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ABSTRACT

We introduce a family of mathematical objects called P-schemes, where P is a poset
of subgroups of a finite group G. A P-scheme is a collection of partitions of the
right coset spaces H\G, indexed by H € P, that satisfies a list of axioms. These
objects generalize the classical notion of association schemes [BI84] as well as the

notion of m-schemes [IKS09].

Based on P-schemes, we develop a unifying framework for the problem of deter-
ministic factoring of univariate polynomials over finite field under the generalized

Riemann hypothesis (GRH). More specifically, our results include the following:

e We show an equivalence between m-scheme as introduced in [IKS09] and
P-schemes in the special setting that G is an multiply transitive permutation
group and P is a poset of pointwise stabilizers, and therefore realize the theory

of m-schemes as part of the richer theory of P-schemes.

e We give a generic deterministic algorithm that computes the factorization
of the input polynomial f(X) € F,[X] given a “lifted polynomial” f(X)
of f(X) and a collection F of “effectively constructible” subfields of the
splitting field of f (X) over a certain base field. It is routine to compute
f(X) from f(X) by lifting the coefficients of f(X) to a number ring. The
algorithm then successfully factorizes f(.X') under GRH in time polynomial
in the size of f(X) and F, provided that a certain condition concerning P-
schemes is satisfied, for P being the poset of subgroups of the Galois group G
of f (X) defined by F via the Galois correspondence. By considering various
choices of G, P and verifying the condition, we are able to derive the main
results of known (GRH-based) deterministic factoring algorithms [Hua91a;
Hua91b; R6n88; R6n92; Evd92; Evd94; IKS09] from our generic algorithm

in a uniform way.

o We investigate the schemes conjecture in [IKS09] and formulate analogous
conjectures associated with various families of permutation groups, each
of which has applications on deterministic polynomial factoring. Using a
technique called induction of P-schemes, we establish reductions among
these conjectures and show that they form a hierarchy of relaxations of the

original schemes conjecture.
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e We connect the complexity of deterministic polynomial factoring with the
complexity of the Galois group G of f (X). Specifically, using techniques
from permutation group theory, we obtain a (GRH-based) deterministic fac-
toring algorithm whose running time is bounded in terms of the noncyclic
composition factors of GG. In particular, this algorithm runs in polynomial
time if G is in T, for some k = 20(VIe™) wwhere I', denotes the family
of finite groups whose noncyclic composition factors are all isomorphic of
subgroups of the symmetric group of degree k. Previously, polynomial-time

algorithms for I';, were known only for bounded k.

e We discuss various aspects of the theory of P-schemes, including techniques
of constructing new P-schemes from old ones, P-schemes for symmetric
groups and linear groups, orbit P-schemes, etc. For the closely related theory
of m-schemes, we provide explicit constructions of strongly antisymmetric
homogeneous m-schemes for m < 3. We also show that all antisymmetric
homogeneous orbit 3-schemes have a matching for m > 3, improving a result

in [IKS09] that confirms the same statement for m > 4.

In summary, our framework reduces the algorithmic problem of deterministic
polynomial factoring over finite fields to a combinatorial problem concerning P-
schemes, allowing us to not only recover most of the known results but also discover
new ones. We believe progress in understanding P-schemes associated with various
families of permutation groups will shed some light on the ultimate goal of solving

deterministic polynomial factoring over finite fields in polynomial time.
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Chapter 1
INTRODUCTION

We are interested in the problem of deterministic univariate polynomial factoring
over finite fields: given a univariate polynomial f of degree n € NT over a finite

field F,, our goal is to deterministically compute a factorization of f over I,

k
f(X) = C'Hfi<X)7

where ¢ € [ is the leading coefficient of f and each factor f; is irreducible over F,,.
This is called the complete factorization of f over F,. It is unique up to the order
of the factors f;, since F,[X] is a unique factorization domain. In addition, we are
also interested in the more moderate goal of deterministically computing a proper
factorization of f, i.e., factoring f into more than one factors where each factor is

allowed to be reducible.

1.1 Previous work

Univariate polynomial factoring over finite fields has been extensively studied over
the years as one of the most fundamental problems in computer algebra and a com-
mon subroutine of many algorithms in coding theory, cryptography, computational
number theory, etc. We review the previous work on this problem, with emphasis

on deterministic factoring algorithms. For a detailed survey, see [GPO1].

A truly polynomial-time factoring algorithm is required to factorize a degree-n
polynomial f(X) € F,[X] in time (nlogq)°®), since it takes O(nlog q) bits to
describe f. If randomness is allowed, such algorithms are well known: Berlekamp
[Ber70] described a randomized algorithm that (completely) factorizes a univariate
polynomial over [F, in polynomial time. The same paper also gave a deterministic
reduction from the problem of factoring f to the problem of finding the roots of
certain other polynomials that split into n linear factors over IF,,, where p = char(F,).
More efficient randomized algorithms were discovered since then [CZ81; GS92;
KS98; Uma08; KU11]. The current best known running time has the exponent 3/2

in n, as achieved by [KU11] based on the technique of fast modular composition.

On the other hand, despite much effort, factoring polynomials over finite fields in

deterministic polynomial time remains a long-standing open problem. Berlekamp
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[Ber67] gave the first deterministic algorithm for the general problem, whose run-
ning time is polynomial in n and ¢ (instead of n and log ¢). His aforementioned paper
[Ber70] gave a deterministic algorithm that runs in time polynomial in n, log ¢ and
p = char(F,). Deterministic algorithms with running time (nlog q)°Wp'/? were
given in [Sho90; BKS15]. Unfortunately, the p'/?-dependence on the characteris-
tic p of the field remains the best known for unconditional deterministic factoring
algorithms, even if we only consider quadratic polynomials. Faster algorithms are
known when p — 1 is assumed to be a smooth number [Gat87; Ron89; Sho91].
In addition, there are deterministic algorithms for special polynomials based on
the theory of elliptic curves or abelian varieties [Sch85; Pil90]. Finally, the pa-
per [Iva+12] also unconditionally obtained some positive results on deterministic

polynomial factoring in certain special cases.

A lot more is known if one accepts the generalized Riemann hypothesis (GRH):
a deterministic polynomial-time algorithm that factorizes polynomials of the form
X" —a € F,[X] under GRH was given in [AMM?77]. Several GRH-based determin-
istic algorithms were proposed since then. These algorithms factorize a polynomial
f(X) € F,[X] using the auxiliary information of a lifted polynomial, i.e., a poly-
nomial f(X) € Z[X] satisfying f(X) mod p = f(X). Huang [Hua9la; Hua91b]
proved that a polynomial f(X) € [F,[X] can be deterministically factorized in poly-
nomial time under GRH provided that the Galois group of the lifted polynomial is
abelian.! This was generalized in [Evd92] to the case of solvable Galois groups.
For a general Galois group G, the work [R6n92] provided a deterministic algorithm
that runs in time polynomial in |G| and the size of the input under GRH. In general,
however, the cardinality of G may be as large as n!, as attained by the symmetric

group of degree n. Thus the algorithm in [R6n92] may take exponential time.

In a different approach, Rényai [R6n88] showed that a polynomial f(X) € F [X]
of degree n can be factorized deterministically in time (n"log ¢)°!) under GRH.
The algorithm proceeds by manipulating tensor powers of the ring F,[X]/(f(X)),
and does not need a lifted polynomial of f. Building on Rényai’s work, Evdokimov
[Evd94] showed that the problem can be solved in quasipolynomial time by pre-
senting a deterministic (n'°2™log ¢)°(")-time algorithm under GRH. Evdokimov’s
algorithm remains the best known result on GRH-based deterministic polynomial

factoring, although the O(logn) exponent of the running time was later improved

n addition, p is assumed to be a “regular” prime in [Hua84; Hua91a; Hua91b] and also in

[R6n92]. This condition can be removed. See Section 5.3 for a discussion.



by a certain constant factor [CHOO; IKS09; Gua09; Aro13].

Efforts were made to understand the combinatorics behind Rényai’s and Evdoki-
mov’s algorithms [CHOO; Gao0O1], culminating in the work [IKS09] that proposed
the notion of m-schemes together with an algorithm that subsumes those in [R6n88;
Evd94] (see also the follow-up work [Aro13; Aro+14]). Anm-scheme, parametrized
by m € N, is a collection of partitions of sets that satisfies a list of axioms. It
was shown in [IKSO09] that whenever the algorithm fails to produce a proper factor-
ization, there always exists an m-scheme satisfying strict combinatorial properties.
Evdokimov’s result can then be interpreted as the fact that such an m-scheme does
not exist for sufficiently large m = O(logn). Finally, a conjecture on m-schemes,
known as the schemes conjecture, was proposed in [IKS09], whose affirmative

resolution would imply a polynomial-time factoring algorithm under GRH.

Role of GRH. GRH asserts that all nontrivial zeros of Dirichlet L-functions are
on the line Re(z) = 1/2. As noted in [R6n92], the known GRH-based algorithms
(including our work) only need a consequence of GRH that finite fields can be
efficiently constructed, and their kth power non-residues? can be efficiently found.
Formally, for all the statements made under GRH throughout this thesis, we may

use the following hypothesis instead.

Hypothesis (x). There exists a deterministic algorithm that given a prime number p
and an integer d € N*, constructs? the finite field . in time polynomial in d log p.
In addition, given any prime factor k dividing p? — 1, a kth power non-residue of

IF,« can be found deterministically in time polynomial in &k and d log p.

See [Hua91b; LMO79] for the proof that Hypothesis (x) holds under GRH. By
[Bha+17], it holds even under a weaker version of GRH, which asserts that all
nontrivial zeros of Dirichlet L-functions are in the strip Re(z) € [ — €, 1 + €] for
some constant € < 1/2.

1.2 Main results

In this thesis, we introduce a family of mathematical objects called P-schemes,
generalizing the classical notion of association schemes [BI84] as well as the notion
of m-schemes [IKS09]. Based on P-schemes, we develop a unifying framework for

deterministic univariate polynomial factoring over finite fields under GRH.

2For a prime factor k of ¢ — 1, an element = € Fx is a kth power residue of Fy if z € (Fy )k,

Otherwise it is a kth power non-residue.
3By constructing F e, we mean finding its structure constants in some [F,-basis. See [Len90].
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‘P-schemes. Roughly speaking, given a finite group G and a poset P of subgroups

of GG, a P-scheme is collection of partitions,
C={Cy:HeP}

satisfying certain constraints, where each C'y is a partition of the right coset space
H\G = {Hg : g € G}. The formal definition is given in Definition 2.4. We also
define various properties of P-schemes, including antisymmetry, strong antisym-
metry, discreteness, and homogeneity. These properties play important roles in our

polynomial factoring algorithms.

When G is chosen to be a symmetric group and P is a poset of stabilizer subgroups
(with respect to the natural action of (), we recover the notion of m-schemes
[IKS09]:

Theorem 1.1 (informal). Suppose G = Sym(S) acts naturally on a finite set S
and P consists of the (pointwise) stabilizers G for all subsets T' C S satisfying
1 < |T| < m. Then a P-scheme C is equivalent to an m-scheme Il on S. More-
over, C is antisymmetric (resp. strongly antisymmetric, discrete on G, for v € S,

homogeneous on G for x € S) iff Il has the corresponding property.

This result in fact holds as long as G is k-transitive for sufficiently large k. See

Theorem 2.1 for the formal statement.

In this way, we regard the theory of m-schemes [IKS09; Arol3; Aro+14] as part of
the richer theory of P-schemes. The advantage of adopting the notion of P-schemes
is that these objects capture not only the combinatorial structure of m-schemes but
also the information provided by the group G and the poset P, which allows us
to carry out both the Galois-theoretic/group-theoretic approach [Hua91a; Hua91b;
Evd92; R6n92] and the combinatorial approach [Evd94; IKS09] of deterministic

polynomial factoring in a uniform way.

A unifying framework for deterministic polynomial factoring. The theory of P-
schemes is applied to deterministic polynomial factoring as follows. For simplicity,
assume f is a degree-n polynomial that is defined over a prime field IF,, and factorizes
into n distinct linear factors over [F,,. Let f (X) € Z[X] be an irreducible lifted
polynomial of f, defined as follows:

Definition 1.1 (lifted polynomial). A lifted polynomial of a degree-n polynomial
f(X) € F,[X] is a polynomial f(X) e Z[X] of degree n satisfying fmodp=f.
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An irreducible lifted polynomial of f is a lifted polynomial of f that is irreducible

over QQ.

Let L be the splitting field of f(X) over Q and let G = Gal(L/Q). By Galois
theory, we have a one-to-one correspondence between the subgroups of G and the
subfields of L

H = Gal(L/K) +— K = L",

where L denotes the fixed field of H.

In Chapter 3, we design a generic algorithm, which we refer to as the P-scheme
algorithm, that deterministically factorizes f under GRH given f and f . The generic
part of the algorithm is a subroutine that uses f to construct a poset of subfields of
L, which in turn corresponds to a poset P of subgroups of GG by Galois theory. We
then prove that the algorithm always produces the complete factorization (resp. a
proper factorization) of f under GRH, unless a combinatorial condition regarding P-
schemes fails to hold.# Therefore the problem of deterministic polynomial factoring

reduces to the problem of verifying this combinatorial condition about P-schemes.

By choosing various posets P and verifying the condition, we recover the main
results of the previous work [Hua91a; Hua91b; Rén88; Rén92; Evd92; Evdd4;
IKS09] using the P-scheme algorithm. Our algorithm thus provides a unifying

framework for deterministic polynomial factoring over finite fields.

The generalized P-scheme algorithm. The P-scheme algorithm above is sub-
ject to the condition that the input polynomial is defined over a prime field FF,, and
factorizes into distinct linear factors over [F,,. In Chapter 5, we extend it to the gen-
eralized P-scheme algorithm that works for arbitrary polynomials f(X) € F,[X].

The results obtained from the P-scheme algorithm are then proved in full generality.

Several new ideas and a significant amount of work are required in the development

of the generalized P-scheme algorithm. See Chapter 5 for the details.

Constructing new P-schemes from old ones. We develop various techniques
of constructing new P-schemes from old ones, including restriction, induction,
extension, etc. These techniques are useful for investigating the existence of certain

‘P-schemes, allowing us to reduce one case to another.

“The condition requires all strongly antisymmetric P-schemes to be discrete (resp. inhomoge-
neous) on GG, where x is a root of f in L. See Theorem 3.9 for the formal statement.
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In particular, using induction of P-schemes, we show that for finite groups H C G
and a poset P of subgroups of H, a P-scheme with various properties (antisymmetry,
strong antisymmetry, etc.) can be used to construct a P’-scheme with the same
properties, where P’ is a certain poset of GG. Intuitively, this means polynomial
factoring “becomes easier” if the Galois group G is replaced by a subgroup H. We
make this intuition rigorous regarding the schemes conjecture proposed in [IKS09].
See below for a more detailed discussion.

In addition, we define the direct product and the wreath product of P-schemes,
generalizing the corresponding operations of permutation groups and association
schemes [SS98; Bai04]. We also define the direct product and the wreath product of
m-schemes. A consequence of these operations is that either the schemes conjecture

in [IKSO09] holds, or it has infinitely many counterexamples.

Schemes conjectures for families of permutation groups. The work [IKS09]
proposed a combinatorial conjecture on m-schemes, called the schemes conjecture,
whose positive resolution would imply a deterministic polynomial-time factoring
algorithm under GRH. Proving this conjecture appears to be difficult. However,
as noted in Theorem 1.1 above, an m-scheme is essentially a P-scheme in the
(worst) case of symmetric groups, with respect to a poset P of pointwise stabilizers.
This observation suggests that one should first formulate and attack the analogous

conjectures for “less complex™ Galois groups.

For each family G of finite permutation groups, we formulate an analogous con-
jecture, called the schemes conjecture for G. Like the original scheme conjecture,
the schemes conjecture for G also implies a deterministic polynomial-time factoring
algorithm under GRH, provided that that Galois group of the lifted polynomial 1.
as a permutation group on the set of roots of f , is a member of G. Moreover, we
show that these conjectures form a hierarchy of relaxations of the original schemes
conjecture in [IKS09]. More specifically, for two families of finite permutation
groups G and G’ such that every member of G is (permutation isomorphic to) a
subgroup of member in G’, the schemes conjecture for G is implied by that for G'.
The worst case occurs when G is the family of symmetric groups, which yields
(a slight relaxation of) the original scheme conjecture. We hope progress on this
hierarchy of conjectures will shed some light on the original schemes conjecture
and pave the way for solving deterministic polynomial factoring over finite fields in
polynomial time under GRH.
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Galois groups with restricted noncyclic composition factors. Using our frame-
work of P-schemes, we design a GRH-based deterministic factoring algorithm that
completely factorizes a polynomial f using a lifted polynomial f, such that the
running time of the algorithm is controlled by the noncyclic composition factors> of

the Galois group of f . More specifically, we have

Theorem 1.2 (informal). Under GRH, there exists a deterministic algorithm that
given f(X) € F,[X] and a lifted polynomial® f of f with the Galois group G,
completely factorizes f in time polynomial in k(G)'°¢*@), r(G) and the size of the
input, where k(G) (resp. r(G)) is the maximum degree (resp. maximum order) of

the alternating groups (resp. classical groups) among the composition factors of G.

See Theorem 8.2 for the formal statement. Now fix £ € N* and consider the family
of finite groups whose noncyclic composition factors are all isomorphic to subgroups
of Sym(k). This family is commonly denoted by I', in the literature, and plays a
significant role in graph isomorphism testing [Luk82; Mil83], asymptotic group
theory [BCP82; Pyb93; PS97] and computational group theory [Luk93; Ser03]. It
is known that a classical group of order r lies in I'y only if » = kCUogk) [Co078].

So Theorem 1.2 implies

Theorem 1.3 (informal). Under GRH, there exists a deterministic algorithm that
given f(X) € F,[X] of degree n and alifted polynomial f of f, completely factorizes
f in time polynomial in n, log q and k'°*, where k is the smallest positive integer

such that the Galois group of fisinTy.

See Theorem 8.3 for the formal statement. It refines and generalizes the main
results of [Hua91a; Hua91b; Evd92; R6n92; Evd94]. Note that the algorithm
runs in polynomial time under GRH provided that k = 2°(V1°8™)  Previously,
polynomial-time factoring algorithms for I';, were known only for bounded & under
GRH [Evd92; BCP82].

Other results. Finally, we list some other results obtained in this thesis.

SRecall that a composition factor of a finite group is a finite simple group, and by the classification
of finite simple groups (CFSG) it is isomorphic to one of the following groups: a cyclic group of
prime order, an alternating group, a classical group, an exceptional group of Lie type, or one of the
26 sporadic simple groups.

®For a general (not necessarily prime) finite field IF,, we use a more general definition of lifted

polynomials (Definition 5.1) instead of Definition 1.1.
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1. The schemes conjecture in [IKS09] asserts that if a homogeneous antisym-
metric orbit m-schemes on a set S has no matching, then m = O(1) (see
Chapter 2 for the definition of matchings). Currently, the best known upper
bound for m is m < clog|S| + O(1), where ¢ = log% = 0.5578---. We
consider the analogous problem for a general linear group GL (V) over a fi-
nite field F, acting naturally on S = V — {0}, and show that for this new
problem, we have a slightly improved bound m < ¢log|S| + O(1) where
d = m < 0.5273 -+ (Theorem 7.5). In addition, we consider the
analogous problems for the groups GL(V'), I'L(V'), PGL(V), and PT'L(V),
and show that these problems are equivalent, in the sense that the optimal val-

ues of m for them differ from each other by at most a constant (Theorem 7.4).

2. We generalize the notion of orbit schemes in [IKS09], or what we call orbit
m-schemes, to the notion of orbit P-schemes. We also prove that an orbit
m-scheme associated with a group K is antisymmetric iff the order of K is
coprime to 1,2,...,m (Lemma 2.16), which in turn shows that a result of
[R6n88; IKSO9] on antisymmetric m-schemes is tight (cf. Lemma 2.17 and
Example 2.2).

3. The paper [IKS09] showed that the schemes conjecture is true when restricted
to orbit schemes, by proving that all antisymmetric homogeneous orbit m-
schemes on a set of cardinality greater than one have a matching for m > 4.
We prove that the later statement in fact holds for m > 3 (Theorem 6.6).

1.3 Outline of the thesis.
Basic notations and preliminaries are given in the next section, and additional

preliminaries are given at the beginning of subsequent chapters.

Chapter 2 introduces definitions and develops basic results about P-schemes: we
first define P-schemes and their various properties. After reviewing the notion of
m-schemes in [IKS09] and their connection with association schemes, we prove
the formal version of Theorem 1.1 above. Then we investigate the notion of orbit
schemes in [IKS09], and extend it to our framework of P-schemes. Finally, some
concrete examples of strongly antisymmetric homogeneous m-schemes are given for

small m.

The rest of the thesis is divided into two parts: Chapters 3—5 constitute the algorith-
mic part of the thesis, whereas Chapters 68 focus on further development of the

theory of P-schemes. The latter is mostly algorithm-free, except that Section 8.1



9

contains an algorithm that depends on Section 4.2, Section 4.3, and Theorem 5.9.

The dependencies among chapters are roughly illustrated in Figure 1.1.

Chapter 2

Chapter 6

Chapter 3

[ Chapter 4 } -- +[ Chapter 5 ]

!
|
N |
|
|
|

> N2

Chapter 8

’
l /

Figure 1.1: Dependencies among chapters

In Chapter 3, we develop the P-scheme algorithm, and use it to reprove the main
results of [Hua91a; Hua91b; R6n88; Ron92; Evd94; IKS09]. As mentioned above,
the results in Chapter 3 are subject to the condition that the input polynomial is

defined over a prime field I, and factorizes into distinct linear factors over [F,,.

The P-scheme algorithm requires a subroutine that constructs a collection of number
fields. In Chapter 4, we discuss various ways of implementing this subroutine and
survey techniques of constructing number fields in the literature [Len83; Lan84;
Lan85; LMS85; Evd92].

In Chapter 5, we develop the generalized P-scheme algorithm where the condition
about the input polynomial is no longer needed. The results in Chapter 3 are then

proved in full generality.

