Corollary 1.15, the Gabidulin code Gn,k(α1, . . . , αn) is LD-MRD(≤ ℓ) iff its dual code
Gn,n−k(β1, . . . , βn) is GKP(ℓ + 1). As [β] is uniformly distributed over S/ ∼, by Theorem 4.2,
Gn,n−k(β1, . . . , βn) is GKP(ℓ + 1) with probability at least 1 − 3(n − k)qnk·min{ℓ+1,k}+k−m ≥ 1 − δ.
Therefore, Gn,k(α1, . . . , αn) is LD-MRD(≤ ℓ) with the same probability.

Setting ℓ = ⌈1−R−ε
ε ⌉ ≤ 1−R

ε , by Theorem 7.2, we obtain the following corollary, which shows
that random Gabidulin codes achieve list decoding capacity in the rank metric with high probability.

Corollary 7.3. Let δ > 0. Let 1 ≤ k ≤ n ≤ m with qm ≥ 3(n − k)qnk·min{(1−k/n)/ε+1,k}+k/δ.
Let ε > 0 and let (α1, . . . , αn) be uniformly distributed over the set of all vectors in Fn

qm whose
coordinates are linearly independent over Fq. Then it holds with probability at least 1 − δ that the
Gabidulin code Gn,k(α1, . . . , αn) over Fqm is

(
1 − R − ε, 1−R

ε

)
-average radius list decodable (and

hence also
(
1 − R − ε, 1−R

ε

)
-list decodable) in the rank metric, where R = k/n is the rate of the

code.

We conclude this section with a discussion about the symbolic Gabidulin code Gn,k(Z1, . . . , Zn).
By Theorem 4.1 and Theorem 1.13, Gn,k(Z1, . . . , Zn) is GKP(ℓ) and MRD(ℓ) for all ℓ. It is also
LD-MRD(≤ ℓ) for all ℓ, which can be shown via a proof strategy similar to that of Theorem 7.2.
The key difference is that we need to argue that certain elements Y1, . . . , Yn ∈ Fq(Z1, . . . , Zn),
which form a dual basis of Z1, . . . , Zn, are algebraically independent over Fq, so that no nonzero
polynomial over Fq can vanish at (Y1, . . . , Yn). For this, we need to pass to the projective space
Pn over Fq and view the maps [α] 7→ [β] and [β] 7→ [α] as well-defined morphisms that are inverse
to each other (over dense open subsets of Pn). These morphisms must preserve dimension and,
consequently, algebraic independence. The details are omitted.

8 Conclusions and Future Directions
In this paper, we have proved that, with high probability, a random Gabidulin code C ⊆ Fn

qm is list
decodable, and even average-radius list decodable, up to the optimal generalized Singleton bound
when m is large enough. Our result requires that m = Ωℓ(n2), which is optimal up to a factor
depending only on ℓ, as demonstrated by our lower bound. In achieving this, we have formulated
various notions of higher-order MRD codes and established their equivalence, analogous to the work
of Brakensiek, Gopi, and Makam [BGM23]. We have also proved the GM-MRD theorem, which is
an essential ingredient for our main results.

We conclude with the following potential future directions: (1) Are there explicit constructions
of Gabidulin codes whose parameters match or come close to those achieved in Theorem 1.3? (2)
Is it possible to reduce the parameter m by slightly compromising the rate of the code, in a manner
analogous to the work of Guo and Zhang [GZ23], and Alrabiah, Guruswami, and Li [AGL23]?
(3) Inspired by the work of [BDG23], we propose a similar conjecture below, which we call the
“ultimate GM-MRD conjecture.”
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Conjecture 8.1 (Ultimate GM-MRD conjecture). Let C ∈ FN
qm be any [N, k] MRD code with a

generator matrix G ∈ Fk×N
qm . Let C ′ be the [n, k] code defined by the generator matrix G′ := GA,

where A ∈ FN×n
q is a randomly sampled full rank matrix. Then, with probability 1 − oN (1), the

code C ′ is GKP(ℓ) for all ℓ ≥ 1.
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A Field Size Lower Bound for LD-MRD(ℓ)
We prove a lower bound on the field size of LD-MRD(ℓ) codes by adapting the argument in [AGL24].

Theorem A.1. Let ℓ ≥ 2. For any r ∈ [0, 1], any MRD code C ⊆ Fn
qm of rate R that is

(
ℓ(1−R)

ℓ+1 , ℓ
)
-

avearge-radius list-decodable must have m = Ωℓ((nR − 1)(n − ℓ − nR + 1)), which is Ωℓ(n2) if the
rate R of C is in [c, 1 − c − ℓ/n] for some constant c > 0.