Chapter 6 develops various techniques of constructing new P-schemes from old
ones. In Section 6.3, we formulate the schemes conjectures for families of finite
permutation groups and show that these conjectures form a hierarchy of relaxations
of the scheme conjecture proposed in [IKS09]. Our result that an antisymmetric
homogeneous orbit m-scheme on a set of cardinality » > 1 has a matching for

m > 3 is proved in Section 6.6, where we also discuss primitivity of m-schemes.
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Chapter 7 discusses the (non-)existence of certain 7P-schemes for symmetric groups
and linear groups. In particular, we review the result in [Arol3] on m-schemes
(based on the work of [Evd94; IKS09], and independently discovered in [Gua09]),
and interpret it as a result about P-schemes with respect to the natural action of
symmetric groups. We also extend it to a more general result about P-schemes
with respect to standard actions of symmetric groups. The analysis employs a
technical “self-reduction lemma” proven in Section 7.2, which is also heavily used

in Chapter 8. Some results about P-schemes for linear groups are also given.

Finally, in Chapter 8, we describe our deterministic factoring algorithm for Galois
groups with restricted noncyclic composition factors. More specifically, we give the
algorithm and its analysis in Section 8.1, assuming a statement about 7P-schemes for
primitive permutation groups (Theorem 8.4). The rest of Chapter 8 then focuses on

verifying this statement.

1.4 Notations and preliminaries

Denote by N7 the set of positive integers. For k € NT, we denote by [k] the set
{1,2,...,k}. For two sets A and B, write A — B for the set difference {z : = €
Aand x ¢ B}.7 The cardinality of a finite set S is denoted by |.S|. Denote by log
the logarithmic function with base 2.

A partition of a finite set S is a set P of nonempty subsets of S satisfying S =
[15cp B, where [ [ denotes the disjoint union. Each B € P is called a block of P.
For two partitions P and P’ of S, we say P refines P’, or P is a refinement of P’, if
every block in P’ is a disjoint union of blocks in P. We say the refinement is proper
if P # P’. Denote by Og the coarsest partition of S, i.e. the one consisting of a
single block S. Denote by cog the finest partition of S, i.e., cog = {{z} : z € S}.
For T' C S and a partition P of S, define P|p := {BNT : B € S} — {0} which
is a partition of T, called the restriction of P to T. For a set S and k € NT, define
the set S®) 1= {(x1,...,24) € S* : 2; # z; for i # j} consisting of k-tuples of

distinct elements.

Write f o g for the composition of two functions f and g, from right to left. We note
that this is the common convention, although group theorists often use the opposite
convention g f. For a function f and a subset 7" of the domain of f, denote by f|r
the restriction of f to 7'. For a field K, denote the characteristic of K by char(K).

"This is often denoted by A\ B. We use A — B to avoid confusion with a right coset space
H\G.
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A polynomial is monic if its leading coeflicient is one. For two polynomials
f(X),g9(X) € F,[X] over a finite field IF,, that are not both zero, define their greatr-
est common divisor ged(f, g) to be the unique monic polynomial h(X) € F,[X] of
the greatest degree that divides both f and g. It is well defined since F,[X] is a
unique factorization domain, and can be computed efficiently from f and g using
the Euclidean algorithm [GG13].

Basic notations about groups. All groups in this thesis are finite. Write e for
the identity element of a group. For a group G, a subgroup H of GG, and g € G,
write gH for the left coset {gh : h € H} and H g for the right coset {hg : h € H}.
Write G/ H for the left coset space {gH : g € G} and H\G for the right coset
space {Hg : g € G} For two subgroups H, K of G and g € G, write HgK for the
double coset {hgh' : h € H,h' € K}, and write H\G/ K for the double coset space
{HgK : g € G}. Define [G : H| := |G|/|H], called the index of H in G. Write
(Hy, ..., Hy) for the join of subgroups Hq, ..., Hy, i.e., the subgroup generated by
Hy, ..., Hg. Write (g1,...,gx) for the subgroup generated by the group elements

gl)"‘?gk'

A subquotient of a group G is a quotient group of a subgroup of GG. Two subgroups
H and H'’ are said to be conjugate in G if H' = gHg~! for some g € G. A subgroup
H is said to be normal in G or a normal subgroup of G if gHg~' = H forall g € G.
Write H < G for H being normal in G. Define the normalizer of H in G to be
Ng(H) :={9€ G:gHg ' = H}. We have H < Ng(H), and indeed N (H) is
the unique maximal subgroup of G with this property. The center of G, denoted by
Z(G), is the subgroup {g € G : gh = hg forall h € G}. A subgroup H of G is
maximal if H # G and there exists no subgroup H' of G satisfying H C H' C G.

For a finite set S, denote by Sym(.S) and Alt(S) the symmetric group and the
alternating group on S respectively. We also write Sym(n) and Alt(n) when
S = [n]. Permutations are often written in the cycle notation, where (a; as - -+ ay)

denotes the cyclic permutation sending a; to a;,; for 1 < i < n and a,, to a;.

For a group G, denote by Aut((G) the automorphism group of G, i.e., the group
of invertible homomorphisms p : G — G where the group operation is defined by
composition. For g € G, the map 7, : G — G sending h € G to ghg™! is an
automorphism of G, called an inner automorphism of G. Define Inn(G) := {7, :
g € G}, called the inner automorphism group of G, which is a normal subgroup
of Aut(G). Define Out(G) := Aut(G)/Inn(G), called the outer automorphism
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group of G.

Group actions. Let G be a group and S be a finite set. A (left) group action or
an action of G on S is a function ¢ : G x S — S satisfying (1) ¢(e, z) = x for all
x € Sand (2) p(g,0(h,x)) = @(gh,z) forall z € S and g, h € G. We also say G
acts on S and S is a G-set. We usually denote ¢(g, x) as 9z when ¢ is clear from the
context. For 7' C S, write 97 for the set {9« : x € T'}. Again, we note that group
theorists commonly adopt the right action convention xgh = (xg)h instead of our
left action convention. One can switch between the two conventions by taking the

inverse map g — g~ .

Given a G-set S, the elements of GG act as permutations of S. This gives a group
homomorphism p : G — Sym(S), called a permutation representation of G on
S. The action of G on S is faithful if p is injective. The image p(G) is called a
permutation group on S. When the action is faithful and clear from the context, we

usually just say G is a permutation group on S.

Orbits and stabilizers. For a G-set S, the orbit or G-orbit of an element x € S
is Gx := {92 : g € G}. The set S is a disjoint union of its G-orbits. The stabilizer
ofx € SisG, :={g € G:9%c =x}. For T C S, define the pointwise stabilizer

Gr={g9eG:9%z=xforallz € T}
and the setwise stabilizer
Gy ={9e€G:9T =T}
For T = {x1,...,2x} C S we also write G, ., for Gp. Let S¢ := {x € S :
9x = z for all g € G} be the set of fixed points of G.
An action of GG on a set S is transitive if it has only one orbit. It is semiregular

if G, is trivial for all x € S. A group action is regular if it is both transitive and

semiregular. For k € N, an action of G on S induces an action on S*) via

Ny, oo o) = (g, .. 9y),

called the diagonal action of G on S®). For 1 < k < |S|, we say the action of (¢
on S is k-transitive if the corresponding diagonal action of G on S®*) is transitive.
We say it is (k + 1/2)-transitive if it is k-transitive, and in addition for all " C S
of cardinality k, either the G'r-orbit of every x € S — T contains more than one
element, or |S — T'| = 1. A (k + 1)-transitive action is also (k + 1/2)-transitive.

For more discussion about half transitivity, see [Wie64].
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G-modules and G-invariant elements. Given a group G, an abelian group A is
called a G-module if it has an action of G compatible with its abelian group structure,
ie, % +9y =9x+vy)forz,y € Aand g € G. The set of fixed points A is a
subgroup of A, known as the subgroup of G-invariant elements of A. Suppose in
addition that A is a ring (resp. field) and the action of G respects the multiplication
of A as well, then A% is a subring (resp. subfield) of A, called the fixed subring
(resp. fixed subfield) of A corresponding to G.
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Chapter 2

P-SCHEMES

We introduce the notion of P-schemes in this chapter, which plays a central role
throughout the thesis. A P-scheme is a combinatorial structure associated with a
group G and a conjugation-closed poset P of subgroups of GG. Roughly speaking, it
contains a collection of partitions of right coset spaces H\G for H € P, and these

partitions satisfy various consistency properties.

For every permutation group G, we define the integers d(G),d'(G) € N* in terms
of P-schemes associated with GG, and show that they are bounded by the minimum
base size of G. We will see in Chapter 3 that d(G) and d'(G) are closely related to

deterministic polynomial factoring.

The work [IKS09] proposed the notion of m-schemes as a “higher-order” general-
ization of association schemes that are central in the field of algebraic combinatorics
[BI84]. We show P-schemes are further generalization of m-schemes: an m-scheme
arises as a P-scheme associated with a symmetric group, or more generally with a

multiply transitive group action.

Other results in this chapter include:

e We define orbit P-schemes, generalizing the notion of orbit m-schemes in
[IKS09]. We also provide a simple and exact criterion for antisymmetry of
orbit m-schemes. Using this criterion, we give examples of antisymmetric
homogeneous orbit m-schemes on finite sets .S for m up to ¢ — 1, where ¢
is the least prime factor of |S|. This result matches the upper bound m < ¢
established by Ronyai [Ron88] for arbitrary antisymmetric homogeneous m-

schemes. We reproduce Ronyai’s argument and extend it to P-schemes.

e We also provide examples of m-schemes for small values of m. In partic-
ular, for m < 3, we give explicit constructions of m-schemes satisfying the
properties of strong antisymmetry and homogeneity that are closely related to
deterministic polynomial factoring.

Outline of the chapter. Preliminaries are given in Section 2.1. In Section 2.2, we

define the notion of P-schemes and its various properties. We also define d(G) and
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d'(G) in terms of P-schemes. In Section 2.3, we review the notion of m-schemes
and prove the equivalence between m-schemes and a certain kind of P-schemes.
We also discuss the connection between m-schemes and association schemes. In
Section 2.4, we define orbit m-schemes as well as orbit P-schemes. An exact
criterion of antisymmetry is given for orbit m-schemes. Then we discuss Ronyai’s
upper bound for m for antisymmetric homogeneous m-schemes and extend it to
‘P-schemes. Finally, in Section 2.5, we describe explicit constructions of strongly

antisymmetric homogeneous m-schemes for m < 3.

2.1 Preliminaries

Let G be a group. A partially ordered set or poset of subgroups of G is simply a set
of subgroups of G, partially ordered by inclusion. All posets of subgroups in this
thesis are assumed to be conjugation-closed, and we give the following definition

for such posets.

Definition 2.1 (subgroup system). A poset P of subgroups of G is called a subgroup
system over G if it is closed under conjugation in G, i.e., gHg™* € P forall H € P
and g € G.

We introduce P-schemes in next section, each associated with a subgroup system
‘P. While the definitions are formulated for general subgroup systems, those arising
from the factoring algorithms have special forms. In particular, the following kind

of subgroup systems are frequently used in the algorithms.

Definition 2.2 (system of stabilizers). Suppose G is a finite group acting on a finite
set S. For m € N, let P, be the set of pointwise stabilizers for nonempty subsets
T C S of cardinality up to m:

P :={Gr:T CS,1<|T| <m}.

Then P,, is a subgroup system over G, called the system of stabilizers of depth m

(with respect to the action of G on S).

Left and inverse right translation. Let H be a subgroup of GG. There is an action
of GG on the right coset space H\G defined by

IHh = Hhg™" for Hh € H\G and g € G,
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called the action of G on H\G by inverse right translation. More generally, for a
subgroup G’ C G, we have the action of G’ on H\G by inverse right translation,

defined by restricting the previous action of G to G'.

We also have an action of the normalizer Ng(H ) on H\G defined by
9Hh = Hgh for Hh € H\G and g € N¢(H),

called the action of Ng(H ) on H\G by left translation.

It is easy to see that they are indeed well defined group actions. For example,
we check that for left translation, the coset YHh = Hgh is independent of the
representative h of Hh: Suppose a different representative b’ is chosen such that
Hh = HI, then we have gh/(gh)™' = gh'h™'g~! € gHg ' = H for g € Ng(H)
and hence Hgh = Hgh'.

For any h € G, it holds that Hgh = Hh iff g € H. So the action of Ng(H) on
H\G induces a semiregular action of N;(H)/H on H\G, definedby " Hh = H gh,
called the action of Ng(H)/H on H\G by left translation.

Equivalent actions and permutation isomorphic actions. Let GG be a group and
let S, T be G-sets. We say the actions of G on S and T are equivalent if there exists
a bijective map A : S — T satisfying A\(%2) = Y(A\(z)) forall x € S and g € G.

And ) is said to be an equivalence between the two actions.

More generally, suppose ¢ : G — H is a group isomorphism, S is a G-set, and T’
is an H-set. We say the action of G on S is permutation isomorphic to the action
of H on T" (with respect to ¢) if there exists a bijective map A : S — T satisfying
A(9z) = ?9(\(z)) forallz € Sand g € G.

The following lemma states that any transitive group action is equivalent to the

action on a right coset space by inverse right translation.

Lemma 2.1. Let G be a group acting transitively on a set S. For any x € S,
the map )\, : S — G,\G sending 9z to G,g~' for g € G is well defined and is
an equivalence between the action of G on S and that on G, \G by inverse right

translation.

Proof. As the action of GG on S is transitive, for any y € S we can choose g € GG

such that y = 9. Suppose g, ¢’ are two such choices. We have ¢ 9z =9 'y =
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and hence ¢7'¢’ € G,. So G,.g7' = G,¢'~'. Therefore \, is well defined. It is

surjective since any coset G,g € G,\G is the image of 9"z for a representative g
of G,g. And it is injective since G,g~! = G,¢'~! implies g~ !¢’ € G, and hence
9'y = 9979 = 92 Finally we check that for any y = 92 and h € G, it holds that

Ao("y) = Ao(Mx) = Ga(hg) ™' = (Gog™ )R ="(A(y))
as desired. 0
Corollary 2.1 (orbit-stabilizer theorem). Let S be a G-set for a finite group G. Then

|Gz| = |G|/|Gs| for any x € S.

Projections and conjugations. We define the following two kinds of maps be-

tween right coset spaces H\G for various subgroups H C G:

e (projection) for H C H' C @, define the projection my - H\G — H'\G
to be the map sending Hg € H\G to H'g € H'\G, and

e (conjugation) for H C G and g € G, define the conjugation cy, : H\G —
gHg '\G to be the map sending Hh € H\G to (gHg ')gh € gHg '\G.

Lemma 2.2. The maps my g and cy 4 are well defined and satisfy the following

properties:

o The maps my y are surjective and cy 4 are bijective.

® CH',g ©THH = TgHg=',gH'g~* © CH,g-

e (transitivity) Tg v © T,y = T e and Cyrrg—1 ¢ © CH g = CH,g/g-

e (G-equivariance) wy g(YHh) = ‘g g (HR) and ¢y (YHR) = cg o (HR)

with respect to the action of G on H\G by inverse right translation.

Proof. The proof is straightforward from the definitions. We check cpr 4 0 Ty g =

TgHg-1,9H'g-1 © Cr,g and leave the rest to the reader: For Hh € H\G, we have
cirg 0w (Hh) = cr g(H'h) = (gH'g™")gh
and
Tgtig— ghrg—1 © Cig(Hh) = gy g1 ((9Hg ™) gh) = (gH'g™")gh

as desired. n
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Note that for g € Ng(H), the map cy 4 is the permutation of H\G sending each
Hh to 9 Hh with respect to the action of Ni(H) on H\G by left translation.

2.2 ‘P-schemes
We start with the definition of a P-collection, which is a collection of partitions of

right coset spaces.

Definition 2.3 (P-collection). Let P be a subgroup system over a finite group G.
A ‘P-collection C is a family {Cy : H € P} indexed by P where each Cy is a
partition of H\G.

We are now ready to define the central object of this thesis.

Definition 2.4 (P-scheme). A P-collection C = {Cy : H € P} is a P-scheme if it
has the following properties:

e (compatibility) for H, H' € P with H C H' and z,2’ € H\G in the same

block of Cy, the images wy g (v) and 7y g (2") are in the same block of Cpr.

e (invariance) for H € P and g € G, the map cy, - H\G — gHg *\G maps
any block of C'y to a block of Cyprg1.

e (regularity) for H, H' € P with H C H', any block B € Cy, B' € Cy, the
number of x € B satisfying my p(x) = y is a constant when y ranges over
the elements of B'.

It is worth noting that in a P-scheme, the partition of H\G for some H € P
determines the partitions of H'\G for all H' € P containing H:

Lemma2.3. LetC = {Cy : H € P} be a P-scheme. For H,H' € Pwith H C H',
the blocks of Cyr are exactly the images of the blocks of Cy under g

Proof. Let B’ be a block of C'y. By compatibility, B’ is a union of 7y g/ (B) for
one or more blocks B € Cy. Assume 7 g/ (B) C B’ for some B € Cy and choose
y€mpgm(B),y € B — 7wy p(B). Then we have |{x € B : mg p(x) =y} >0
but |[{z € B : gy (r) = y'}| = 0, which contradicts regularity. O

In particular, if P has the property that all minimal subgroups in P are conjugate

in G, then by invariance and Lemma 2.3, the partition for one of the minimal
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subgroups determines the whole P-scheme. For instance, this holds if P is a system

of stabilizers P,,, with respect to an m-transitive group action.

Remark. Besides the set-theoretic definition of P-schemes given in Definition 2.4,
there also exists an equivalent “algebraic” or ring-theoretic definition of P-schemes.
It formulates the three defining properties (compatibility, invariance, and regularity)
in a unifying way as closedness of rings under three kinds of maps, respectively:
inclusions, conjugations, and trace maps. The interested reader is referred to Ap-

pendix A for further discussion.

Next we define some optional properties of P-schemes.

Homogeneity and discreteness. Recall that for a finite .S, we denote by Og the

coarsest partition of S and cog the finest partition of S.

Definition 2.5. A P-scheme C = {Cy : H € P} is homogeneous on a subgroup
H € P if Cy = O\, and otherwise inhomogeneous on H. It is discrete on H if

Cy = oo\, and otherwise non-discrete on H.

We will see in Chapter 3 that homogeneity (resp. discreteness) of P-schemes is
closely related to whether or not the factoring algorithm always produces a proper

factorization (resp. the complete factorization) of the input polynomial.

Symmetry and antisymmetry. Invariance of P-schemes states that maps cp 4 :
Hh — (gHg *)gh always send blocks to blocks. When g € Ng(H), the map ¢y,
is a permutation of H\G, and we can impose on a P-scheme the constraint that
ch,g always sends a block to itself. Alternatively, we may require cy , to always
send a block to a different block when it is not the trivial permutation. These two

constraints are captured by symmetry and antisymmetry of P-schemes, respectively.

Definition 2.6. A P-scheme C = {Cy : H € P} is symmetric if for H € P and
g € N¢(H), the permutation cy , of H\G maps every block of Cy to itself. And C
is antisymmetric if for H € P and g in Ng(H ) but not in H, the permutation cy ,
maps every block of Cy to a different block.

Symmetry (resp. antisymmetry) is equivalent to the property that for all H € P,
elements in each (N (H)/H )-orbit of H\G belong to the same block (resp. distinct
blocks) of C'y, where N (H)/H acts on H\G by left translation.
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As will be seen in Chapter 3, antisymmetry of P-schemes is important for deter-
ministic polynomial factoring [R6n88; Rén92; Evd94; IKS09]. For now we show
that an antisymmetric P-scheme is discrete on H for any H € P provided that P

contains the trivial subgroup of G.

Lemma 2.4. Suppose P is a subgroup system over a finite group G that contains
the trivial subgroup {e}. For H € ‘P, all antisymmetric P-schemes are discrete on
H.

Proof. LetC = {Cy : H € P} be an antisymmetric P-scheme. As Ng({e}) = G
acts transitively on {e}\G by left translation, we have C'.; = 0o(.}\¢ by antisym-
metry. Now consider an arbitrary subgroup H € P. By Lemma 2.3, we have
Chy = A{n{e},u(B) : B € Ce} = oo So C is discrete on H. O

On the other hand, symmetry of P-schemes plays no role in polynomial factoring

as far as we know, and we only discuss it within this chapter.

Strong antisymmetry. We introduce another property called strong antisymme-
try, which is a strengthening of antisymmetry define above. It is based on an
idea introduced by Evdokimov [Evd94] which leads to his quasipolynomial-time

factoring algorithm.

Antisymmetry states that no nontrivial permutation of blocks arises from a conju-
gation ¢y, where g € Ng(H): For such a map ¢y, and a block B € Cly, either
the image cp 4(B) is a different block, or ¢y, is the identity map. We strengthen
this property by considering permutations arising from compositions of not only
conjugations, but also projections and their inverses. Of course, a projection 7 g/
is not invertible whenever H C H'. Nevertheless, it is possible that the restriction
of 7y v to some block B € Cy maps B bijectively to some block B’ € Cp, in

which case the inverse map (7 g|5) " is well defined.

Definition 2.7. A P-scheme C = {Cy : H € P} is strongly antisymmetric if for
any sequence of subgroups Hy, ..., H, € P, By € Chy,, ..., By € Cq,, and maps

01, ...,0k satisfying

e 0; is a bijective map from B; 1 to B;,

. —1
® 0;1s Oftheform CH;_y,9|Bi—1» TH;_1,H;|B;_1» OF (ﬂ-HiaHi—l Bi) ’
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e Hy= Hj and By = DBy,

the composition oy, o - - - o 01 is the identity map on By = B;,.

In other words, no nontrivial permutation could be obtained by composing maps of

the form cHi—la9|Bi—1’ TH;_1,H,; |Bi71’ or (ﬂ-Hz}Hifl |Bi)71'

A strongly antisymmetric P-scheme is indeed antisymmetric: Assume C = {C :
H € P} isnotantisymmetric, then there exist H € P,g € Ng(H)—Hand B € Cy
such that ¢y ,(B) = B. Let oy be the map cy4|p : B — cuy(B) = B. It sends
r € B to 9"z with respect to the action of Ng(H)/H on H\G by left translation.
As this action is semiregular and gH € Ng(H)/H is not the identity element, the

map o is a nontrivial permutation of B. So C is not strongly antisymmetric.

d(G) and d'(G). For every finite permutation group G, we define d(G), d' (G) €
N* which are closely related to deterministic polynomial factoring, as will be seen
in Chapter 3.

Definition 2.8. Let G be a finite permutation group on a finite set S. For m € NT,

let Py, be the system of stabilizers of depth m with respect to this action. Define
d(G),d'(G) € N* as follows.

e Define d(Q) to be the smallest integer m € N such that all strongly antisym-

metric P,,-schemes are discrete on G, forall x € S.

e If G acts transitively on S and | S| > 1, define d'(G) to be the smallest integer
m € N7 such that all strongly antisymmetric P,,-schemes are inhomogeneous
on Gy forall x € S. Otherwise let d'(G) = 1.

We have 1 < d'(G) < d(G) < max{|S| — 1, 1} for any finite permutation group G
on a finite set S. The first two inequalities are obvious and the last one follows from
Lemma 2.4 and the fact that any g € G fixing |S| — 1 elements of S is the identity.
A better upper bound for d(G) is given by the minimal base size of G.

Definition 2.9 (base). Let GG be a finite permutation group on a finite set S. A base
of G is a set B C S for which G equals the trivial subgroup {e}. The minimal
base size of G, denoted by b(G), is the minimum cardinality of a base of G.

By Lemma 2.4, we have
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Lemma 2.5. d(G) < max{b(G), 1} for any finite permutation group G.

We also prove the following bound in latter chapters based on the work of [Evd94;
IKS09; Gua09; Arol3].

Lemma 2.6. There exists an absolute constant ¢ > 0 suchthat d(G) < clogn+0(1)

for any finite permutation group G on a set of cardinality n € N,

The best known upper bound for c is log% = 0.55788..., proved by [Gua09;

Aro13]. See Section 7.1 for more details.

2.3 m-schemes

The paper [IKS09] proposed the notion of m-schemes. In this section, we present
their definition and show that it is generalized by the notion of P-schemes: roughly
speaking, an m-scheme could be regarded as a P-scheme where P is a system of

stabilizers with respect to an m-transitive group action.
We use the following notations:

Let S be a finite set and let m € N*. Define an m-collection on S to be a collection

of partitions Py, ..., P, of S ... S(™ respectively.

For k € [m], the symmetric group Sym(k) acts on the set S*) by permuting
the k coordinates, i.e., for g € Sym(k) and v = (z1,...,7%) € S*), we have

92 = (y1,...,Yx) Where ys; = z;, or equivalently y; = x,-1 .

For1 < k <mandi € [k], let 7F : S® — S(*=1 be the projection omitting the
kth coordinate. More generally, for a proper subset 7' of [k], let 7k : S®) — §(=7)

be the projection omitting the coordinates whose indices are in 7.

For k € [m] and g € Sym(k), let c* be the permutation of S*) sending  to Yz, with

respect to the above action of Sym(k) on S*).

Definition 2.10 (m-scheme [IKS09]). An m-collection 11 = {Py,..., P} on S is

an m-scheme if it has the following properties:

e (compatibility) for 1 < k < m,i € [k] and elements z,z' € S*) in the same

block of Py, the elements 7 (z), n¥ (') are in the same block of P, .

s g

e (invariance) for k € [m] and g € Sym(k), the permutation c’; of S sends
blocks of Py, to blocks.
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e (regularity) for 1 < k < m, i € [k] and blocks B € P, B' € Py_1, the

number of x € B satisfying w¥(x) = y is a constant when vy ranges over the

elements of B'.

Furthermore, we say 11 is symmetric (resp. antisymmetric) if for all k € [m| and
g € Sym(k) — {e}, the permutation c’g€ of S®) sends every block of P, to itself
(resp. a different block). And 11 is said to be homogeneous if P, equals the coarsest

partition Og.

We also introduce the following definitions which did not appear in [IKS09].

Definition 2.11. An m-scheme Il = {Py,..., P,,} on S is said to be discrete if P,
equals the finest partition cog. It is said to be strongly antisymmetric if no nontrivial
permutation of any block of Py for any k € [m] can be obtained by composing maps
of the form ¢,

B, Tl B, or (1| 5) ™!, where B is a block of P;.

Remark. The parameter m is allowed to be arbitrarily large in our definition. Never-
theless, the sets S*) for k = |S| 4+ 1, ..., m are empty and hence the corresponding
partitions P contain no information. By discarding these partitions and replacing

m with min{m, |S|}, we may assume m < |5]|.

The connection of m-schemes with P-schemes

Given a finite set S and m € NT, let G be a group acting m’-transitively on S
where m’ := min{m,|S|}.! Choose P = P,, to be the system of stabilizers of
depth m with respect to this action (see Definition 2.2). We prove that for such G
and P, every P-scheme gives rise to an m-scheme on .S, and (under an additional
assumption), there is a one-to-one correspondence between m-schemes on S and

P-schemes, with various properties (symmetry, antisymmetry, etc.) preserved.

Fork € [m/| and x = (v1,...,2;) € S®, let T, = {x1,...,2;}. The stabilizer
G, with respect to the diagonal action of G on S*) equals the pointwise stabilizer
G, with respect to the action of G on .S, and therefore G, = G, € P. As the
action of G on S is transitive (which follows from m/-transitivity of G on S), by

Lemma 2.1, we have an equivalence of group actions

Ae: S® 5 G\G

'In particular, we can take G = Sym(S) acting naturally on S, which is | S|-transitive.
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between the diagonal action of G on S*) and the action on G, \G by inverse right
translation. It sends 9z to G,g~! for g € G. We use these maps ), to construct an

m-scheme on S from a P-scheme, and vice versa.

From a P-scheme to an m-scheme. We construct an m-scheme on S from a

P-scheme as follows.

Definition 2.12. Given a P-scheme C = {Cy : H € P}, define an m-collection
I(C) ={P,...,Pn}onSasfollows: foreach k € [m'| where m’ = min{m, |S|},
pick v = (z1,...,2) € S®, and define P, = {)\;'(B) : B € Cg,}. For
m' < k < m, the partition Py, is a partition of the empty set S*) and is unique.

Lemma 2.7. I1(C) as defined above is independent of the choices of elements x and
is an m-scheme. It is symmetric (resp. antisymmetric, strongly antisymmetric) if C
is symmetric (resp. antisymmetric, strongly antisymmetric). And it is homogeneous

(resp. discrete) iff C is homogeneous on G, (resp. discrete on G ) for x € S.

Proof. We may assume m < |S|. Fix k € [m] and we show that P, does not
depend on the choice of 2 € S*). Consider two elements z, 2’ € S®*). Choose
h € G such that 2’ = 2. Such h exists since G acts transitively on S®*). Then
G = hG,h~" and we have the conjugation c¢, , : G,\G — G./\G sending G.g
to G hg. We check that \,; = c¢, » © A,. This holds since for y = 92’ € SH) | we

have \,/(y) = Gg~! and
cGon © Aa(y) = cayn 0 Xe(’2') = caun 0 M (") = a1 (Go(gh) ™) = Gug™.

So )\;,1 =)\lo Cai,h =)\lo ca,, n-1- As C is invariant, the conjugation cg , p-1
sends blocks of Cz, to blocks of Cg, . So the two partitions {\;'(B) : B € C¢, }
and {/\;,1(3) : B € Cg,, } are identical, i.e., the elements x and 2’ define the same

partition F.

Next we check that II(C) is an m-scheme. For 1 < k < m, consider the elements
x € S® and 2’ € S* =1 as picked in Definition 2.12. Let 7 = 7¥(x) € S*~1 50
that G, C G5. Choose h € G, satisfying 2’ = "Z so that G, = hGzh~!. Then the

following diagram commutes:

S(k) : s G(k—1)

. |

Gx\G CGi,hOﬂ'GxaGi Gx,\G .

~
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To see this, note that for any y = 92 € S*) where g € G, we have

CGan © MGGz © Ae(Y) = €y, © TG, 65 (Gag ™) = €6y, (Gag™') = Gurhg ™,
and
Mo 0 T (y) = A 0 7 (92) = Ay (*(wF(2))) = A (U) = A (" &) = Gurhg ™",

as desired. Also note that the maps A\, and )\, are bijections, sending blocks
to blocks. Compatibility and regularity of TI(C) then follow from compatibility,

regularity, and invariance of C.

For k € [m], 7 € Sym(k) and x = (z1,...,7;) € S¥, let 2/ = cF(x) € P,
Choose h € G such that z = "2/. Then G, = hG,h~'. We also have G, = G,/
since they are both the pointwise stabilizer G with respect to the action of G on .S,
where T' = {z1,...,2;}. Soh € Ng(G,). We claim that the following diagram
commutes:

Gy o gk)

ol -

G \G — s G\G.

To see this, note that for any y = 92 € S*) where g € G, we have cg, , 0 A\, (y) =
ce, n(Geg™') = Gyhg™!, and

Az © Cﬁ(y) = Az 0 C¢<gx) = A (9(01;(11))) = /\ﬂc<gx/) = Ax(ghill’) = Gachg_17

as desired. Invariance of II(C) then follows from invariance of C. So II(C) is an

m-scheme.

The previous diagram also shows that if C is symmetric (resp. antisymmetric) then
so is II(C). Suppose a nontrivial permutation of some block of Py for some k € [m)]
can be obtained by composing maps of the form ¢} |5, 775, or (7%|5) ™", then using
the two diagrams above, we also obtain a nontrivial permutation of some block of
G.\G (where x € S is as chosen in Definition 2.12) by composing conjugations,
projections, and their inverses (restricted to blocks). Therefore, if C is strongly

symmetric, so is II(C).

Finally, for any x € S, the partition P, of S is constructed using the bijection
Az 0 S — G, \G and the partition C, of G, \G. Therefore I1(C) is homogeneous

(resp. discrete) iff C is homogeneous on G, (resp. discrete on G ). l
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From an m-scheme to a P-scheme. Conversely, we could also construct a P-
scheme from an m-scheme on S. Here we need an additional assumption that
m # |S| — 1 and G acts min{|S|, m + 1/2}-transitively on S.2

Lemma 2.8. Assume m # |S| — 1 and G acts min{|S|, m + 1/2}-transitively on
S. For T, T" C S of cardinality at most m, we have G = G iff T' = T". And the
normalizer Ng(Gr) of G is the setwise stabilizer Gy

Proof. The assumption implies that set of elements in S fixed by G (resp. Gv) is
precisely T" (resp. T"). So G = G implies T' = T". The other direction is trivial.

For g € G, we have gGrg~' = Gor. So g € Ng(Gr) iff Gr = Gop, which holds
iff T' = 97T by the first part. So Ng(T') = Gyry. H

Definition 2.13. Assume m # |S| — 1 and G acts min{|S|, m + 1/2}-transitively
on S. Given an m-scheme Il = {Py, ..., P, } on S, define a P-collection C(I1) =
{Cu : H € P} as follows: For H € P, pick T C S of cardinality k € [m| such that
H = Gr. By Lemma 2.8, such a set T is unique. Pick x = (x1,...,71) € S®) such
that T = {x1,...,7}. Then G, = G = H and we have the map )\, : S® —
H\G. Define Cy = {\,(B) : B € P}.

Lemma 2.9. C(II) as defined above is independent of the choices of elements x and
is an P-scheme. It is symmetric (resp. antisymmetric, strongly antisymmetric) if 11
is symmetric (resp. antisymmetric, strongly antisymmetric). And it is homogeneous

on G, (resp. discrete on G,) for x € S iff Il is homogeneous (resp. discrete).

Proof. Fix H = G € P and we show that C'y does not depend on the choices
of x. Consider two elements x = (z1,...,2;),7" = (z},...,2}) € S® such
that T = {xy,..., 2} = {),...,2}}. Then there exists p € Sym(k) such that
ch(z") = . We check that A,y = X\, o ¢i: Forany y = %2’ € S*) where g € G, we
have \,/(y) = Hg~! and

Ao h(y) = Ao B(P2) = A, (g(c';(x'))) = \(%z) = Hg™!

as desired. As II is invariant, the map c’; sends blocks to blocks. Therefore
{\:(B) : B € P} ={)\(B) : B € P.}. So the two elements = and z’ define the

same partition C'y.

ZRecall that a group action of G on S is (k + 1/2)-transitive if it is k-transitive, and in addition
for all T" C S of cardinality k, either the Gp-orbit of every x € S — T contains more than one

element, or |S — T'| = 1.
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Next we check that C(II) is a P-scheme. Consider a projection 7p g : H\G —
H'\G where H,H' € P and H C H’'. Then there exist 7" C T C S such that
H = Gr, H = Gp. We may assume |T'| = |T"| + 1 by decomposing 7 g into the
composition of more projections if necessary. Let k = |T'| and pick z = (x1, ..., xy)
such that T = {xy,...,2;}. Choose the unique i € [k] such that x; ¢ T’. Let
1’ = 7¥(x). Then H = Gy = G, and H = G = G,. We claim that the

following diagram commutes:

S (k) ”—k> G(k=1)

x| I

H\G —" 5 H\G.

To see this, note that for any y = 92 € S*) where g € G, we have T © A\ (Y) =
WH’H/(Hg_l) = H/g_l, and

Aot 0 i (y) = Ao o} (“2) = Aoy (] (2))) = A (*a’) = H'g ™,

2

as desired. And \,, )\, are bijections that send blocks to blocks. Compatibility and
regularity of C(II) then follow from those of II.

Now consider a conjugation ¢y, : H\G — H'\G for H € P and h € G, where
H' = hHh™'. Choose x € S for some k € [m] such that H = G,. Let 2’ = "z

so that H' = GG,». Then the following diagram commutes:

S(k)
N
H\G o

s H\G.

To see this, note that for any y = 72’ € S*) where g € G, we have \,/(y) = H'g™"

and
cip 0 Aa(y) = crp o Au(x) = cyp(H(gh)™") = H'g™ ',

as desired. So C(II) is invariant. Therefore C(II) is a P-scheme.

Now we prove the claim that strongly antisymmetry is preserved. Assume that a
map 7 : By — Bj between blocks By, By € Cy for some H = G € P is obtained
by composing conjugations, projections and their inverses (restricted to blocks). Let

k = |T|. By the two diagrams above, we can obtain a map 7’ : B] — B} between

blocks Bj, By € P, by composing maps of the form ¢ |p, 77|, or (77|5) ™", such
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that the following diagram commutes

T

By ——— B

. 2

31%32

for some z, 7’ € S*). We showed in the beginning that there exists p € Sym(k)
satisfying A,y = A, o k. By replacing 7’ with ¢} o 7/, B with ¢(Bj), and X, with
Az, we may assume x = z’. Then if B; = B, and 7 is a nontrivial permutation of
By, we also know that B} = B, and 7’ is a nontrivial permutation of B]. Therefore,
if 1T is strongly antisymmetric, so is C(II). The claim for antisymmetry is proved
in the same way, except that we only consider maps 7 arising from conjugations but
not projections. And if By # B, for such 7, we also get amap 7’ : B} — B), arising

from c’jo for some 7y € Sym(k) such that B} # Bj. So symmetry is also preserved.

Finally, for any = € S, the partition C¢, of G, \G is constructed using the bijection
Az 1S — G, \G and the partition P;. Therefore C(II) is homogeneous on G, (resp.

discrete on &) iff Il is homogeneous (resp. discrete). L]

The maps C — II(C) and II — C(II) are inverse to each other by construction.
So Lemma 2.7 and Lemma 2.9 together establish the one-to-one correspondence

between P-schemes and m-schemes on S.

Theorem 2.1. Suppose m # |S| — 1 and G is a finite group acting min{|S|, m +
1/2}-transitively on S, and P = P, is the system of stabilizers of depth m with
respect to this action. The map C +— 1I(C) in Definition 2.12 is a one-to-one
correspondence between P-schemes and m-schemes on S, with the inverse map
IT — C(II) as defined in Definition 2.13. And 11(C) is symmetric (resp. antisym-
metric, strongly antisymmetric, homogeneous, discrete) iff C is symmetric (resp.
antisymmetric, strongly antisymmetric, homogeneous on G, for x € S, discrete on

G, forx €5).

Remark. The unpleasant assumption m # |S| — 1 in Theorem 2.1 is due to the
technical fact that when 7" C S has cardinality |S| — 1, the pointwise stabilizer G
fixes not only 7" but also the whole set S. This assumption is needed if we want
the correspondence in Theorem 2.1 to preserve antisymmetry and homogeneity:
Suppose G is a permutation group on S and |S| = ¢ is a prime number. Then

for m = ¢ — 1, there exists an antisymmetric homogeneous m-scheme on S (see
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Example 2.2 in Section 2.4). On the other hand, note that P = P,, contains the
trivial subgroup Gs = {e}. So by Lemma 2.4, all antisymmetric 7P-schemes are

discrete on G, for any x € S.

Matchings. The papers [IKS09; Aro+14] formulated the idea of [Evd94] with a
notion called a matching. We use the more general definition in [Aro+14] (where it

is called a generalized matching).

Definition 2.14 (matching). Let I = { Py, ..., P,,} be an m-scheme on S. A block
B € Py for some k € [m] is called a matching of 11 if there exist two distinct
proper subsets T, T' of [k of the same cardinality such that 74 (B) = 7%,(B) and
1B| = |T4(B).

The work [IKS09; Aro+14] designed algorithms leading to m-schemes with no
matching. Now we explain the connection between this property and strong anti-

symmetry of m-schemes.

Given a matching B € P, of I, let T, T" C [k] be as in Definition 2.14 and let &’ :=
k —|T|. Then B' := 7k(B) = 7%,(B) is a block of P,,. We have two maps 74|z
and 7k, | g from B to B’, both of which are bijective by the condition | B| = |7%(B)|.
Moreover 7k|p # 74| as they omit different subsets of coordinates and the k
coordinates of elements in S*) are all distinct. So 7%, |5 o (7%|) ™! is a nontrivial

permutation of B’. We conclude:

Lemma 2.10. A strongly antisymmetric m-scheme has no matching.

So our definition of strong antisymmetry of m-schemes (or that of P-schemes by

Lemma 2.7) subsumes the property that no matching exists.

We will use strong antisymmetry instead of (non-existence of ) matchings throughout
this thesis. The advantage of this comes from transitivity: Suppose x € H\G is sent
to a different element y € H\G by a map 7 that is a composition of conjugations,
projections and their inverses (restricted to blocks), then x and y belong to different
blocks by strong antisymmetry. Suppose we also separate y from another element
z € H\G in the same way. Then since the set of maps we consider are closed under
composition, we get a map sending z to z and hence are able to separate them as

well. The analyses in Chapter 7 and Chapter 8 crucially exploit this property.
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The connection of m-schemes with association schemes
As shown in [IKS09; Aro+14], m-schemes are closely related to the notion of

association schemes [BI84].

Definition 2.15. An association scheme on a finite set S is a partition P of S x S
such that

o lg:={(x,x):x € S}isablock of P,
e forablock g € P, the set g* := {(y,x) : (x,y) € B} is also a block, and

e for every triple of blocks g,q',q" € P, there exists an integer ng]/’gu >0
such that for any (x,y) € g, the number of z € S satisfying (x,z) € ¢’ and

(2,y) € g"is ¢}y

An association scheme P is symmetric if g = g* for all g € P, and antisymmetric

ifg# g*forall g € P— {1s}. The integer C;Sg* is called the valency of g.

We can obtain a homogeneous 3-scheme from an association scheme and vice versa

using the following constructions.

Definition 2.16. For a finite set S and a partition P of S X S such that 15 € P,
define the partition P' of S® such that two elements (1, v2, v3), (¥, 74, 74) € S©
are in the same block of P' iff (x;,x;) and (x},2;) are in the same block of P
forall 1 < i,j5 < 3. And define a 3-collection 11(P) = {Py, P>, P} on S by
choosing P, = S, P, = P — {15}, Py = P'. Conversely, given a 3-collection

II = {Py, P», Ps} on S, define a partition P(11) of S x S by P(Il) := P, U {15}

Lemma 2.11 ([IKS09; Aro+14]). If P is an association scheme, then I1(P) is a
homogeneous 3-scheme. Conversely, if 11 is a homogeneous 3-scheme, then P(11)

is an association scheme.

By construction, this gives a one-to-one correspondence between association
schemes on S and equivalent classes of homogeneous 3-schemes on S, where
two homogeneous 3-schemes { P, P, P} and {P], Py, P;} on S are said to be
equivalent if P, = P/ and P, = P,.

In addition, we obviously have

Lemma 2.12. If 11 is symmetric (resp. antisymmetric), so is P(II).
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Next we discuss the relation between symmetry and antisymmetry of an association
scheme P and those of II(P). Obviously, for IT(P) to be symmetric (resp. antisym-
metric), it is necessary that P is also symmetric (resp. antisymmetric). The exact

condition is given as follows.

Lemma 2.13. The 3-scheme 11(P) is symmetric iff P is the trivial association
scheme {15,5 x S — 1g}. It is antisymmetric iff P is antisymmetric and cgfg =0
forall g e P—{lg}.

Proof. The trivial association scheme P = {lg,S x S — 1g} gives rise to the
3-scheme II(P) = {0g, 04,04 } which is symmetric. Suppose P # {lg,S X
S —1g}. Let g; and g2 be two distinct blocks in P — {15}. If gy = g3 then P is
not symmetric and hence neither is II(P). So assume ¢; # ¢;. Fix x € S. Then
(x,y) € g1 and (z,2) € g for some y,z € S — {z}, and y # z. Consider the
element t = (1,y,2) € S®. Let h = (12 3) € Sym(3) so that "t = (z,z,y).
We have 73(t) = (z,y) € g1 and 73("t) = (2,2) € g5 # g1. By compatibility of
I1(P), the elements ¢ and "¢ are in different blocks. So I1(P) is not symmetric.

Suppose II(P) is antisymmetric, then so is P. We check that cgfg = 0 for all
g € P —{1g}. Assume to the contrary that ¢, > 0 for some g € P — {1g}.
Fix (z,y) € g¢g*. Then there exists z € S such that (z,z2),(z,y) € g. Then for
t=(z,y,2) € S® and h = (12 3) € Sym(3), we have 73(¢), 73("t) € g* for all
1 < i < 3. It follows by definition that ¢ and "¢ are in the same block, contradicting
antisymmetry of I1(P).