Proof. Fix a subspace V0 ⊆ Fn
q of dimension ℓ. Choose a subspace V 0 such that V0 ⊕ V 0 = Fn

q .
Assume the minimum distance of C is d. As C is MRD, the size of C is qm(n−d+1) [Del78, Theorem
5.4]. Let k = n − d + 1 = nR. For any two distinct codewords M1, M2 ∈ C (viewed as matrices
in Fm×n

q ), we have rank(M1 − M2) ≥ d = n − k + 1. Let F be the collection of subspaces V ⊆ V 0
of dimension k − 1. The size of F is the number of subspaces of dimension k − 1 contained in a
subspace of dimension n−ℓ, which is at least q(n−ℓ−k+1)(k−1). It suffices to prove that ℓqℓm ≥ |F|/2,
as this would imply m = Ωℓ((k − 1)(n − ℓ − k + 1)).

Assume to the contrary that ℓqℓm < |F|/2. Let M be uniformly distributed from C. For a
fixed subspace V ∈ F , let A ∈ Fn×(k−1)

q such that ⟨A⟩ = V . Let EV be the event that there exists
a codeword M1 ∈ C different from M such that MA = M1A, i.e., (M − M1)A = 0. If EV does not
hold, then M is uniquely determined by MA ∈ Fm×(k−1)

q . As the number of possible values of MA
is at most q(k−1)m and |C| = qmk, we have

Pr[¬EV ] ≤ qm(k−1)

qmk
= q−m.

Therefore, over random M ∈ C, the expected number of V ∈ F such that EV happens is
∑

V ∈F (1−
Pr[¬EV ]) ≥ |F|/2. Then, we can fix a codeword M ∈ C such that the size of the set

FM := {V ∈ F : EV happens}

is at least |F|/2.
Let A0 ∈ Fn×ℓ

q such that ⟨A0⟩ = V0. By the definition of FM , for each V ∈ FM , there exists a
codeword MV ̸= M such that the kernel subspace of M − MV contains V . Since MV A0 ∈ Fm×ℓ

q

for any codeword MV and ℓqℓm < |F|/2 ≤ |FM |, by the pigeonhole principle, there exists distinct
V1, . . . , Vℓ ∈ FM such that MV1A0 = · · · = MVℓ

A0. Moreover, by the definition of FM , for i =
1, . . . , ℓ, there exists Ai ∈ Fn×(k−1)

q with ⟨Ai⟩ = Vi such that (M − MVi)Ai = 0.
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Assume MVi = MVj for some i ̸= j. Then (M − MVi)Ai = 0 and (M − MVi)Aj = 0. Let
A ∈ Fn×dim(Vi+Vj)

q such that ⟨A⟩ = Vi + Vj . As the columns of A are in Vi + Vj = ⟨Ai⟩ + ⟨Aj⟩,
we have (M − MVi)A = 0, i.e., Vi + Vj is contained in the kernel subspace of M − MVi . Since M
and MVi are in the MRD code C, we have rank(M − MVi) ≥ n − k + 1. This implies that the
kernel subspace of M − MVi is at most k − 1. So dim(Vi + Vj) ≤ k − 1. However, as Vi ̸= Vj

and dim Vi = dim Vj = k − 1, we have dim(Vi + Vj) ≥ k, which yields a contradiction. Thus, we
conclude that MV1 , . . . , MVℓ

are all distinct.
Since V 0 ∩V0 = {0}, there exists B0 ∈ Fn×(n−ℓ)

q such that ⟨B0⟩ = V 0 and
(
A0 B0

)
∈ Fn×n

q has
full rank. Let Y ∈ Fm×n

q such that (MV1 − Y )A0 = · · · = (MVℓ
− Y )A0 = 0 and (M − Y )B0 = 0.

This can be achieved by choosing Y =
(
MV1A0 MB0

) (
A0 B0

)−1
.

For i ∈ [ℓ], we have (M − Y )Ai = 0 since ⟨Ai⟩ = Vi, Vi ⊆ V 0, V 0 = ⟨B0⟩, and (M − Y )B0 = 0.
And for i ∈ [ℓ], we know (M − MVi)Ai = 0, which implies

(MVi − Y )Ai = (MVi − M)Ai + (M − Y )Ai = 0 and (MVi − Y )A0 = 0.

Since V0 ∩ ⟨Vi⟩ ⊆ V0 ∩ V 0 = {0} for i ∈ [ℓ], we have dim(V0 + Vi) = dim V0 + dim Vi = ℓ + k − 1 and
hence

rank(MVi − Y ) ≤ n − (ℓ + k − 1) ≤ n − k − 1,

where we use the fact that ℓ ≥ 2. As (M − Y )B0 = 0, we have rank(M − Y ) ≤ n − dim(V 0) = ℓ.
It follows that

rank(M − Y ) +
ℓ∑

i=1
rank(MVi − Y ) ≤ ℓ + ℓ(n − k − 1) = ℓ(n − k)

which contradicts the claim that C is
(

ℓ(1−k/n)
ℓ+1 , ℓ

)
-avearge-radius list-decodable.
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