Conversely, suppose P is antisymmetric and cgfg =0forallg € P—{lg}. To
prove II(P) is antisymmetric, it suffices to show that for any ¢ = (z,y,z) € S©
and h € Sym(3), the elements ¢ and "¢ are in different blocks. First assume £ is a
transposition, e.g., (1 2) (the other cases are symmetric). Then 73 (¢) = (z,y) and
73(") = (y, x) are in different blocks by antisymmetry of P, and the claims follows
by compatibility of [I(P). Next assume A is a 3-cycle, e.g., (1 2 3) (the other case is
symmetric), so that "t = (z,z,y). Let g be the block in P — {15} containing (y, z),
so that (z,y) € g*. As ¢/, = 0, either (z,z) or (z,y) is notin g. If (z,2) & g, we
have 73(t) = (z,y) € ¢* and 73("t) = (2,2) & g*. If (z,2) € g but (2,9) & g,
we have 73(t) = (x,2) € g and 73("t) = (2,y) & g. In either case t and "¢ are in
different blocks by compatibility of I1(P). O

Example 2.1. Let S be a finite dimensional vector space over a finite field IF, where
char(F,) ¢ {2,3}. Let P be the partition of S x S such that (x, y) and (2, 3/’) are in
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the same block iff z — y = 2’ — ¢/, which is an association scheme [BI84]. We check
that P satisfies the condition of Lemma 2.13, and hence II(P) is antisymmetric.
For any (x,y) ¢ 1g, we have x — y # y — x since « # y and char(F,) # 2, and
therefore (z,y) and (y, x) are in different blocks. So P is antisymmetric. Then we
check that ¢§’ = O forall g € P — {1s}. Assume to the contrary that ¢J , > 0 for
some g € P — {1g}. Fix (z,y) € ¢* and choose z € S such that (z, 2), (z,y) € g.
Then x — z = z — y = y — z, implying 3(z — z) = 0. This is impossible since
x # z and char(F,) # 3.

The antisymmetric 3-scheme II(P) in Example 2.1 is not strongly antisymmetric:
For any distinct z,y € S5, let B € P — {1g} be the block containing ¢t = (z,y).
Then 77| and 72| 5 are bijections from B to S sending ¢ to y and =, respectively.

So m}|5 o (m3|5) ! is a permutation of the unique block S € 0g sending z to y.

We do not know any example of an association scheme P for which I[1( P) is strongly
antisymmetric. The following lemma gives a sufficient condition for the existence

of such an association scheme.

Lemma 2.14. Suppose P is an antisymmetric association scheme satisfying (1)
cgfg = 0forall g € P—{lg}, and (2) for all blocks g € P and ¢, ¢" € P — {15},

either ¢, .» = 0 orcj, ., > 1. Then IL(P) is strongly antisymmetric.

Proof. By Lemma 2.13, the 3-scheme II(P) is antisymmetric. And (2) implies
2

that none of the projections 77 and 7 are invertible even restricted to blocks
of S@ and S® respectively. Strong antisymmetry of II(P) then follows from

antisymmetry. 0

In general, strongly antisymmetric 3-schemes do exist. See Example 2.4 in Sec-
tion 2.5.

2.4 Orbit P-schemes and m-schemes
An important family of m-schemes called orbit schemes, or what we call orbit m-
schemes, was proposed and studied in [IKS09]. The blocks of such m-schemes are

orbits of group actions.

Definition 2.17 (orbit m-scheme [IKS09]). Given a finite set S, m € N*, and a
group K C Sym(S) acting naturally on K, for each k € [m)|, define the partition
Py, of S® to be the partition into K -orbits with respect to the diagonal action of
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K on S®). The m-collection 11 = { P, ..., P,,} is called the orbit m-scheme on S
associated with the group K.

This is indeed an m-scheme:

Theorem 2.2 ([IKS09]). The m-collection 11 in Definition 2.17 is an m-scheme on
S.

We define orbit P-schemes in a similar way, except that the subgroup K of Sym(.S)
is now replaced with a subgroup of GG, and the diagonal actions on S*), k € [m] are

replaced with the actions on right coset spaces by inverse right translation.

Definition 2.18 (orbit P-scheme). Let P be a subgroup system over a finite group
G, and let K be a subgroup of G. For H € P, define the partition C'y of H\G to be
the partition into K -orbits, with respect to the action of K on H\G by inverse right
translation. The P-collection C = {Cy : H € P} is called the orbit P-scheme
associated with the group K.

This construction indeed yields a P-scheme:

Theorem 2.3. The P-collection C in Definition 2.18 is a P-scheme.

Proof. Let K act on each right coset space H\G by inverse right translation. For
H,H € Pwith H C H', g € K and x € H\G, we have 7y 1 (Y2) = (7 g (x))
by Lemma 2.2. Therefore if z, 2/ € H\G are in the same block of Cy (i.e., the
same K -orbit of H\G), then 7y g () and 7y g/ (2') are in the same block of Cy/
(i.e., the same K -orbit of H'\G). So C is compatible.

Similarly, for H € P,h € G, g € K andz € H\G, we have ¢y ;,(92) = ?(cpn(x))
by Lemma 2.2. Therefore if 2, 2’ € H\G are in the same block of Cy, then ¢y ()

and ¢y, (2") are in the same block of Cyp,-1. So C is invariant.

For H' € P and y,y’ € H'\G in the same block B of Cy, choose g € K such that
y =9y. Asg € K, we have B = B. For H € P with H C H' and x € H\G,
wehave x € Band gy g (x) = yiff 9o € 9B = Band g/ (Y2) = (mp e (2)) =
9y = 4'. So the map x — 9z is a one-to-one correspondence between B N W;I}H, (y)
and B N 7TI}’1H, (v'), and hence the two sets have the same cardinality. So C is

regular. [
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The connection between Definition 2.17 and Definition 2.18 is given by the following

lemma.

Lemma 2.15. For a finite set S, m € NT, and a subgroup K C Sym(S), let
P = 'P,, be the system of stabilizers of depth m with respect to the natural action
of Sym(S) on S, and let C = {Cy : H € P} be the orbit P-scheme associated
with K. Then the orbit m-scheme associated with K is exactly 11(C) as defined in
Definition 2.12.

Proof. We may assume m < |S|. Let G be the symmetric group Sym(.S) acting
naturally on S. Suppose II(C) = {P,..., P,} where P is a partition of S®*
for k € [m]. By Definition 2.12, each partition P is given by P, = {\;*(B) :
B € Cg,} for some z = (z1,...,7;) € S®, where A\, : S® — G,\G is an
equivalence between the diagonal action of G on S*) and the action on G,\G by
inverse right translation. It follows that P is the partition into K -orbits with respect
to the diagonal action, since C, is the partition into K -orbits with respect to the

action by inverse right translation. 0

Antisymmetry of orbit m-schemes. We prove a simple and exact criterion for

antisymmetry of orbit m-schemes.

Lemma 2.16. The orbit m-scheme on S associated with K C Sym(S) is antisym-

metric iff the order of K is coprime to 1,2,... m.

Proof. Let Il = {P,,...,P,} be the orbit m-scheme on S associated with K.
Suppose the order of K is divisible by an integer % satisfying 1 < k£ < m. We may
assume that k& is a prime integer. By Cauchy’s theorem (see, e.g., [Lan02]), the group

K contains an element g of order k. The element g, as a permutation of .S, has at least

one k-cycle (z; x5 --- x). Consider the element 7 = (71, ...,z;) € S®, and let
B be the block of P, containing . By definition, the element9x = (924, ...,%x;) =
(wa,..., 7, x1) is also in B. On the other hand, let h = (12 --- k)~! € Sym(k).
The permutation cf of S®) sends v = (x1,...,21) toy = (y1,...,ys) defined

by yi = @1, fori € [k]. So ¢j(x) = (22,...,24,21) € B. Therefore II is not

antisymmetric.

Conversely, assume II is not antisymmetric. Then for some integer k satisfying 1 <

k < min{m, |S|}, h € Sym(k) — {e}, and some element v = (z,...,7;) € S®

lying in a block B of Py, we have cf(z) € B, i.e., ¢} (z) = 9z for some g € K with
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respect to the diagonal action of K on S*). As the permutation ¢} of S*) sends z
oy = (y1,--.,yx) defined by y; = 2,1 fori € [k], we see Iz; = z,-1_fori € [k].
Then g preserves the set T := {z1, ..., x;} and restricts to a nontrivial permutation
glr € Sym(T') of T. Let e be the order of g|r. Then e is not coprime to some
integer ¢ where ¢ < |T'| < m. The order of K is a multiple of the order of g, which

is a multiple of e. So the order of K is not coprime to ¢ either. [

Example 2.2. Let S be a finite set satisfying |S| > 1. Let K be a subgroup of
Sym(.S) generated by a single |.S|-cycle so that it acts regularly on S. Denote by ¢
the least prime factor of |S|. Let II be the orbit m-scheme on S associated with K
where m is an integer satisfying 1 < m < £. Then II is homogeneous since K acts
transitively on S. The order of K is |S|, which is coprime to 1,...,¢ — 1. So Il is

also antisymmetric by Lemma 2.16 and the fact m < ¢ — 1.

Upper bound of m for antisymmetric homogeneous m-schemes. Let S be a
finite set satisfying |.S| > 1, and let ¢ be the least prime factor of |S|. For m > ¢,
the orbit m-schemes on .S in Example 2.2 are still homogeneous but no longer
antisymmetric. Indeed, an argument of Ronyai [R6n88] shows that for m > ¢, even
general m-schemes on .S cannot be both homogeneous and antisymmetric. This was
reproduced in [IKS09] and we present it here.

Lemma 2.17 ([R6n88; IKS09]). Let S be a finite set satisfying |S| > 1, and let { be
the least prime factor of |S|. There exists no antisymmetric homogeneous m-scheme
on S form > /.

Proof. Assume to the contrary that such an m-scheme II = {P;,..., P, } exists.

k
g

induces a semiregular action on the set of blocks in F,. Let By,..., By € F, be

The group Sym(¢) acts on S by 9z = c*(x). By antisymmetry of II, this action
a complete set of representatives for the Sym(/)-orbits, i.e., each orbit contains
exactly one B;. Then we have

k

Sy = 159 181081 =081 = ¢+
2P Tsym(0) 7
Let 7 be the projection from S to S sending (z1,...,2,) to x;. By regularity

and homogeneity of I, for each i € [k], the cardinality of B; N 7' (y) is a constant
d; € Nt independent of y € S. Then
k k

|
=1 =1

B _ (S| =1)--- (S| = ¢+1)
E 17
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As | S| is a multiple of £, none of the factors |S| —1, ..., |S| — £+ 1 of the numerator
is divisible by the prime number ¢ appeared in the denominator. This contradicts
the integrality of Zle d;. O

The condition m > ¢ in Lemma 2.17 is tight, since Example 2.2 shows that anti-

symmetric homogeneous m-schemes exist for m = ¢ — 1.

Roényai’s result can be extended to P-schemes in the case that P is a system of

stabilizers with respect to a transitive group action.

Lemma 2.18. Let G be a finite group acting transitively on a set S of cardinality
n > 1. Let P = Py, be the corresponding system of stabilizers of depth m for some
m > {, where ( is the least prime factor of n. Then for any x € S, there exists no

antisymmetric ‘P-scheme that is homogeneous on G. In particular, d' (G) < /.

Lemma 2.18 can be easily proven using a technique called the induction of P-
schemes, to be discussed in Chapter 6. It allows us to reduce to the case G = Sym(.S).
The claim then follows immediately, since by Lemma 2.7, for G = Sym(.S), the
existence of an antisymmetric P-scheme homogeneous on (G, implies the existence
of an antisymmetric homogeneous m-scheme on S, which contradicts Lemma 2.17.

For now, we just provide a direct proof.

Proof of Lemma 2.18. Assume to the contrary that C = {Cy : H € P} is an
antisymmetric P-scheme that is homogeneous on GG, for some z € S. As C is
invariant and G acts transitively on S (and hence all one-point stabilizers GG, are

conjugate in (7), we know C is homogeneous on G, for all x € S.

Consider the set S¢) equipped with two actions: the diagonal action of G and
the action of Sym(¢) permuting the ¢ coordinates. The latter action is defined by
(@1, we) = (21, 2,1 ,) for g € Sym(l) and (24, ..., 2¢) € S®. Note that
these two actions commute with each other and combine to an action of G’ x Sym(¥)
on S, For z € S, we have YGz = G 9z for all g € Sym(¢) and hence the action
of Sym(¢) permutes the G-orbits within the (G x Sym(¢))-orbit (G x Sym({))z.

Now fix z € S, We have the bijection \, : Gz — G, \G which is an equivalence
between the action of G on the G-orbit Gz and the action on G,\G by inverse
right translation. We also have a semiregular action of Ng(G.)/G. on G,\G by
left translation. This gives a injective group homomorphism ¢ : Ng(G.)/G, —
Sym(G,\G), and we denote its image by N. Then |[N| = |Ng(G.)/G.|.
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Let H be the subgroup of Sym(¢) fixing Gz setwisely, i.e., H = {g € Sym(¢) :
9Gz = Gz}. The action of H C Sym(¢) on S restricts to an action on Gz
and hence we have a group homomorphism H — Sym(Gz). It is injective since
elements in Gz C S have distinct coordinates. Now, identifying Gz with G,\G
via A, we have an action of H on G,\G as well, defined by /A, (x) = A\, (%) for
x € Gz. This gives an injective group homomorphism ¢’ : H — Sym(G,\G).

We claim that ¢/(H) C N. To see this, pick any g € H. We have G e = G hq for

h

some hy € G, or equivalently 9z = "o '2. Then for any h € G, we have

9G,h = g(Mh*z)) — )\ (g(h*z)) — )\ (’fl(gz)) — A\ (WY = GLhoh,

In particular, for any h € G, we have /G,h = G_hoh and other other hand
IG.h = 9G.e = G,hy. So hohhy' € G.. Therefore hy € Ng(G.). Furthermore,
note that hyG, € Ng(G.)/G., sends any G.h € G, \G to G hoh = ?Gh by left
translation. So ¢'(g) = ¢(hoG.) € N. Therefore ¢'(H) C N, as desired.

By antisymmetry, the action of N on G,\G induces a semiregular action on the
set of blocks of C¢., which induces a semiregular action of ¢'(H) on the set of
blocks of C¢,. Let By, ..., By € Cg, be a complete set of representatives for the
¢'(H )-orbits. Then we have

k

GGl |G-
Bi: = .
2 1B = 5 = T

Choose = € S such that G, C G,. By regularity and homogeneity on G, for
each i € [k], the cardinality of B; N wgti(y) is a constant d; € N* independent
of y € G,\G, and hence |B;| is a multiple of |G,\G| = n. Therefore |Gz| is a
multiple of n - |H|.

By the orbit-stabilizer theorem, the number of G-orbits contained in (G x Sym(¢))z
is |Sym(€)|/|H

, and these G-orbits all have the same cardinality |Gz|. So

[Sym(£)]

(G x Sym(())z] = K

which is a multiple of n - |[Sym(¢)| = nf! since |Gz| is a multiple of n - |H|. As
this holds for arbitrary z € S, we know |S¥)| =n(n—1)---(n—/¢+1)isalsoa
multiple of n¢!. But this is not possible since n — 1,...,n — £ + 1 are not divisible

by the prime number /. [
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2.5 Strongly antisymmetric homogeneous m-schemes for m < 3
In this section, we give examples of strongly antisymmetric homogeneous m-
schemes on a finite set S where |S| > 1 and m € {1, 2, 3}.

The casem = 1. For all finite sets S, there exists a unique homogeneous 1-scheme
IT = {P} on S, given by P, = 0g. It is obviously antisymmetric since Sym(1)
is the trivial group. And it is also strongly antisymmetric since there exists no

projection 7¥ for m = 1.

The case m = 2. We discuss the following explicit construction of orbit 2-

schemes.

Example 2.3. Let ¢ be a prime power of the form ¢ = 4k + 3 for some k£ € N.3 The
multiplicative group F is a cyclic group of order 4k + 2. Denote by x» : F* — C
the unique nontrivial quadratic character of F°, which sends quadratic residues to 1
and non-residues to —1. Its kernel Ker(x2) is the unique subgroup of F of index
two. For u € F; and v € F,, denote by ¢, , the affine linear transformation of F,

sending x € I, to ux + v. Define K by
K :=={¢y, :u € Ker(xz2),v € F }.

Then K is a subgroup of Sym(IF,).* Let Il = {P;, P»} be the orbit 2-scheme on F,
associated with the subgroup K.

The partitions /7, and P, are given as follows: as K acts transitively on IF;, we have
P, = Op, and II is homogeneous. For (a,b) € F.”, we have “1(a — b,0) = (a,b)
and ¢1, € K, and hence (a,b) and (a — b,0) are in the same block of P,. Two
elements (c,0), (d,0) € FY are in the same block iff 9c = d for some g € Ko,
where K is the stabilizer of 0 € F,. As Ky = {¢u0 : © € Ker(x2)}, we see
that (¢, 0) and (d, 0) are in the same block iff x2(c) = x2(d). We conclude that P,

contains two blocks B, and B_;, where
B, = {(a.b) € FY : xola —b) = s}

for s = +1.

3In particular, we may choose ¢ to be a prime number. By Dirichlet’s theorem on arithmetic

progressions [Neu99], there exist infinitely many prime numbers of the form 4k + 3.
“The group K is also a subgroup of the general affine group AGL;(q) and is isomorphic to a

semidirect product Fy x Ker(x2).
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The order of K is q(¢—1)/2 = (4k+3)(2k+1) which is odd. So Il is antisymmetric
by Lemma 2.16. For every y € F,, the number of elements in 5, (or B_;) mapped
to y by the projection 7% (or 72) is (¢ — 1) /2, which is greater than one when ¢ > 3.
Therefore when ¢ > 3, the two projections Wf and 7T§ restricted to By (or B,) are

not invertible, and hence II is strongly antisymmetric. We conclude:

Lemma 2.19. The orbit 2-scheme 11 in Example 2.3 is homogeneous and antisym-

metric. It is strongly antisymmetric when q > 3.

We remark that the partition P := P, U {1g,} of F, x I, (where 1z, = {(a,a) :
a € F,}) is actually an antisymmetric association scheme on F,. It is known as an
association scheme of Paley tournaments [ER63; BI84; BCN89], or more generally

a cyclotomic scheme [BCN89].

Recall that for an association scheme P on a set S, blocks ¢,¢’,g” € P, and
(z,y) € g, we use ¢}, , to denote the number of z € S satisfying (z, 2) € ¢' and
(z,y) € ¢”. When P is antisymmetric and has only three blocks, the quantities

CZ’, p only depend on n.5 We state it formally for the cases ¢, ¢, ¢ # 15.

Lemma 2.20. Let P be an antisymmetric association scheme on a set S of cardinality

n containing only three blocks 1s, g and g*. Then for u,v,w € {g, g*}, we have

(n+1)/4 ifu* =v=uw,
(n—3)/4 otherwise.

Proof. From the basic properties of association schemes, we have ¢J = = cg* g%
g — 9 9 9 9 _ g U ()
) = Cogr = Coryg = Coegr = Coug = Cogsand D pey,, = (n—1)/2 for

u,v € {g,9"}.¢ Also note that ¢}/, - equals one when u = v and zero otherwise.

The claim then follows by simple calculations. U

In particular, Lemma 2.20 applies to the association scheme P = P, U {1, } above.

This is used in the next example for the proof of strong antisymmetry.

SThis is a folklore result. Such an association scheme is equivalent to a doubly regular tourna-
ment. See, e.g., [RB72].
6See, e.g., [BI84, Section II.2, Proposition 2.2] and note that g, g* have the same valency

(n—1)/2.
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The case m = 3.  'We have noted that for P, as defined in Example 2.3, the partition
P = P,U{lg,} of F, x [, is an antisymmetric association scheme on F,. Thus
by Lemma 2.11, we have a homogeneous 3-scheme II(P). Unfortunately, II(P) is
not necessarily antisymmetric: there may exist distinct elements a, b, c € I, such
that x2(a — b) = x2(b — ¢) = x2(c — a), and the block containing (a, b, c) € FY is
preserved by the 3-cycles in Sym(3).

However, it is possible to modify II(P) to get an explicit construction of strongly
antisymmetric homogeneous 3-schemes. The idea is to use a nontrivial cubic

character besides the quadratic character 5.

Example 2.4. Let q be a prime power of the form 36k + 11 or 36k + 23 for some
k € N.7 The congruence is chosen so that ¢ — 1 is divisible by 2 but not by 3 or 4,
and ¢* — 1 is divisible by 3 but not by 9. In particular, the condition ¢ = 3 mod 4 in
Example 2.3 still holds. Define a 3-collection II = {P;, P», P;} on [F, as follows:
Py and P, are constructed in the same way as in Example 2.3, i.e., P = O, and P,

contains two blocks, B, and B_, where
Bs; ={(a,b) € Ff) :x2(a —b) = s}

for s = +1, and x5 : F; — C is the unique nontrivial quadratic character of F .

To construct P;, we consider the quadratic extension [F > of IF,. Its multiplicative
group IFqXQ is a cyclic group of order ¢* — 1 which is divisible by 3. Choose a nontrivial
cubic character 3 : IF;Q — C. Let w be a primitive third root of unity in F > so that
1+ w+w?=0. For (a,b,¢) € FY, we have a + wb + wc = (a — ¢) + w(b — ¢)
which is nonzero since w € F,. So a + wb + w?c € Fqﬁ. We define a function s on
Fy” by

x3(a +wb +w?c) if xa(a —b) = x2(b — ¢) = xa2(c — a),
s(a,b,c) =

1 otherwise.
For (a,b,c) € FE,S), call the quadruple

(XQ(CL - b)a XQ(b - C)v XQ(C - a)) S(CL, b7 C))
the signature of (a,b,c). Choose the partition P3 of Fgg) such that two triples

(a,b,c), (b, ) € IE‘((IS) are in the same block iff they have the same signature.

7 Again, by Dirichlet’s theorem on arithmetic progressions [Neu99], there exist infinitely many
such q.
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Lemma 2.21. The 3-collection 11 in Example 2.4 is an antisymmetric homogeneous

3-scheme on IF,. It is strongly antisymmetric when g > 11.

Proof. We first check that II is an antisymmetric 3-scheme.

For compatibility, we need to verify that if (a, b, ¢), (a/, ', ) € F 513) are in the same
block of P, then their images under 7} are in the same block of P, ¢ = 1,2, 3. This

follows by construction.

For invariance and antisymmetry, we need to show that for any g € Sym(3) — {e},
the signature of (a, b, c) € ]F((Ig) determines that of ?(a, b, ¢), and they are different.
We note that x»(—1) = —1 since |[F| = ¢ — 1is not divisible by 4, and x3(w) is a

primitive third root of unity in C since |F’| = ¢> — 1 is not divisible by 9.
q

Suppose ¢ is a transposition, e.g., the one sending (a, b, ¢) to (b, a, c) (the other cases

are symmetric). Then the signature of ?(a, b, ¢) is

(x2(b —a), x2(a — ¢), xa(c = b), s(b,a, )
= (—xz2(a —b), —x2(c — a), —x2(b — ¢), (b, a, ¢)).

When ya(a — b), x2(b — ¢), x2(c — a) are not all equal, we have s(b,a,c) = 1.
Otherwise

s(b,a,c) = xs3(b + wa + w?c) = ys(w)xs(a +w b+ w2c).

The automorphism z — 27 of F 2 fixes a, b, ¢ € F, and exchanges w with w™*. So
xs(a+w b +w2c) = x3((a + wb + w?c)?) = xi(a + wb + w?c). We see that in

)

this case, the signature of (a, b, c) € Fé3 determines that of ?(a, b, ¢). And they are

different since xo(b — a) = —xa(a — b) # xa2(a — b).

Suppose ¢ is a 3-cycle, e.g., the one sending (a,b,c) to (b,c,a) (the other case
is symmetric). Then the signature of ?(a,b,c) is (x2(b — ¢), x2(c — a), x2(a —
b),s(b,c,a)). When xa(a — b), x2(b — ¢), x2(c — a) are not all equal, we have
s(b,c,a) = 1. Otherwise

s(b, c,a) = x3(b + we + w?a) = x3(w?)xs(a + wb + w?c) # s(a, b, c).

So again the signature of ?(a, b, ¢) is determined by and different from that of (a, b, ¢).

To prove regularity, let / be the subgroup {¢,, ,, : u € Ker(x2),v € F,} of Sym(F,)
as in Example 2.3, and let I[I' = { P|, P, P;} be the orbit 3-scheme on F, associated
with K. Then P, = P| and P, = Pj. We claim that P; is a coarsening of P}, i.e.,
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each block B of P is a disjoint union of a collection / of blocks in P;. Assume the
3

claim holds. Then for such a block B, an element y € FgQ), and a projection 7}, we

have

BA@) )= 1B 0 () )l

Blel
As IT' is regular, it follows that IT is also regular. So it remains to prove the claim.

The blocks of Pj are K-orbits. So it suffices to show that for (a, b, c) € F'¥ and
bun € K, the elements (a, b, ¢) and **(a, b, ¢) = (ua + v, ub+ v, uc + v) have the

same signature. We have
X2((ua +v) = (ub +v)) = x2(u)x2(a — b) = x2(a — b)

since u € (IF)?. Similarly xo((ub+v) — (uc+v)) = x2(b — ¢) and x2((uc+v) —
(ua +v)) = x2
hence x3(u) = 1. Therefore

(c — a). Also note that F¢ is contained in the kernel of x3,® and

x3((ua + v) + w(ub + v) + w?(uc + v))
= x3(u(a + wb + w?c) + v(1 + w + w?))
= x3(u(a + wb + w?c))
= x3(a + wb + w?c)

and hence s(a, b, ¢) = s(ua + v, ub + v, uc + v), as desired.

Homogeneity holds since P; = Or,. Next we show that IT is strongly antisymmetric
when ¢ > 11. To prove this, it suffice to show that the projections 72 and 7 are
not invertible even restricted to each block. For 77 this holds when ¢ > 3, as shown
in the proof of Lemma 2.19. For 7} we only need to check that the cardinalities of
blocks of Pj are greater than the cardinality ¢(q — 1) /2 of blocks of P,. Let (a, b, ¢)
be an element of Fg?’) and let B be the block of P; containing it. Let (u,v,w,1)
be the signature of B. By Lemma 2.20, if u, v, w are not all equal, the cardinality
of Bis (qg(¢ —1)/2)((¢ — 3)/4) > q(¢ — 1)/2. If u = v = w, the block B
and two other blocks, whose signatures are (u, v, w, x3(w)t) and (u, v, w, x3(w)t)
respectively, are permuted by 3-cycles in Sym(3), and their disjoint union has
cardinality (¢(¢ —1)/2)((¢ + 1)/4) by Lemma 2.20. So

1 dalg=1) ¢+l _gqla—1)

3 2 4 2

as desired. ]

80therwise the intersection of I with the kernel has order (g — 1)/3, which is impossible as 3

Bl =

does not divide ¢ — 1.
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Unlike Example 2.19, the 3-schemes constructed in Example 2.4 are not orbit m-
schemes. In fact, we prove in Theorem 6.6 later that no strongly antisymmetric
homogeneous orbit m-schemes on S exist if |S| > 1 and m > 3. It strengthens the

result in [IKS09] that no such m-schemes exist for m > 4.

For m > 4, there are no known examples of strongly antisymmetric homogeneous
m-schemes on S (where |S| > 1), even for general m-schemes. It is conjectured
in [IKS09] that such m-schemes do not exist for mm > C' where C' is an absolute
constant. An affirmative solution to this conjecture would imply a polynomial-time
deterministic factoring algorithm under GRH. See Theorem 6.2. Currently the best
known upper bound for m is O(log |S| + 1) [Evd94; IKS09; Gua09; Arol3]. See
Theorem 7.1.
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Chapter 3

THE P-SCHEME ALGORITHM

In this chapter, we present a generic deterministic factoring algorithm called the

‘P-scheme algorithm, based on the notion of P-schemes introduced in Chapter 2.

A univariate polynomial over a finite field is said to be square-free if it has no repeated
factors, and completely reducible over I, if it factorizes into linear factors over [F,.
For simplicity, the algorithm in this chapter assumes that the input polynomial

satisfies the following condition:

Condition 3.1. The input polynomial is defined over a prime field I¥,,. In addition,

it is square-free and completely reducible over IF,,.

This assumption is commonly made in the literature (see, e.g., [R6n88; Evd9o4;
CHOO; IKS09; Arol3; Aro+14]) and is justified by standard reductions [Ber70;
Yun76; Knu98]. Specifically, Berlekamp [Ber70] reduced the problem of com-
pletely factoring an arbitrary polynomial over a finite field to the problem of finding
roots of certain other polynomials in IF,. The latter problem further reduces to
the problem of completely factoring polynomials satisfying Condition 3.1 by the
technique of square-free factorization [Yun76; Knu98]. Alternatively, we develop
an algorithm that works for arbitrary polynomials over finite fields in Chapter 5

without using these reductions.

Overview of the P-scheme algorithm

The P-scheme algorithm consists of three parts:

1. reducing to the problem of computing an ““ idempotent decomposition” of a

certain ring,

2. computing idempotent decompositions of rings associated with a poset of

number fields,

3. constructing the poset of number fields used in the previous part.

Now we elaborate on each part.
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Reduction to computing an idempotent decomposition. It is well known that
computing a factorization of f is equivalent to finding zero divisors of the ring
F,[X]/(f(X)) [R6n88; Evd94; IKS09]. We focus on special zero divisors called
idempotent elements or simply idempotents,! i.e., those elements x satisfying x> = .
Two idempotents z, y are said to be orthogonal if xy = 0. It can be shown that the
problem of factoring f reduces to decomposing the unity of the ring F,,[ X]/(f(X))
into a sum of nonzero mutually orthogonal idempotent elements, called an idempo-

tent decomposition.

Definition 3.1. An idempotent decomposition of a ring R is a set I of nonzero

mutually orthogonal idempotent elements of R satisfying y_ ., v = 1.

On the other hand, recall that our algorithm uses a lifted polynomial f (X) € Z[X]
of f, as mentioned in the introduction. Furthermore, we may assume f is an
irreducible lifted polynomial (see Definition 1.1) by running the factoring algorithm
for rational polynomials [LLL82] to factorize f into the irreducible factors over
Q. See Section 3.9 for more discussion. The polynomial f defines a number field
F = Q[X]/(f(X)). We show that, since f is square-free and completely reducible
over IF,, the ring F,[X]/(f(X)) is naturally isomorphic to Or := Op/pOF, where
Op is the ring of integers of the field F'. Therefore the problem reduces to that of

computing an idempotent decomposition of the ring Op.

Computing idempotent decompositions for a poset of number fields. Denote
by L the splitting field of f over Q and G the Galois group of f over Q, i.e.,
G = Gal(L/Q). Conceptually, replacing F,[X]/(f(X)) with O allows us to use
the information provided by the Galois group GG. By the work of Rényai [R6n92],
a zero divisor a # 0 (or, in our language, an idempotent decomposition) of O
can be found efficiently if an efficiently computable nontrivial automorphism of the
ring O is given. The Galois group G naturally provides automorphisms of O, at
least when F' is Galois over Q. Moreover, these automorphisms can be efficiently
computed thanks to the efficient polynomial factoring algorithms for number fields
[Len83; Lan85]. Using this idea, Ronyai [R6n92] gave a polynomial-time factoring

algorithm for the case that F' is Galois over Q.

When F' is not Galois over (Q, not every automorphism in G restricts to an auto-

morphism of F or Or. One of our key observations is that F' may still admit a

IStrictly speaking, we need to exclude the unity of the ring which is the only idempotent element

that is not a zero divisor.
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Q

Figure 3.1: The tower of fields and Galois groups. Denote by L the splitting field
of f over Q and regard F' as a subfield of L.

nontrivial automorphism group, from which we can compute a partial factorization
of f. Indeed, we regard F' as a subfield of L and let H be the subgroup of G
fixing F. Then the automorphism group of F' is isomorphic to Ng(H)/H. The
corresponding fixed subfield F = FN¢(H)/H g the smallest subfield of F' such that
F/F'is Galois. See Figure 3.1 for an illustration.

In the worst case, we may have N (H) = H and then the automorphism group of
F'is trivial. However, an extension K of F' may still have a nontrivial automor-
phism group, and hence a nontrivial idempotent decomposition may be obtained
for Ox = Ok /pOy instead of O, where O is the ring of integers of K. For
example, suppose G is the symmetric group Sym(n) permuting the n roots of
f . We identify F' with Q(«) for some root « of f , and then H is the stabilizer
G,. Let 8 be a root of f different from . Then the automorphism group of
K = F(B) = Q(a, B) is N¢(Ga,5)/Ga,p, Which is nontrivial as Ng (G, ) contains
the permutations swapping « and (5. Another example is the case that K equals the

splitting field L of . In this case, the automorphism group of K is just G.

Motivated by the above observation, we design the algorithm so that it computes
idempotent decompositions not only for the number field £, but also simultaneously
for a poset of subfields of L. Moreover, we compute homomorphisms between
these fields, which induce homomorphisms between the rings Of. Using these
homomorphisms, we show that the idempotent decompositions can be properly

refined, unless some consistency constraints between them are satisfied.
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The connection with P-schemes is as follows: by Galois theory, the poset of subfields
used by the algorithm corresponds to a poset P of subgroups of GG. Suppose a field
K in the former poset is associated with a subgroup H. It can be shown that
an idempotent decomposition of O corresponds to a partition of the coset space
H\G. These partitions for various H € P altogether form a P-collection. Then the
consistency constraints between the idempotent decompositions are just the defining
properties of P-schemes in disguise, i.e. compatibility, regularity, and invariance. In
addition, we incorporate in our algorithm Rényai’s technique [R6n92] as mentioned
above as well as its extension by Evdokimov [Evd94]. They are characterized by

antisymmetry and strongly antisymmetry of P-schemes respectively.

The main part of the algorithm has the following structure: it constructs the rings
Ok and the homomorphisms between them, and then maintains the idempotent
decompositions of these rings and iteratively refines them. Each time it calls a
subroutine corresponding to some property of P-schemes in attempt to obtain a
refinement. Either the property is already satisfied, or strictly finer idempotent
decompositions are obtained by the subroutine. The algorithm terminates when
the decompositions cannot be properly refined any more, in which case we are
guaranteed to have a strongly antisymmetric P-scheme. This gives the following

result.

Theorem 3.1 (informal). Under GRH, there exists a deterministic algorithm that
given a poset P of subfields of L corresponding to a poset P of subgroups of G,
outputs idempotent decompositions of Ok for K € P* corresponding to a strongly

antisymmetric ‘P-scheme. The running time is polynomial in the size of the input.

Suppose F is in the poset P*, corresponding to a group H € P. Then in the
strongly antisymmetric P-scheme produced by the algorithm, the partition of H\G
translates into an idempotent decomposition of the ring Op. In particular, it follows
from the reduction in the first part of the algorithm that if all strongly antisymmetric
P-schemes are discrete (resp. inhomogeneous) on /1, then we always obtain the

complete factorization (resp. a proper factorization) of f.

Constructing a collection of number fields. Theorem 3.1 is a generic result, as
we may feed it any poset P* of subfields of L and get a strongly antisymmetric
P-scheme, where P is the corresponding poset of subgroups of G. To obtain an
actual factoring algorithm, we need to construct such a poset. More precisely, we

construct a collection F of number fields that are representatives of isomorphism
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classes of those in P*, i.e., isomorphic fields in P* are represented by the same

element in F. The posets P and P* are determined once F is given.

Let H be the subgroup of G fixing F'. The collection F of number fields should
satisfy the following two constraints: (1) F contains the field £, so that we can
convert the partition on H\G in the P-scheme into a factorization of f, and (2)
all strongly antisymmetric P-schemes are discrete (resp. inhomogeneous) on f,
so that the algorithm always produces the complete factorization (resp. a proper
factorization) of f. In addition, we want to bound the running time spent in

constructing the fields in 7%, which controls the running time of the whole algorithm.

We give various settings of F in which the two constraints above are satisfied. One
of them is to choose F = {F, L}, where L is the splitting field of f. In another
setting, we choose F so that P is a system of stabilizers of depth m for sufficiently

large m € N*. They lead to factoring algorithms with various running time.

For simplicity, we only state the results that F can be constructed in certain amount
of time (see Section 3.8). The proofs are deferred to Chapter 4, where we give a

more comprehensive investigation on the problem of constructing number fields.

Summary. The actual factoring algorithm combines the three parts above in the
opposite order: we first construct a collection F of number fields which determines
the posets PP and P*. Then we run the algorithm in Theorem 3.1 to obtain a collection
of idempotent decompositions corresponding to a strongly antisymmetric P-scheme.
Finally we extract a factorization of f from the idempotent decomposition of Op.

This yields the main result of this chapter:

Theorem 3.2 (informal). Suppose there exists a deterministic algorithm that given
a polynomial g(X) € Z[X] irreducible over Q, constructs in time T'(g) a collection
F of subfields of the splitting field L of g over Q such that

o F=Q[X]/(9(X)) isin F, and

o all strongly antisymmetric P-schemes are discrete (resp. inhomogeneous) on

Gal(L/F) € P, where P is the subgroup system associated with F.

Then under GRH, there exists a deterministic algorithm that given f(X) € F,[X]
satisfying Condition 3.1 and an irreducible lifted polynomial f(X) € Z[X] of f,
outputs the complete factorization (resp. a proper factorization) of f over F, in time

polynomial in T'( f) and the size of the input.
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We show that many results achieved by known factoring algorithms [Hua9la;
Hua91b; Ron88; R6n92; Evd94; IKS09] can be derived from Theorem 3.2. Thus
the P-scheme algorithm provides a unifying approach to polynomial factoring over
finite fields.

Outline of the chapter. Notations and mathematical preliminaries are given in
Section 3.1, and algorithmic preliminaries are given in Section 3.2. We reduce
the problem of factoring f to that of computing an idempotent decomposition of
Opr in Section 3.3. In Section 3.4, we give the main body of the algorithm that
computes idempotent decompositions corresponding to a strongly antisymmetric
‘P-scheme, and use it to prove Theorem 3.1. The next three sections (Section 3.5,
3.6 and 3.7) describe three subroutines used by this algorithm. In Section 3.8 we
state some results on constructing a collection F of number fields using f. Finally,
in Section 3.9, we combine the results developed in the previous sections to prove
Theorem 3.2, and use it to derive the main results in [Hua91a; Hua91b; Rén88;
Ro6n92; Evd9o4; IKS09].

3.1 Preliminaries

We first review basic notations and facts in algebra. They are standard and can be
found in various textbooks, e.g., [Lan02; AM69; Mar77]. Then we discuss splitting
of prime ideals in number field extensions. Finally, for the certain rings O, we
establish a one-to-one correspondence between their idempotent decompositions

and the partitions of certain right coset spaces.

All rings are assumed to be commutative rings with unity.

Ideals. Recall that a subset  of aring R is an ideal of R if (1) I is a subgroup of
the underlying additive abelian group of R,and Q) R-I = {ra:r € R,a € [} C I.
For z € R, denote by (z), xR or Rx the ideal {rz : r € R} of R generated by .

An ideal of R is proper if it is a proper subset of R. Let I be a proper ideal of I.
We say [ is prime if I # R and ab € I implies a € [ or b € [ for any a,b € R.
And [ is maximal if I # R and there exists no ideal I’ of R satisfying I C I’ C R.
A proper ideal [ is prime (resp. maximal) iff the quotient ring R/ is an integral
domain (resp. a field). In particular, maximal ideals are prime. For an ideal I,
of R, the map I — [/l is a one-to-one correspondence between the ideals of R

containing /, and the ideals of R/, and it preserves primality and maximality.
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If mq,..., m; and m are maximal ideals of R and ﬂle m; C m, then m = m; for
some 7 € [k].2 In particular, if ()'_, m; = 0, then m,, ..., m; are the only maximal
ideals of R.

Two ideals I, 1" of R are coprime if I + I' = R. In particular, distinct maximal
ideals are always coprime. For pairwise coprime ideals Iy, ..., I}, it holds that
N, I = 1L, I,. We also have

Lemma 3.1 (Chinese remainder theorem). Suppose I, . .., I are pairwise coprime

ideals of R. Then the ring homomorphism
k k
¢:R/(\L— ] R/
i=1 i=1
sending T + ﬂle Lito(x+1Iy,...,x+ Iy) is an isomorphism.

Semisimple rings. A (commutative) ring is semisimple if it is isomorphic to a finite
product of fields. The following lemma provides a characterization of semisimple

rings.

Lemma 3.2. A ring R is semisimple iff it has finitely many maximal ideals w4, . . .,
my, and ﬂle m; = 0, in which case R is isomorphic to Hle R/m; via the map
X — (x—l—ml,...,x—l—mk).

Proof. Suppose R = Hle F; is semisimple where each F; is a field. Fori € [k],
let m; : R — F; be the ith projection and m; be its kernel. Then R/m; = F;
and hence each m; is a maximal ideal of R. Moreover we have ﬂle m; = 0 and
hence my, ..., my are the only maximal ideals. Conversely, suppose R has finitely
many maximal ideals my, ..., m; and ﬂle m; = 0. Then by the Chinese remainder
theorem, the map R — Hle R/m;sending z € Rto (x+my,...,x+my)isaring
isomorphism. Each direct factor R/m,; is a field, and hence R is semisimple. [

The semisimple rings considered in this chapter are all semisimple F,-algebras, i.e.

semisimple rings that are also [F,,-algebras.

Idempotent elements. An element x of aring is an idempotent element (or just an
idempotent) if 22 = x. Two idempotents x, y are orthogonal if xyy = 0. A nonzero

idempotent z is primitive if it cannot be written as a sum of two nonzero orthogonal

2See [AM69, Proposition 1.11] for a more general statement for prime ideals.
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idempotents. As already stated in Definition 3.1, an idempotent decomposition of
a ring R is a set I of nonzero mutually orthogonal idempotents of R satisfying
> .er T = 1. We say such an idempotent decomposition is proper if [I| > 1 and

complete if all idempotents in I are primitive.

Lemma 3.3. Let R be a semisimple ring. For every maximal ideal m of R, there
exists a unique primitive idempotent 6, € R satisfying 6, = 1 (mod m)andd, =0
(mod W) for all maximal ideal m’' # m. Two elements d,, and 0., are orthogonal

iff m # w'. Furthermore

o the map m — Oy, is a one-to-one correspondence between the maximal ideals

of R and the primitive idempotents of R, and

o the map B — g 0n is a one-to-one correspondence between the sets of

maximal ideals of R and the idempotents of R.

Proof. This is clear from the isomorphism R = [] . R/m, where S denotes the

set of all the maximal ideals of R. O]

We also need the following lemma.

Lemma 3.4. Suppose ¢ : R' — R is a ring homomorphism between two semisimple
rings R, R'. Let 6, 0" be idempotents of R and R' respectively satisfying ¢(0')d = 4.
Then ¢ induces a ring homomorphism from R'/(1 — 0') to R/(1 — §) sending
x4+ (1—=08)t0p(x)+ (1 —9)forz € R.

Proof. 1t suffices to show that ¢(1 — ¢’) is in the ideal (1 — J) of R, which holds
since (1 — (") (1 —0)=1—¢(0') =6+ ¢(0")0 =1—¢(") =p(1 =¢). O

Finitely generated modules and free modules. A subset S of an R-module M
generates M if ) _o Rx = M. And M is finitely generated if it is generated by
a finite subset S. A basis of M over R, or an R-basis of M, is a subset S C M
generating M for which the sum M = ) _o Rx is a direct sum. We say M is free
(over R) if it admits an RR-basis. The rank of a finitely generated free module over R
is the cardinality of any R-basis of it, which is finite and independent of the choice
of the basis.
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Number fields. Elements in the algebraic closure Q of Q are called algebraic
numbers. An algebraic number is integral or an algebraic integer if it is a root of a
monic polynomial in Z[X]. The set of algebraic integers is a subring of Q, denoted
by A. A number field is a finite degree field extension of Q in Q. For a number field
K, the subring Ok := A N K is called the ring of integers of K. It is embedded in
the Q-vector space K as a lattice of rank [K : Q).

Suppose K/ K is a number field extension. We say o € K is a primitive element
of K over K if K = Ky(«a). Primitive elements always exist for any number field

extension by the primitive element theorem.

Galois theory. Let K/K| be a field extension. The set of automorphisms of K
fixing K is a group, called the automorphism group of K over K, and is denoted
by Aut(K/Ky). We say K is Galois over Ky if |[Aut(K/Ky)| = [K : Ky, in
which case Aut(K/K)) is also called the Galois group of K over K, and denoted
by Gal(K/Kj).

Theorem 3.3 (fundamental theorem of Galois theory). Let K/Ky be a Galois
extension. Then for any intermediate field Ky C E C K, the extension K/ E isalso a
Galois extension. Furthermore, the map E — Gal(K/E) is an inclusion-reversing
one-to-one correspondence between the poset of intermediate fields Ko C E C K
and the poset of subgroups of Gal(K /Ky), with the inverse map H — K.

Given a Galois extension K /K, two subfields F, £ between K and K, are con-
Jugate over K if there exists an isomorphism 7y : £ — FE’ fixing K,. Such an
isomorphism always extends to an automorphism 7 € Gal(K/K,) of K. The
corresponding Galois groups Gal(K/E) and Gal(K/E') satisfy Gal(K/E') =
7Gal(K/E)T~1. So conjugate subfields of K over K, correspond to conjugate
subgroups in Gal(K/K)).

Now we restrict to number field extensions. Let K/ K be a number field extension.
There exists a unique minimal number field that contains /K and is Galois over K,
called the Galois closure of K/K,. For a polynomial f(X) € Ky[X] with roots
ai,...,a € Q, the number field K’ = Ky(ay, ..., qy) is called the splitting field
of f over K and is Galois over K. We also write Gal( f/K) for the corresponding
Galois group Gal(K'/Ky), called the Galois group of f over K. If f is the minimal
polynomial of a primitive element of K over K, the splitting field of f over K, is

exactly the Galois closure of K/ K.
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Suppose K/Kj is a Galois extension with the Galois group G. If x € K is an
algebraic integer, so is 9z for any g € G since Z C K| is fixed by G. So the action
of G on K restricts to an action on Og-.

Splitting of prime ideals. The ring of integers of a number field is an example of
a Dedekind domain [AM69; Mar77]. An ideal of a Dedekind domain is a nonzero
prime ideal iff it is a maximal ideal, and hence these two notions are interchangeable.
By convention, we use the notion of (nonzero) prime ideals instead of maximal

ideals.

Let K be a number field. It follows from the theory of Dedekind domains [Mar77]
that the ideal pO of O splits uniquely (up to the ordering) into a product of prime
ideals of Ok:

k
pOk = H Bi.
i=1

For i € [k], the quotient ring O /B; is a finite field extension of degree d; € N*
over F,, and Zle d; = [K : Q]. We say By, ..., By are the prime ideals of O
lying over p. If Py ..., By, are distinct and O /P; = F, for all « € [k] (and hence
k = [K : Q)), we say p splits completely in K. It is known that if p splits completely
in K, then it also splits completely in any subfield of the Galois closure of K/Q.
See, e.g., [Mar77, Chapter 4]. We also need the following result that identifies the
set of prime ideals lying over p with a right coset space in the case that p splits

completely in a Galois extension containing K.

Theorem 3.4. Let L be a Galois extension of Q such that p splits completely in L,
and let G = Gal(L/Q). Fix a prime ideal Q, of Oy, lying over p. For any subgroup
H C G and its fixed field K = LY, the map Hg — 9, N Ok is a one-to-one
correspondence between the right cosets in H\G and the prime ideals of O lying

over p.3

See, e.g., [Mar77, Theorem 33]. As the prime ideals of Ok lying over p are
exactly those containing pOy, we get the following correspondence by passing to

the quotient ring Ok = Ok /pOk.

Corollary 3.1. Let L, G, Qq be as in Theorem 3.4. For any subgroup H C G
and its fixed field K = LY, the map Hg — (YQo N Ok)/pOx is a one-to-one

3Note that this map is well defined: for another representative hg € G of Hg where h € H, we
have "0, N Ok = h(ng NOk) =99y N O since O is fixed by H.
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correspondence between the right cosets in H\G and the prime (and maximal)
ideals of Ok.

Idempotent decompositions vs. partitions of a right coset space. Suppose p
splits completely into a product of prime ideals 31, ..., B; in a number field K.
Then B, /pOk, . .., Br/pOf are the prime (and maximal) ideals of Ok. As the
intersection of these ideals equals pOy /pOk = 0, the ring O is semisimple by
Lemma 3.2. The prime ideals 3, /pOx correspond to the primitive idempotents of
Ok by Lemma 3.3 and also to the cosets in a right coset space by Corollary 3.1. We
combine them and establish a correspondence between the idempotent decomposi-

tions of O and the partitions of a certain right coset space.
For a number field extension L/ K, the inclusion Ok < Oy, induces a map
) K,L': @ K — @ L

with the kernel (pO; N Ok)/pOk. As pOr N Ok = pOg,* this map is injective,
which identifies O with a subring of Or. Also note that if L/Q is a Galois
extension with the Galois group G, the action of G on (O induces an action
on O and permutes the maximal ideals of O;. These observations are used in
Definition 3.2 below.

Fix the following notations: let L be a Galois extension of Q with Gal(L/Q) = G
and suppose p splits completely in L. For a nonzero prime ideal  of Oy, lying
over p, define  := Q/pO, which is a prime (and hence maximal) ideal of Oy, and
let J5 be the primitive idempotent of O, satisfying 55 = 1 (mod Q) and dq = 0
(mod ') for all maximal ideal Q' # Q of Oy, (cf. Lemma 3.3).

Definition 3.2. Suppose H is a subgroup of G and K = L. Fix a prime ideal L,
of Oy, lying over p. Then

e for an idempotent decomposition I of Oy, define P(I) to be the partition of
H\G such that Hg, Hg' € H\G are in the same block iﬁ”gil(iK,L@)) =

g1,

(ix.(8)) (mod Qo) holds for all § € I, and

e for a partition P of H\G, define 1(P) to be the idempotent decomposition
of Ok consisting of the idempotents 6 := i;&L (deG:ngB 95550), where B

ranges over the blocks in P.>

“To see this, note that if z € pOr, N Ok, thenz/p € O N K = Ok.
SWe show in the proof of Lemma 3.5 that > gec-Hgen 03, does lie in the image of i, 1, and

hence d g is well defined.
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We have the following lemmas.

Lemma 3.5. The partitions P(I) and the idempotent decompositions I(P) are well
defined. And for any idempotent decomposition I of O, the idempotents § € I
correspond one-to-one to the blocks of P(I) via the map § — Bs .= {Hg € H\G :

-1

9 (ig,r(6)) =1 (mod Qo)} with the inverse map B — §p.

Lemma 3.6. The map I — P(I) is a one-to-one correspondence between the
idempotent decompositions of Ok and the partitions of H\G, with the inverse map
P I(P).

The proofs of Lemma 3.5 and Lemma 3.6 are routine and can be found in Ap-
pendix B. In particular, Lemma 3.6 establishes a one-to-one correspondence be-

tween the idempotent decompositions of O and the partitions of H\G.

3.2 Algorithmic preliminaries
In this section, we present some basic procedures used in the factoring algorithm,

mostly related to number fields. Standard references include [Len92; Coh93].

Let A be an R-algebra that is a free R-module of finite rank. In the factoring
algorithm, we represent such an algebra by maintaining an R-basis B = {by,...,bs}
ofit. The structure constants of Ain the basis B are the constants c¢;;;, € I defined by
bib; = 22:1 cijib. Given these structure constants, arithmetic operations of A can
be performed in polynomial time, provided that the those of R can also be performed
in polynomial time. In the discussion below, we use the phrase “computing A” for
the task of computing the structure constants of A in the R-basis B associated with
A. And by “computing a” for a € A we mean computing the constants ¢; € R

satisfying a = Zle c;b;. The interesting cases of R to us are Z, Q, and IF,,.

Now let R’ be an R-algebra and let A’ be an R’-algebra that is a free R’-module of
finite rank. Let ¢ : A — A’ be an R-linear map. We use the phrase “computing
¢” for the task of computing ¢(b;) € A’ for all b; € B, in terms of the coefficients
of ¢(b;) in the R'-basis B’ associated with A’. The interesting cases to us are (1)
R =R e€{Z,Q,F,},(2) R =Z, R = Q and ¢ is an inclusion that embeds a
lattice in a vector space over Q, and (3) R = Z, R = Z/pZ = F,, and ¢ is a
quotient map from a lattice to a vector space over [),.

The size of an object used in the algorithm is the number of bits used to encode this

object.
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Encoding a number field. Let K be a number field of degree d € Nt over Q. We

encode K using a primitive element o € K over Q, or more precisely, the minimal
polynomial g(X) € Q[X] of « over Q. Given g(X), we compute Q[X]/(g(X))
in the standard Q-basis {1 + (¢(X)), X + (¢(X)),..., X4 + (g(X))} and use it
to represent /. This is justified by the isomorphism Q[X]/(¢g(X)) = K sending
X + (9(X)) to a.

Computing O. Given K and a prime number p, we want to compute the F,-
algebra O = O /pOg. It is natural to first compute the ring of integers Oy and
then pass to the quotient ring O. Unfortunately, computing a Z-basis of Ok in K
is in general as hard as finding the largest square factor of a given integer [Chi89;
Len92]. We overcome the difficulty by working with a subring O C Oy instead
of Ok such that [Ok : OY%] is finite and coprime to p. Such a subring is called a

p-maximal order of K, which can be efficiently computed:

Theorem 3.5. There exists a polynomial-time algorithm that given K and p, com-
putes a p-maximal order OY; of K together with the inclusion O — K.

See, e.g., [Coh93, Chapter 6]. We may use O in place of Ok thanks to the

following lemma.

Lemma 3.7. For a p-maximal order O%; of K, the ring homomorphism Q' [pO}, —

Ok /pOk = Ok induced from the inclusion O — Ok is an isomorphism.

Proof. To show surjectivity, it suffices to show that O’ and pOk span Ok over Z.
Note that n; := [Ok : OY%] is coprime to p and ny := [Of : pOk| is a power of p.
The index of the lattice spanned by O and pOf in O divides both n; and n, and
hence equals one, as desired.

On the other hand, note that O and O are both lattices of rank [K : Q]. So Ok
and Of /pO’ are both vector spaces of dimension [K : Q] over F,,. Therefore the

map O}, /pO}; — Oy is an isomorphism. N

This provides a method of computing the FF,-algebra O:

Lemma 3.8. There exists a polynomial-time algorithm ComputeQuotientRing that
given K and p, computes the quotient ring O, a p-maximal order O, the inclusion

O — K, and the quotient map 7 : Oy, — Of sending v € Of; to x + pOk.
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Proof. Compute O} and the inclusion Q) — K using Theorem 3.5. In particular
the structure constants c;;, € Z of O in some Z-basis {by, ..., b;} are computed,
where d = [K : Q]. The structure constants of O} /pO} in the F,-basis {b; +
pOh, ..., by + pOYy} are simply c¢;;, mod p. By Lemma 3.7, they are also the
structure constants of O in the F,-basis {b; + pOk, ..., by + pOx}. The map m
is specified by the data ¢(b;) = b; + pOk. O

Note that in addition to O, we also compute the auxiliary data of O} and the
maps from O} to O and K. They are used for the algorithms in Lemma 3.9 and

Lemma 3.11 below.

Computing the residue of an algebraic integer modulo p. We need an algorithm
computing the image of an algebraic integer o € Oy in O, where « is given as an

element of K.

Lemma 3.9. There exists a polynomial-time algorithm ComputeResidue that takes

the following data as the input

o a number fields K, a prime number p, and o € Oy given as an element of K,

e the outputs of ComputeQuotientRing (see Lemma 3.8) on the inputs (K, p),
i.e., the quotient ring O, a maximal p-orders O, the inclusion Oy — K,

and the quotient map Oy — Ok,
and computes o + pOk € Ok.
The proof of Lemma 3.9 can be found in Appendix B.

Computing embeddings of number fields. Embeddings of a number field in
another can be computed efficiently, thanks to the polynomial-time factoring algo-
rithms for number fields [Len83; Lan&5].

Theorem 3.6 ([Len83; Lan85]). There exists a polynomial-time algorithm that given
a number field K and a polynomial g(X) € K[X|, factorizes g(X) into irreducible

factors over K.

Let K, K’ be number fields and suppose K is encoded with a primitive element
a € K whose minimal polynomial is g(X) € Q[X]. Each embedding ¢ of K in



58

K’ is determined by the image ¢(«) € K’ which is a root of g(X'). These roots can

be enumerated by factoring g(X') over K’ using Theorem 3.6. So we have:

Lemma 3.10. There exists a polynomial-time algorithm ComputeEmbeddings that
given number fields K and K', computes all the embeddings of K in K'.

Computing induced ring homomorphisms between Ox. Let¢ : K — K’bean
embedding of number fields, which restricts to an inclusion Ox — Ok. By passing
to the quotient rings O and Ok, we obtain a ring homomorphism qi_> O — Ok,
And we say the map ¢ is induced from ¢.The following lemma states that ¢ can be
efficiently computed from ¢ and some auxiliary data.

Lemma 3.11. There exists a polynomial-time algorithm ComputeRingHom that

takes the following data as the input

e number fields K, K', an embedding ¢ : K — K', and a prime number p,
e the outputs of ComputeQuotientRing (see Lemma 3.8) on the inputs (K, p)
and (K', p) respectively,

and computes the ring homomorphism ¢ : O — O induced from .

The proof of Lemma 3.11 can be found in Appendix B.

3.3 Reduction to computing an idempotent decomposition of O
Now we start describing the P-scheme algorithm. Fix the following notations in the

remaining sections:
e f(X): the input polynomial in F,[X] to be factorized, which is square-free
and completely reducible over [,
e f(X): an irreducible lifted polynomial of f(X) in Z[X],
e [ the number field Q[X]/(f(X)),
e L: the splitting field of f over Q,

e G the Galois group Gal(L/Q) = Gal(f/Q),

®That is, the quotient rings O, Ok, the maximal p-orders O, O%, the inclusions O — K,
0%, — K', and the quotient maps O% — Ok, O — Og.
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e $)g: a fixed prime ideal of O, lying over p.

In this section, we reduce the problem of factoring f to that of computing an
idempotent decomposition of Q. For simplicity, we first assume that f is a monic

polynomial, and then remove the assumption at the end of this section.

Ring isomorphism between F,[X]/(f(X))and Ox. Leta:= X+ (f(X)) e F
which is a root of f. As f(X) € Z[X] is monic, we know o € Op. Define the ring
homomorphism 7 : F,[X] — O by letting 7(X) = a+pOp, which is well defined
since O is an [F,-algebra. Moreover, we have 7(f(X)) = f(a) + pOr = 0. So 7
induces a ring homomorphism 7 : F,[X]/(f(X)) — Ok sending X + (f(X)) to
a+ pOrp.

Let fi,..., f, be the monic irreducible factors of f over IF,. As f; are irreducible
and distinct, the ring IF,[ X]/(f (X)) is semisimple with the maximal ideals (f;(X)),
i=1,...,n. Then O is also semisimple. Indeed, we have the following lemma:

Lemma 3.12. The map 7 : F,[X]/(f(X)) — O is a ring isomorphism, and p
splits completely in F.

Proof. The second claim follows from the first since F,[X|/(f(X)) has n dis-
tinct maximal ideals. To prove the first claim, note that the ring homomorphism
F,[X]/(f(X)) — Z[a]/pZ[a] sending X to a + pZ|a] is an isomorphism. So it
suffices to show that the natural inclusion Z[a] — Op induces an isomorphism
Z[a]/pZ[a] — Op.

For i € [n], choose f;(X) € Z[X] that lifts the factor f;(X) € F,[X] of f,
and define the ideal B; of Z[a] to be the one generated by fi(oz) and p. As
Zla]/pZia) = F,[X]/(f(X)) is semisimple, we have (\;_,B; = pZla]. By
[AM69, Theorem 5.10], for each i € [n], we may choose a prime ideal £; of
Op lying over p such that Q; N Z[a] = B,. Then we have

pOr N Za] C (ﬂ Qi) NZa) = ﬁ&pi = pZlal.

So the map Z[a]/pZ[a] — Op is injective. It is in fact an isomorphism since

Z[a]/pZ|a] and O are both vector spaces of dimension n over F,,. O
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Extracting a factorization from an idempotent decomposition. Let /5 be an
idempotent decomposition of Op. By Lemma 3.12, the set 7~ (1) = {771(J) :
d € Ir} is an idempotent decomposition of F,[X]/(f(X)). Given d € I, we can
extract a factor gs(X) of f(X) by

95(X) == ged(f(X), hs(X)),

where hs(X) € F,[X] is a nonzero polynomial of degree at most n lifting 1 —
771(8) € F,[X]/(f(X)). The factor gs(X) is the product of the monic irreducible
factors f;(X) satisfying 771(6) = 1 (mod f;(X)). As f(X) = f(X) mod p is
monic and the elements 77!(§) form an idempotent decomposition of the ring
F,[X]/(f(X)), we have the equality

F(X) = [T gs().

el

This gives the following algorithm that computes a factorization of f from [p:

Algorithm 1 ExtractFactors

Input: p, f, f, F, Op, idempotent decomposition I of O,
p-maximal order O, of F and maps O, — F, O} — Op
Output: factorization of f
L ae X+ (f(X)eF
2: call ComputeResidue to compute o + pOp € Op
3: compute the ring homomorphism 7 : F,[X]/(f(X)) — Op sending X +
(f(X)) to a+pOr
4: for ) € Ir do
5: compute nonzero hs(X) € F,[X] of degree at most n lifting 1 — 771(4)
6 gs(X) < ged(f(X), hs(X))

7: return the factorization f(X) = [[5¢;, 95(X)

For the purpose of computing the map 7, the input contains some auxiliary data
(e.g., a p-maximal order O’ and the related maps) other than the idempotent decom-
position /r. For now we note that the auxiliary data can be prepared in polynomial

time using the subroutines in Section 3.2. Then we have:

Theorem 3.7. The algorithm ExtractFactors computes the factorization f(X) =
[Isc Ip 9s(X) in polynomial time. In particular, it computes the complete factoriza-
tion (resp. a proper factorization) of f(X) in polynomial time iff the idempotent

decomposition I of O is complete (resp. proper).
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Proof. The algorithm clearly runs in polynomial time: Line 1 is implemented by
factoring f over F'using Theorem 3.6. The loop in Lines 4-6 iterates | [r| < n times.
Line 5 is implemented by solving a system of linear equations over IF,, and Line 6 by
the Euclidean algorithm. The fact that the factorization is complete (resp. proper)
iff I is complete (resp. proper) follows from the fact that 7 : F,[X]/(f(X)) — Or

is a ring isomorphism. [

Therefore the problem of computing the complete factorization (resp. a proper)
factorization of f reduces to the problem of computing the complete (resp. a

proper) idempotent decomposition of Op.

The reduction for non-monic polynomials. After a slight change, the above

reduction also works for a possibly non-monic polynomial f. We explain it now.

Suppose ¢ € Z — {0} is the leading coefficient of f. Its residue ¢ := ¢ mod p € F,
is nonzero since deg(f) = deg(f) = n. Define f/(X) := ¢ ' - f(X/c) € Z[X]
and f/(X) := f(X)mod p € F,[X]. The polynomials f' and f’ are monic, and
f/(X) =" f(X/&). Let a be aroot of f in F as before. Then o/ := ca is a root

of f” and hence is in Op.

Run the algorithm ExtractFactors above except that f, f and « are replaced with
f', f' and  respectively. Then we obtain a factorization f'(X) = [] serp 95(X)
where the factors ¢5(X) € F,[X] are monic. Substituting X with ¢X, we obtain a

factorization

=

with the monic factors g5(X) := ¢~ 9°%) . ¢/(¢X) € F,[X]. Theorem 3.7 then

holds for f and f.

3.4 Main algorithm

We present the main body of the P-scheme algorithm in this section. Its input
contains a collection of number fields that are isomorphic to subfields of L. In
order to avoid duplicate data, we assume that these number fields are mutually

non-isomorphic. This is formalized by the following definition:

Definition 3.3 ((Q, g)-subfield system). Let (X ) be a polynomial in Q[ X] with the
splitting field L(g) over Q. Let F be a collection of number fields such that (1) the
fields in F are mutually non-isomorphic, and (2) each field K' € F is isomorphic
to a subfield of L(g). We say F is a (Q, g)-subfield system.
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Given a (Q, g)-subfield system, we define a subgroup system over Gal(g/Q) as

follows.

Definition 3.4. Letr g(X) be a polynomial in Q[ X| with the splitting field L(g) over
Q. Let F be a (Q, g)-subfield system. Define P* to be the poset of subfields of L(g)
that includes all the fields isomorphic to those in F:

Pt = {K' C L(g) : K' = K for some K € F}.
By Galois theory, it corresponds to a poset P of subgroups of Gal(g/Q), given by
P = {H C Gal(g/Q) : (L(9))" € P*}

which is closed under conjugation in Gal(g/Q), and hence is a subgroup system
over Gal(g/Q). We say P and P* are associated with F.

The pseudocode of the algorithm is given in Algorithm 2 below. Its input is the
prime number p and a (Q, f)-subfield system F. We fix P to be the subgroup
system over G = Gal(f/Q) associated with F.

The algorithm outputs, for every K € F, the ring Ok and an idempotent decom-
position Iy of O, together with the auxiliary data of a p-maximal order O, and
the related maps O} — K, O} — Og. We will see below that the idempotent
decompositions [ altogether determine a P-collection, which is guaranteed to be

a strongly antisymmetric P-scheme when the algorithm terminates.

The first half (Lines 1-7) of the algorithm is the preprocessing stage, where we
compute O for K € F and the ring homomorphisms between them that are induced
from the field embeddings. For each K € F, we also initialize the idempotent

decomposition I of O to be the trivial one containing only the unity of O

The second half (Lines 8—12) is the “refining” stage. To understand it, we need to
associate a P-collection C with the idempotent decompositions /. By Lemma 3.12,
we know p splits completely in F'. So it also splits completely in every subfield of

L. In particular, for a field K in P* or F, the quotient ring O is semisimple.

For each H € P, we define a partition C'y of the coset space H\G as follows: Let
K be the unique field in F isomorphic to L. Fix an isomorphism 7 : K — L,
which induces a ring isomorphism 74 : O — Opu. Define I := 7 (I ), which

is an idempotent decomposition of O, x#. By Definition 3.2, it corresponds to a
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Algorithm 2 ComputePscheme

Input: prime number p, (Q, f)-subfield system F
Output: for each K € F: O, idempotent decomposition /5 of O,
p-maximal order O of K and maps O} — K, O — Ok
1: for K € Fdo
2 call ComputeQuotientRing to compute Op, a p-maximal order O of K

and maps Oy — K, O — Ok

3; Ik + {1}, where 1 denotes the unity of Ok

4: for (K, K') € F* do

5: call ComputeEmbeddings to compute all the embeddings from K to K’
6: for embedding ¢ : K — K’ do

7: call ComputeRingHom to compute ¢ : O — Ok induced from ¢
8: repeat

9: call CompatibilityAndInvarianceTest

10: call RegularityTest

11: call StrongAntisymmetryTest

12: until /5 remains the same in the last iteration for all X € F

13: return O, I, O) and the maps O — K, Q) — Ok for K € F

partition P(Iy) of H\G.” And we define
Finally, define the P-collection C by

C:{CHHEP}

We call several subroutines to update /x in Lines 9-11, whose effects can be

understood in terms of C:

Lemma 3.13. There exists a subroutine CompatibilityAndInvarianceTest that
updates I in time polynomial in logp and the size of F so that the partitions
Cy € C are refined, and at least one partition Cy is properly refined if C is not

compatible or invariant.

"Definition 3.2 is made with respect to a fixed prime ideal Qg of Oy, lying over p. This ideal is

chosen at the beginning of Section 3.3.
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Lemma 3.14. There exists a subroutine RegularityTest that updates I in time
polynomial in log p and the size of F so that the partitions Cy € C are refined, and

at least one partition C'y is properly refined if C is compatible but not regular.

Lemma 3.15. Under GRH, there exists a subroutine StrongAntisymmetryTest
that updates I in time polynomial in log p and the size of F so that the partitions
Cy € C are refined, and at least one partition Cy is properly refined if C is a

‘P-scheme, but not strongly antisymmetric.

We will describe these subroutines and prove the lemmas above in the next three

sections. For now we just assume them and prove the main result of this section:

Theorem 3.8 (Theorem 3.1 restated). Under GRH, the algorithm ComputePscheme
runs in time polynomial in the size of the input, and when it terminates, the P-

collection C is a strongly antisymmetric P-scheme.

Proof. We first analyze the running time. As each field K € F is encoded by a
rational polynomial of degree [K : Q], the total degree N := . -[K : Q] is
bounded by the size of F. The loops in Lines 1-3 and Lines 4-7 iterate |F| < N
and | F?| < N?times respectively. Foreach (K, K') € F?, there are at most [K : Q]
embeddings from K to K’, and hence the inner loop in Lines 6-7 iterates at most
[K : Q] times for each fixed (K, K').

For the loop in Lines 8-12, we consider K € F and pick H € P so that L is
isomorphic to K. By Lemma 3.5, the number of idempotents in /x5 equals the
number of blocks in C'y, and this number increases every time [ is changed by the
subroutines. On the other hand, the number of idempotents in /f is at most [K : Q).
So the loop in Lines 812 iterates O(/V) times. The claim about the running time

easily follows.

Finally, note that the algorithm exits the loop in Lines 8—12 after an iteration iff all
of the idempotent decompositions /i remain the same in that iteration, in which
case C is already a strongly antisymmetric P-scheme by Lemma 3.13, Lemma 3.14
and Lemma 3.15. [

Remark. The input of the the algorithm contains F whose size may be much greater
than that of f and f. Therefore, the polynomiality of this algorithm in the size of

its input does not imply that polynomial factoring over finite fields can be solved in



65

(deterministic) polynomial time. It does suggest, however, that the total degree of

the fields in F over Q is the bottleneck of our factoring algorithm.

3.5 Compatibility and invariance test
The subroutine CompatibilityAndInvarianceTest is given in Algorithm 3. It
has the effect of properly refining at least one partition in C, unless C is compatible

and invariant.

Algorithm 3 CompatibilityAndInvarianceTest
1: for (K, K') € F? and embedding ¢ : K’ — K do

2 for (9,0") € Ix x I do

3 if ¢(0")6 € {0,0} then > ¢ : Ogr — Ok is induced from ¢
4: I < Ik — {5}

; I I U {805, (1 - 6(0))3)

6 return

This subroutine attempts to find a ring homomorphisms ¢ : O — O (induced
from a field embedding ¢ : K’ — K) and idempotents § € Iy, &' € I such that
@(6’ )d equals neither § nor zero. If such 4, ¢’, and ¢ are found, the subroutine updates
I by replacing § € I with two new idempotents ¢(6')6 and (1 — ¢(&"))d, neither
of which is zero. It has the effect of splitting each block B, 5y € Cy = P(Iy)
corresponding to 7y (0) € Iy (see Lemma 3.5) into two blocks, where H ranges

over the subgroups in P satisfying L = K. After the update, the subroutine halts.

Now we prove Lemma 3.13 as promised before.

Proof of Lemma 3.13. Polynomiality of the running time is straightforward. To
prove the rest of the claim, we assume that no proper refinement is made, i.e. for
all K, K" € F, 6 € Ig, d € Ix and field embeddings ¢ : K’ — K, we have

(") € {0,0}. Then we show that C is compatible and invariant.

For H € ‘P, the isomorphism 7 identifies L7 € P with a field K € F. So the
condition above can be reformulated as follows: forall H, H' € P,§ € Iy, € Iy
and field embeddings ¢ : L' < L, we have ¢(&')§ € {0, 5}.

Now consider H, H' € P satisfying H C H' and elements Hg, Hg’ € H\G in
the same block B € Cy = P(Iy). We want to show that 7y g (Hg) = H'g and

mup(Hg') = H'g are in the same block of C'yy. By Lemma 3.5, there exists an
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idempotent 0 € I for which
B={Hhe H\G:" (ipn;(8))=1 (mod Qo)} 3.1)

holds, where i, f, : Opn — Oy is induced from the natural inclusion L7 — L.
Choose ¢ to be the natural inclusion L7 < L. As § = Dset,, $(8")d, there
exists an idempotent &' € Iy such that ¢(6')d # 0. By assumption, we have
#(0")6 = §. Again by Lemma 3.5, the set B’ given by

B = {H'he H\G:" (ipw (§) =1 (mod )} (3.2)

is ablock of Cyr = P(Iy+). We claim that H'g, H' ¢’ € B’. To see this, note that as
Hg € B, we have

1 1

(ipe p(0(8)0)) =7 (ipn(6)) =1 (mod Q). (3.3)

It implies * (ZLH £(6(8"))) = 1 (mod Qo). Note that ipm , = igmyp o d. So
we have g_l(zLH/ (6")) = 1 (mod Qo) and hence H'g € B'. Similarly, we have
H'q' € B'. So H'g and H'¢' are in the same block of C'y, as desired. Therefore C

is compatible.

Next consider H, H' € P satisfying H' = hHh~! for some h € G and elements
Hg,Hg € H\G in the same block B of C'y. We want to show that cy ,(Hg) =
H'hg and ¢y, (Hg') = H'hg' are in the same block of C'ys. Again by Lemma 3.5,
there exists an idempotent 6 € [y for which (3.1) holds. Choose ¢ to be the
isomorphism L — L¥ sending z € L to" 'z € L. So ¢ sends z € O, to

"' € Opu, or more pedantically, to

ZZfllL <h71(iLH',L(x))> e LM,

Again,asd = > 5, $(0')8, there exists an idempotent &' € Iy such that ¢(8')8 #
0. By assumptlon, we have $(6')0 = 5. By Lemma 3.5, the set B’ given by (3.2) is
a block of Cyr = P(Iy+). We claim that H'hg, H'hg' € B’. To see this, note that
(3.3) holds since Hg € B. It implies that

B0 iy 1 (6)) = (i p(6(5))) =1 (mod Qp)

and hence H'hg € B’. Similarly, we have H'hg’ € B’. So H'hg and H'hg' are in
the same block of C'y, as desired. As cp, is bijective, it maps blocks to blocks.

Therefore C is invariant. O]
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3.6 Regularity test
In this section we implement the subroutine RegularityTest. It has the effect of
properly refining at least one partition in C if C is compatible, invariant, but not

regular.

A similar algorithm was proposed in [Evd94; Gao0O1l] based on generalizations of
the Euclidean algorithm for polynomials over rings. We take an alternative approach

developed in [IKS09; Iva+12] based on a “free module test”:

Lemma 3.16 ([IKS09; Iva+12]). There exists an algorithm FreeModuleTest that
given a semisimple F,-algebra A and a finitely generated A-module M, returns
a zero divisor a of A in polynomial time, such that a is zero only if M is a free
A-module.

For completeness, we prove Lemma 3.16 in Appendix B. In addition, we need the

following subroutine.

Lemma 3.17. There exists an algorithm SplitByZeroDivisor that given

o a semisimple F,-algebra R, an idempotent decomposition I of R, and an

idempotent v € 1,

e the ring R := R/(1 — 7), the quotient map 7 : R — R, and a zero divisor
a+#0ofR,

replaces v € I with two nonzero idempotents 7y, satisfying v = 1 + Y2 in

polynomial time.

The proof of Lemma 3.17 can be found in Appendix B as well. The subroutine
RegularityTest is then implemented in Algorithm 4 below.

The subroutine enumerates (K, K') € F?, the ring homomorphisms ¢ : O — O
(induced from the field embeddings ¢ : K’ — K), and the idempotents § € I,
§' € Iy satisfying ¢(6')d = 6. Line 3 and Line 4 compute the quotient rings
A= 0O /(1 -6"), M = Og/(1 - d) and the corresponding quotient maps. They
are quotient rings of semisimple rings and hence also semisimple. By Lemma 3.4,
the map ¢ induces a ring homomorphism ¢s5 : A — M sending u + (1 — ') to
é(u) + (1 — 6) for u € Ok, which we compute at Line 5. It gives M an A-algebra

structure, and in particular an A-module structure. Then we call FreeModuleTest
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Algorithm 4 RegularityTest
1: for (K, K’) € F? and embedding ¢ : K’ — K do
for (8,0") € I x Iy satisfying ¢(6')d = & do

2
3 compute A = Ok /(1 — ') and the quotient map Oy — A
4: compute M = O /(1 — §) and the quotient map O — M
5 compute ¢55 : A — M sending u + (1 — &) to ¢(u) + (1 — 6) for
u € Ok, making M an A-algebra and hence an A-module
call FreeModuleTest with the input A and M to obtain a € A
if a # 0 then
call SplitByZeroDivisor to update [ using the zero divisor a

v % 22

return

at Line 6 which returns a zero divisor a of A by Lemma 3.16. If a # 0, we call
SplitByZeroDivisor (with the input R = Ok, I = Igs, v = §', R = A, the
quotient map Oy, — A, and the zero divisor a) to update I, so that §' is replaced
with two nonzero idempotents by Lemma 3.17. After the update, the subroutine
halts.

Proof of Lemma 3.14. The subroutine obviously runs in time polynomial in log p
and the size of F. To prove the rest of the lemma, it suffices to show that a zero

divisor a # 0 of A is always found in Line 6 if C is compatible but not regular.
So assume C is compatible but not regular. Then there exist H, H' € P satisfying
HCH Be(Cy,B € Cy and H' g, H'¢' € B’ such that

T (H'9) N Bl # |7 (H'g') 0 B. (3.4)
By Lemma 3.5, there exist § € [y and 0’ € Iy such that

B={Hhe H\G:" (ipun (6)=1 (mod Qo)}
and
B = {H'he H\G:" (ipw (§) =1 (mod Q)}.

By (3.4) and compatibility of C, we have 7y r/(B) C B'. Let ¢ : L < L' be

the natural inclusion, which induces a ring homomorphism ¢ : O, — Opu. We
claim that ¢(6')d = 6 holds: assume to the contrary that it does not hold. Then

there exists a maximal ideal m of O, such that

ipr(0) =1 (modm) and ipm (¢(d)) =i m (6') =0 (mod m).
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Choose h € GG such that m = hﬁo. Then we have

-1

(ignp(8) =1 (mod Qo) and " (iyw (§) =0 (mod Q).

It follows that Hh € B and 7y (Hh) = H'h ¢ B’. But this contradicts
mu.m(B) C B'. So ¢(8')§ = § holds.

Define A := O, u /(1 —¢8")and M := Opu /(1 —6). Let ¢ps5 : A — M be the ring
homomorphism sending u + (1 — §') to ¢(u) + (1 — §) for u € O, », making M an
A-algebra and hence an A-module. We claim that M is not free over A. Assume to
the contrary that M is a free A-module. Denote its rank over A by k € NT. Define

PBi= QN0 u)/pOrw € Opw and P :=P/(1—-) C A4,

which are maximal ideals of O, and of A respectively. Then M /5B’ M is a free
A/P’-module of rank k. On the other hand, we have the isomorphism

M/B'M = Opu [(¢(B)Ors + (1 — 0)Opn).

It follows from the Chinese remainder theorem that M /SB’M is isomorphic to
[Lnes Opu/m where S denotes the set of the maximal ideals of O, » containing
both ¢(*B) and 1 — §. As p splits completely in L, each direct factor Oy u /m is
isomorphic to F,,. So M /33’ M is a vector space of dimension | S| of F,,. On the other
hand, as p splits completely in L', we have A/’ = F,. So rank k of M /' M
over A/P equals |S|.

By Corollary 3.1, the maximal ideals of O are of the form by By, := (th N
Or#)/pOru which correspond one-to-one to the cosets Hh € H\G. Each maximal
ideal B 7, contains ¢(P) iff P is contained in

95_1(‘431%) - (hQO N OLH/)/pOLH/,

which, again by Corollary 3.1, holds iff H'¢g = H'h. And By, contains 1 — ¢ iff
ipn (1 — ) € "Qo, which holds iff Hh € B. So we have

k=|S|=|{Hhe B:Hg=Hh}| =|rg',(Hg)NB|

But the same proof shows k = |7r]_{’1H,(H '¢g’) N B|. This is a contradiction to (3.4).

Therefore M is not free over A.

Identify L” (resp. L'") with a field in F using the isomorphism 75 (resp. 7p)
chosen in Section 3.4. By Lemma 3.16, the subroutine is guaranteed to find a
nonzero element a € A in Line 6. It then updates an idempotent decomposition /-

and properly refines some partition in C by Lemma 3.17, as desired. 0
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3.7 Strong antisymmetry test
In this section, we implement the subroutine StrongAntisymmetryTest, which
has the effect of properly refining at least one partition in C if C is a P-scheme, but

not a strongly antisymmetric P-scheme.

This subroutine is based on an algorithm developed in [R6n92]:

Lemma 3.18 ([R6n92]). Under GRH, there exists an algorithm Automorphism
that given a ring A isomorphic to a finite product of F,, and a nontrivial ring

automorphism o of A, returns a zero divisor a # 0 of A in polynomial time.

For completeness, we provide a proof of Lemma 3.18 in Appendix B.

The subroutine StrongAntisymmetryTest is implemented in Algorithm 5 below.

Algorithm 5 StrongAntisymmetryTest
1: construct an edge-labeled directed graph G = (V, E) where V = {(K,J) :
KeF,0€lgtand E =10
for (K,0) € V do
compute Ag 5 := Ok /(1 — §) and the quotient map Ox — Ax s
for ((K,6),(K',§")) € V?2and ¢ : K’ — K satisfying ¢(8')d = J do
compute ¢s5 : Axr 5 — Ak s sending x + (1 — &) to ¢(x) + (1 — 9)
if ¢4 is invertible then
E <+ FEU{e, €'}, where the edge e is from (K’ §’) to (K, §) with label
¢s.5, and € is from (K, 0) to (K, ¢") with label gb;;,

A

8: search an nontrivial automorphism o of Ak s for some (K, ) € V thatis a com-
position of maps in £ := {¢; : there exists an edge e € E with label ¢; 5 }
9: if o is found at Line 8 then

10: call Automorphismon (Ag s, o) to obtain a zero divisor a # 0 of Ak s
11: call SplitByZeroDivisor to update [k using a
12: return

The subroutine first constructs an edge-labeled directed graph G = (V, E'), where
the vertex set is
Vi={(K,0):KeF,oelk}

and each edge is labeled by a certain ring isomorphism to be determined later.
Initially the edge set E is empty. For every vertex (K, d) € V, we compute the ring
Ak = Ok /(1 — §) and the quotient map O — A s at Line 3.
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Then we enumerate ((K,9), (K',6")) € VZand ¢ : K' < K for which ¢(8')d = §

holds, and for each of them, we compute a ring homomorphism

Gs5 - Agrs — Aks

that sends = + (1 — ') to ¢(x) + (1 — &) for z € Ok.. The map @54 is well defined
by Lemma 3.4. If ¢;s is an isomorphism (i.e., invertible), we add to £ an edge e
from (K, ") to (K, ) with label ¢5 5, and also an edge €’ from (K, ) to (K’, ')
with label ¢; ..

Next, at Line 8, we search a nontrivial automorphism o of Ag s, (K,0) € V, such

that o is a composition of maps in £, where
L := {¢ss : there exists an edge e € F with label ¢; 5 }.

We sketch a way of implementing this step in time polynomial in log p and the size
of F: note that the edges whose labels compose into a nontrivial automorphism
form a cycle of G. So by computing the strongly connected components of GG and
restricting to each of them, we reduce to the case that G is strongly connected.
Fix a vertex (Ky,dy) € V. For every (K,0) € V, compute a ring isomorphism
Vs @ Ak,s, — Ak, that is a composition of maps in £. These isomorphisms
exist since we assume G is strongly connected, and they can be computed by, e.g.,
the breadth-first search algorithm. Then we may find a nontrivial automorphism o,
if it exists, by enumerating the maps ¢s 5 : Axr 5 — Ak s in £ and checking if the
automorphism
Go0 0 Vrcrr 0 Uiy - Ars = A

of Ak s is nontrivial.

Finally, if a nontrivial automorphism o of some ring Ag s is successfully found,
we use it to update /i as follows: run the algorithm Automorphism on the input
(Ak.s, 0) to obtain a zero divisor a # 0 of € Ak 5. Then call SplitByZeroDivisor
(with the input R = Ok, [ = Ig, v = 6, R = Ak, the quotient map O —
Ak s, and the zero divisor a) to update Ik, so that ¢ is replaced with two nonzero

idempotents by Lemma 3.17.

Now we analyze the subroutine. For H C G and B € (g, there exists a unique

idempotent ) = dp € [y satisfying

B={HheH\G:" (ipu(6))=1 (mod Qp)}.
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See Definition 3.2 and Lemma 3.5. Write A # 5 for the ring Opu /(1 — ). The

maximal ideals of A, ; are of the form m/(1 — §) where m is a maximal ideal of

Opx containing 1 — §. By Corollary 3.1, the map
Hg —> Mpyy = (gQO N OLH)/pOLH

is a one-to-one correspondence between the right cosets in H\G and the maximal
ideals of Ox. And mp, contains 1 — ¢ iff irm (1 —9) € 99, which holds iff
Hg € B. We conclude that the map

Hg»—>mHg/(1—6)

is a one-to-one correspondence between the right cosets in 5 and the maximal ideals

of Apn s.
We also need the following technical lemma.
Lemma 3.19. Suppose HH € P, B € Cy, B € Cy, 7 : B — B, and
¢ L' — LY are in one following cases:
I. HCH,7=ngmwlp: B — B,and ¢ : L' — L is the natural inclusion.
2. H = hHW™! for some h € G, 7 = cyyulp : B — B', and ¢ : L7 - "

-1
sends x to " .

Let§ := 0 € Iy and &' = 6 € Iy (see Definition 3.2). Let ¢ : @LH/ — Opu be
induced from ¢. Then ¢(5')d = 0 holds, so that the ring homomorphism

Gss 2 Apmr 50— Apn s

sending v + (1 — ') to ¢(x) + (1 — &) is well defined by Lemma 3.4. Moreover, for
Hg € B, we have

QS;;'(mHg/(l - 5)) = mT(Hg)/(1 - 5/)-
Finally, the map ¢; s is an isomorphism if T is a bijection.
Proof. We claim that for any Hg € H\G, it holds that ¢! (my,) = m,(g,). Fix
Hg € H\G. Note that ¢~!(mp,) is a prime (and hence maximal) ideal of O, ;.

Therefore to prove the claim, it suffices to show &(mT( Hg)) C mpyy,. In the first case

of the lemma, we have 7(Hg) = 7y g (Hg) = H'g, and

Mpyy = (gQO N OLH)/pOLH and Mr(Hg) = Mprg = (gQU N OLH/)/pOLH/.
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As ¢ : L*" — L is the natural inclusion, we have ¢(m.(z,)) C my,, as desired.

In the second case, we have 7(Hg) = cy(Hg) = H'hg, and
My, = (QD(] N OLH)/pOLH and Mo (Hg) = Mprpg = (hgﬂo N OLH/)/pOLH’.

As ¢ : L' — L sends z to 'z, again we have ¢(Mr(1g)) € myy. This proves

the claim.

Next we prove ¢(0')6 = 6. As Opr is semisimple, it suffices to show that for any
maximal ideal my, containing ¢(J') also contains 6. Fix Hg € H\G such that
¢(0") € myy,. Then & is contained in ¢~ (mp,) = m,(g,). Asd = dp, we have
T7(Hg) ¢ B’ and hence Hg ¢ B. Finally, as 0 = 05, we have § € myy, as desired.
The next claim that qﬁgg, (mpg/(1 = 0)) = Mg /(1 — &) follows directly from
qg’l(mHg) = M,(gy). Now assume 7 is a bijection. The kernel of ¢; 5 is
ﬂ%é’mHg/l_ ﬂmHg /(1=0d")= m myprg/(1—0") = 0.
HgeB HgeB H'geB’
So ¢;4 is injective. Also note that the dimension of Apu s (resp. Apu 5) over ),

equals its number of maximal ideals, which is | B| (resp. |B’|). As 7 is bijective, we

have |B| = |B’|. So 7 is an isomorphism. O
Now we are ready to prove Lemma 3.15, as promised.

Proof of Lemma 3.15. Assume C is a P-scheme but not a strongly antisymmetric
P-scheme. By Lemma 3.18, it suffices to show that some maps in £ compose into

a nontrivial automorphism of A s for some (K,§) € V.

As C is not strongly antisymmetric, there exist k& € N, subgroups Hy, . .., H € P,
blocks By € Cy,, ..., By € Cp,, and maps o4, . .., 0y, satisfying

e 0, is a bijective map from B;_; to B;,

D7

e g;isof the form cy, , 4lB, ,» TH, \.1,|B;i 1> OF (TH, H,

[ HOZHk andBosz,

and the composition 7 := o0, o - - - 0 g7 is a nontrivial permutation of By = By.
Let 6; := dp, € Iy, and Apn, 5 1= Opn; /(1 — ;) for 0 < i < k. By Lemma 3.19,

for i € [k], there exists a ring isomorphism t; : A, 5. — A m, 5,_, such that

Q/}i_l(mHz‘flg/(l - 5i—1)) = mUz’(Hi—lg)/(l - 52)
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holds for all H; 19 € B; ;. Moreover, for i € [k], the map 1); is in one of the

following two cases:

e o sends z + (1 — &;) to ¢;(x) + (1 — ;_y) for x € Opn,, where ¢; is an
embedding of L in LHi-1,

e ¢ 'sends z + (1 —d;1) to ¢;(x) + (1 — &) forz € O, n,_,, where ¢; is an
embedding of Li-1 in L,

Here the first case occurs when o; is of the form ¢y, | 4B, , OF Tn, | H,|B,_,, and

Bi)_l'

Consider the automorphism o := ¢y o - - - o ¢y of Ay my, 5 = Apng 5. We have

the second one occurs when o; is of the form (7g, g, ,

0 (Mzg/ (1 = 00)) = Mer(r1yg) /(1 = do)

for all Hyg € By. As 7 is a nontrivial permutation of By, there exists Hyg € B
satisfying 7(Hog) # Hog and hence my,,/(1 — 6o) # My (11,9)/(1 — &). So o isa

nontrivial automorphism.

Finally, identifying each field L”¢ with a field K; € F using the isomorphisms
Th, : K; — L, we see that the ring isomorphisms 1); are identified with maps in

L, and they compose into a nontrivial automorphism of A 5,)- Here Ko is the

=—1
77—Hi (

unique field in F isomorphic to L7° and %1;_1 (09) € Ik,. The lemma follows. [

3.8 Constructing a collection of number fields
The last ingredient of the P-scheme algorithm is a subroutine that constructs a

(Q, g)-subfield system given a polynomial g(X) € Q[X] irreducible over Q.

This subroutine can be implemented in various ways, leading to algorithms with
different running time. We mention two results of this kind: computing the splitting
field of g, and computing a (Q, g)-subfield system whose associated subgroup system
is a system of stabilizers. For simplicity, we only state the results, deferring the
proofs and the algorithms to Chapter 4 where we discuss the problem of constructing

number fields in depth.

Computing the splitting field of a polynomial. The splitting of a polynomial

over (Q can be effectively constructed by the following lemma.
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Lemma 3.20. There exists a deterministic algorithm that given a polynomial g(X') €
Q[X] irreducible over Q, computes its splitting field L(g) over Q in time polynomial
in [L(g) : Q] and the size of g.

The proof is deferred to Chapter 4.

System of stabilizers. We also have an algorithm that computes a (Q, ¢)-subfield

system whose associated subgroup system is a system of stabilizers:

Lemma 3.21. There exists a deterministic algorithm that given a polynomial g(X') €
Q[X] irreducible over Q and a positive integer m < deg(g), computes a (Q, g)-
subfield system JF, such that the subgroup system associated with F is the system of
stabilizers of depth m over G(g/Q) with respect to the action of Gal(g/Q) on the set
of roots of g in L(g), where L(g) denotes the splitting field of g over Q. Moreover,
the algorithm runs in time polynomial in (deg(g))™ and the size of g.

The proof is again deferred to Chapter 4.

3.9 Putting it together
We combine the results in previous sections to obtain the P-scheme algorithm. The

pseudocode is given in Algorithm 6 below.

Algorithm 6 PschemeAlgorithm
Input: f(X) € F,[X] and its irreducible lifted polynomial f(X) € Z[X]
Output: factorization of f

1: call ComputeNumberFields to compute a (Q, f)-subfield system JF such that
(1) F = Q[X]/(f(X)) € F, and (2) for some H € P satisfying L” = F, all
strongly antisymmetric P-schemes are discrete (resp. inhomogeneous) on H,
where P is the subgroup system over G = Gal(f/Q) associated with F

2: call ComputePscheme on the input (p, F) to obtain [k for K € F

3: call ExtractFactors to extract a factorization of f from I, and output it

The subroutine ComputeNumberFields at Line 1 is the generic part of the algorithm
and can be implemented in various ways. Itis supposed to compute a (Q, f )-subfield
system JF such that /' € F, and the associated subgroup system P over G satisfies
a certain combinatorial property (see Theorem 3.9 below). The latter condition is
used to show that the factoring algorithm always produces the complete factorization

(resp. a proper factorization) of f.
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The algorithm ComputePscheme (see Section 3.4) at Line 2 takes the input (p, F)
and outputs data that includes the idempotent decompositions I for K € F.
Finally, we call the subroutine ExtractFactors (see Section 3.3) at Line 3 to

extract a factorization of f from [p.

The following theorem is the main result of this chapter.

Theorem 3.9 (Theorem 3.2 restated). Suppose there exists a deterministic algorithm
that given a polynomial g(X) € 7Z|X] irreducible over Q, constructs a (Q, g)-
subfield system F in time T(g) such that

o Q[X]/(¢9(X))isin F, and

o for some H € P satisfying (L(g))" = Q[X]/(g(X)), all strongly antisym-
metric P-schemes are discrete (resp. inhomogeneous) on H, where P is the

subgroup system over Gal(g/Q) associated with F, and L(g) is the splitting
field of g over Q.

Then under GRH, there exists a deterministic algorithm that given a polynomial
f(X) € F,[X] satisfying Condition 3.1 and an irreducible lifted polynomial f (X)) €
Z|X] of f, outputs the complete factorization (resp. a proper factorization) of f

over F, in time polynomial in T (f) and the size of the input.

Proof. Consider the algorithm PschemeAlgorithm above and implement the sub-
routine ComputeNumberFields using the hypothetical algorithm in the theorem.
Choose g = f. By Theorem 3.8, the P-collection C = {Cy; : H € P} defined by
Cuy = P(Tu(Ik)) is a strongly antisymmetric P-scheme. By the second condition
in the theorem, we have Cy = oo\ ¢ (resp. Cy # Om\@) for some H € P sat-
isfying L = F. So the corresponding idempotent decomposition I is complete
(resp. proper). By Theorem 3.7, the algorithm outputs the complete factorization

(resp. a proper factorization) of f over IF,,.

The subroutine ComputeNumberFields runs in time 7°(f). In particular, the size

of F is bounded by 7'(f). The claim about the running time then follows from
Theorem 3.8 and Theorem 3.7. [

By Theorem 3.9 and Lemma 3.21, we have a deterministic factoring algorithm whose

running time is related to the notations d(G) and d’(G) introduced in Definition 2.8:
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Corollary 3.2. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X] of degree n € N* satisfying Condition 3.1 and an irre-
ducible? lifted polynomial f (X) € Z[X] of f, computes the complete factorization
(resp. a proper factorization) of f over I, in time polynomial in nE) (resp. n®())
and the size of the input, where G is the permutation group Gal(f/Q) acting on the
set of roots of f

The unifying framework via the P-scheme algorithm. The P-scheme algorithm
and the underlying notion of P-schemes provide a unifying framework for deter-
ministic polynomial factoring over finite fields. To illustrate this point, we show that
the main results achieved by known factoring algorithms [Hua91a; Hua91b; R6n88;
R6n92; Evd94; IKS09] can be easily derived from Theorem 3.9 or Corollary 3.2 for
the special case that the input polynomial satisfies Condition 3.1 (the general case

is solved in Chapter 5).

Suppose we want to factorize f(X) € IF,[X] given a (possibly reducible) lifted
polynomial f(X) € Z[X] of f. We reduce to the case that the lifted polynomial
is irreducible as follows: first use the factoring algorithm for rational polynomials
[LLL82] to factorize f into its irreducible factors f1(X), ..., fo(X) € Q[X] over Q
in polynomial time. By Gauss Lemma (see [Lan02, Section IV.2]), we may assume
each factor f;(X) lies in Z[X]. Then the problem of factoring f(X) is reduced
to the problem of factoring each f;(X) := f(X) mod p € F,[X] with the aid of
its irreducible lifted polynomial f;(X). Moreover, for i € [k], the Galois group
Gal(f;(X)/Q) is a quotient group of Gal(f/Q), and hence |Gal(f;(X)/Q)| <

|Gal(f(X)/Q)].

So assume f is irreducible over Q. Choose F = {F, L} where F' = Q[X]/(f(X))
and L is the splitting field of f over Q. Compute F in time polynomial in L :
Q] = Cal(f(X)/Q) and the size of f using Lemma 3.20. By Lemma 2.4, all
antisymmetric P-schemes are discrete on H forall H € P since the trivial subgroup

{e} is in P. Therefore by Theorem 3.9 and the reduction above, we have

Theorem 3.10 ([R6n92]). Under GRH, there exists a deterministic algorithm that,
given a polynomial f(X) € F,[X] satisfying Condition 3.1 and a lifted polynomial
f(X) € Z[X] of f, computes the complete factorization of f over F, in time
polynomial in |Gal(f/Q)| and the size of the input.

8The assumption that f is irreducible is not necessary, and can be avoided by adapting
Lemma 3.21. We omit the details.
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When Gal(f/Q) is abelian, it acts semiregularly on the set of roots of f. So we
have |Gal(f/Q)| < deg(f) (the equality holds iff f is irreducible over Q). Then
Theorem 3.10 gives

Corollary 3.3 ((Hua91a; Hua91b]). Under GRH, there exists a deterministic algo-
rithm that, given a polynomial f(X) € F,[X] satisfying Condition 3.1 and a lifted
polynomial of f with an abelian Galois group, computes the complete factorization

of f over F, in polynomial time.

Suppose only the polynomial f is known. Let n = deg(f). We may lift f to a
degree-n polynomial f(X) € Z[X] such that all coefficients of f are in the interval
[0, p—1]. So the size of fis O(nlogp). Reduce to the case that f is irreducible over

Q as above. As Gal(f(X)/Q) is a subgroup of Sym(n), we derive the following
theorem from Theorem 3.10.

Theorem 3.11 ([R6n88; Rén92]). Under GRH, there exists a deterministic algo-
rithm that, given a polynomial f(X) € F,[X] of degree n € N7 that satisfies
Condition 3.1, computes the complete factorization of f in time polynomial in n!

and log p.

Alternatively, Theorem 3.11 can be derived from Corollary 3.2 by noting d(G) <
n — 1 (where G = Gal(f/Q)). Similarly, using the bound d(G) = O(logn) in
Lemma 2.6, we derive the following theorem from Corollary 3.2.

Theorem 3.12 ([Evd94; IKS09]). Under GRH, there exists a deterministic algorithm
that, given a polynomial f(X) € F,[X] of degree n € N* satisfying Condition 3.1,

logn

computes the complete factorization of [ over ), in time polynomial in n and

log p.

By Corollary 3.2 and Lemma 2.18, we have

Theorem 3.13 ([R6n88; IKS09]). Under GRH, there exists a deterministic algo-
rithm that, given a polynomial f(X) € F,[X] of degree n > 1 satisfying Condi-
tion 3.1, computes a proper factorization of f over F,, in time polynomial in n‘ and

log p, where ( is the least prime factor of n.

In latter chapters, we also prove (and generalize) the main result of [Evd92] using
the P-scheme algorithm. It states that polynomial factoring over finite fields can be
solved in deterministic polynomial time under GRH given a lifted polynomial that

has a solvable Galois group. For more details, see Theorem 4.3 and Theorem 5.13.
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Chapter 4

CONSTRUCTING NUMBER FIELDS

In this chapter, we discuss the problem of constructing number fields using a poly-
nomial g(X) € Q[X] irreducible over Q. In particular, we prove Lemma 3.20 and

Lemma 3.21 as promised before.

In fact, we consider the more general problem of constructing relative number fields,

which we explain now.

Relative number fields. Recall that a number field K is encoded using the minimal
polynomial h(X) € Q[X] of a primitive element « of K over Q, i.e., K = Q(«).
Suppose K is a number field encoded in this way. A relative number field K
over K is a number field containing K, encoded by the minimal polynomial
h(X) € Ky[X] of a primitive element « of K over K, (i.e. K = Ky(a)). We
regard K as a Kjy-algebra by maintaining its structure constants in the standard
K-basis
{1+ (h(X)), X + (M(X)), ..., X"+ (h(X))},

where d = [K : K;|. Note that when K, = Q, this this the usual way we encode a

number field.

Given a number field K, we discuss various techniques of constructing relative
number fields over K given a polynomial g(X) € Ky[X] irreducible over K. In
particular, we discuss the technique of adjoining roots of polynomials and use it to

prove Lemma 3.20 and Lemma 3.21.

Motivated by the P-scheme algorithm in Chapter 2, we consider the problem of
constructing a collection of (relative) number fields using g(X), such that for the
associated subgroup system P, all strongly antisymmetric 7P-schemes are discrete
(resp. inhomogeneous) on a distinguished subgroup H € P. We describe a re-
duction of this problem to the case that the Galois group of ¢g(X) is a primitive
permutation group. The idea was essentially introduced in [LM85], leading to a
polynomial-time algorithm that determines if a given rational polynomial is solv-

able.! It was also used in [Evd92] to obtain to a polynomial-time factoring algorithm

! A rational polynomial g(X) € Q[X] is solvable if its roots are expressible in the field operations
and radicals. It is equivalent to the solvability of the Galois group Gal(g/Q).
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for f(X) € F,[X], provided that a solvable polynomial f(X) € Z[X] lifting f(X)

is given. We reproduce the main result of [Evd92] for the case that f satisfies

Condition 3.1. For the general case, see Chapter 5.

We note that most results in this chapter are essentially known in the literature,
except that we state them in a relative setting or in the terminology of P-schemes.
In particular, the discussion about algebraic numbers in Section 4.1 follows [WR76],
and the techniques of constructing number fields are mostly folklore or from [Lan84;
LMS&5; Evd92].

Outline of the chapter. Notations and preliminaries are given in Section 4.1. In
particular, we define the complexity of a subgroup system, which is used to bound
the size of a collection of (relative) number fields and the running time of the
algorithms. This notion also plays a role in subsequent chapters. In Section 4.2, we
discuss the technique of constructing (relative) number fields by adjoining roots of
a polynomial, and use it to prove Lemma 3.20 and Lemma 3.21. In Section 4.3, we
establish the reduction to primitive Galois groups and use it to prove the main result
of [Evd92] for the special case that f(X) € F,[X] satisfies Condition 3.1. Finally,
we discuss some other techniques in Section 4.4. These techniques are not directly

used in the thesis, but may still have their own interest.

4.1 Preliminaries

Let K and K’ be relative number fields over a number field /. We say an embedding
(resp. isomorphism) 7 : K — K’ is an embedding (resp. isomorphism) over Ky if
7 is Ko-linear, i.e., 7(azx) = ar(x) for all a € K and = € K. By choosing = = 1,
we see that this is equivalent to 7(a) = a for all a € K. We write K =g, K’ for

the statement that K is isomorphic to K’ over K.

(Ko, g)-subfield systems and the associated subgroup systems. We generalize
the notion of (Q, g)-subfield systems (Definition 3.3) and the associated subgroup

systems (Definition 3.4) as follows:

Definition 4.1 (( Ky, g)-subfield system). Let Ky be a number field. Let g(X) be
a polynomial in Ko[X] with the splitting field L over Ky. Let F be a collection
of relative number fields over K such that (1) the fields in F are mutually non-
isomorphic over K, and (2) each field K' € F is isomorphic to a subfield of L over
Ko. We say F is a (Ky, g)-subfield system.
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Definition 4.2. Ler g(X) be a polynomial in Ky[X] with the splitting field L over
K. Let F be a (Ky, g)-subfield system. Define P* to be the poset of subfields of L
that includes all the fields isomorphic to those in F over K:

P = {K' CL:K =g K forsome K € F}.
By Galois theory, it corresponds to a poset P of subgroups of Gal(g/Ky), given by
P = {H C Gal(g/K,) : L" € P*},

which is closed under conjugation in Gal(g/Ky), and hence is a subgroup system
over Gal(g/Ky). We say P and P* are associated with F.

The complexity of a subgroup system. The size of a (K, g)-subfield system F
is primarily controlled by the total degree of the fields in F over K, which is the
number of coefficients in /{; we need to maintain. We relate this quantity to the

complexity of a subgroup system, defined as follows.

Definition 4.3 (complexity of a subgroup system). Suppose P is a subgroup system
over a finite group G. Then G acts on P by conjugation, i.e., g € G sends H € P
to gHg™' € P. Let Py C P be a complete set of representatives of the G-orbits
under this action. Define the complexity of P to be

c(P):= > [G: H].

HePy

As conjugate subgroups have the same order, the complexity ¢(P) is well defined.

And we have

Lemma 4.1. Fora (K, g)-subfield system F, the total degree of the fields in F over
Ky equals c(P), where P is the subgroup system associated with F.

Proof. Conjugate subgroups correspond to conjugate subfields under the Galois
correspondence. So for K € F there exists a unique subgroup € P, satisfying
L7 >~ K. And the map K — H is a one-to-one correspondence between F and
Po. Finally note that [K : K| = [G : H] for H corresponding to K. O

The following lemma bounds the complexity of a system of stabilizers.



82

Lemma 4.2. Let G be a finite group acting on a finite set S. Let m € Nt and
m’ = min{|S|,m}. Let P be the system of stabilizers of depth m’ with respect to
the action of G on S. Then

m'  k

<> TIusi-o=o(s1™).

k=1 1=1

Proof. Replacing m with m’ does not change P. So we may assume m = m’ < |S)|.
When |S| > 2, we have

> TIasi-9 < ZIS\‘“ O(s™).

|
k=1 i=0

k—

[y

The same holds trivially when |S| = 1.

Next we prove ¢(P) < 37 TT5_, (/S| — 9). Let Py C P be as in Definition 4.3. It

suffices to find an injective map

I H\G%HS

HePy

since the cardinality of [ ;. H\G is ¢(P), whereas the cardinality of [ ;" , 5®*)
. m k .
is D1 [Tt (IS =),

For each k € [m], the group G acts diagonally on S*). For each H € P,, we
pick k = k(H) < mand z = 2(H) € S® such that H = G, with respect to the
diagonal action. By Lemma 2.1, we have an injective map H\G — S*) whose
image is the G-orbit of x. These maps altogether give the map 7. To show 7 is
injective, it suffices to show that for different H, H' € Py, the coset spaces H\G
and H'\G are mapped to different G-orbits. Assume to the contrary that they are
mapped to the the same G-orbit O. So x(H),xz(H') € O. Then k(H) = k(H') and
x(H') =(x(H)) for some g € G. But then we have

H' = Gx(H’) = ng(H) = gch(H)g_l = gHg_17

which is a contradiction to the choice of Py. So 7 is injective. 0

Algebraic numbers. The fields in a (K, g)-subfield system F are encoded by
polynomials in K,[X]. So to bound the size of F, we also need to bound the size
of the coeflicients of these polynomials, which are algebraic numbers in K. This

is closely related to the following definition, introduced in [WR76].
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Definition 4.4. For an algebraic number o, define ||c|| to be the greatest absolute

value of i(a) € C where i ranges over the embeddings of Q(«) in C.?2

For algebraic numbers «, /3, we clearly have ||« + || < ||«|| + ||8]| and ||« - 8] <

leell - 1B

The following lemma relates the size of an algebraic number o« € K (i.e., the

number of bits used to encode « in Kj) to |||

Lemma 4.3. Suppose Ky is a number field encoded by a polynomial h(X) € Q[X]
irreducible over Q of degree n and size so. Let o be an algebraic number in K of

size s. Let D be the smallest positive integer such that D« is an algebraic integer.

Then s is polynomial in log |||, log D and sy. Conversely, log ||| and log D are

polynomial in s and s.

Proof. Suppose h(X) = >  ¢;X; where n = deg(h) and ¢; € Q for all 1.
By substituting X with X /k for some large enough k& € NT and clearing the
denominators, we may assume h(X) € Z[X] and ¢,, = 1. Both the encoding of h
and that of « use at least n coefficients in Q. So we have s, sg > n.

The algebraic number a@ € K, is encoded by the constants dy,...,d,_ 1 € Q
satisfying

n—1
a=> dp, (4.1)
=0

where 3 is a root of h in K. So we have [|a|| < 377 |d;]||8]|". It was shown in
[WR76] that ||8]| < 327 |c;]. And we clearly have log |c;| < so and log |d;| < s
for 0 <i < n — 1. It follows that log ||| is polynomial in s and s.

Let D' € NT be the least common multiple of the denominators of d;. As h(X) €
Z[X] and ¢,, = 1, we know [ is an algebraic integer. Then D'« is also an algebraic
integer by (4.1). So D is bounded by D’. It follows that log D is polynomial in s

and sg. Then the second claim of the lemma is proved.

For the first claim, it suffices to show that the size of each d; is polynomial in log ||«||,
log D and sg. This follows from [WR76, Section 7 and Lemma 8.3]. O

The following lemma relates the size of the minimal polynomial of an algebraic

number « over a number field Kj to ||«/|.

2||a|| is called the size of o in [WR76]. We reserve the term size (of an object) for the number

of bits used to encode an object in an algorithm.
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Lemma 4.4. Suppose K, is a number field encoded by a rational polynomial
irreducible over Q of size sq (let so = 1 if Ko = Q). Let a be an algebraic number,
and let D be the smallest positive integer such that Do is an algebraic integer. Let

h(X) € Ko[X] be the minimal polynomial of « whose size is s and degree is n.

Then s is polynomial in log |||, log D, sq and n. Conversely, log ||| and log D

are polynomial in s and s.

Proof. We clearly have n < s. Suppose h(X) = >""  ¢; X", where ¢; € K and
¢, = 1. It was as shown in [WR76] that [|o| < 37" ||c;||. Tt follows from
Lemma 4.3 that log ||«|| is polynomial in s and so.

Note that for sufficiently large & € N that is polynomial in s and s, the coeflicients
of the polynomial k™h(X/k) are all algebraic integers. It follows that ka is an
algebraic integer (cf. [AM69, Corollary 5.4]). So D is bounded by £ and hence is
polynomial in s and sy. Then the second claim of the lemma is proved.

For the first claim, we may assume « is an algebraic integer by replacing o with Do
and ¢; with D" “c;. Then any conjugate o/ of o over Q is also an algebraic integer,
and ||/|| = ||a||. For 0 < i < n — 1, the coefficient ¢; of h is (up to sign) given by
the ith elementary symmetric polynomial in a subset of conjugates of o over Q. It

follows from Lemma 4.3 that the size of each ¢; is polynomial in log |||, log D, s

and n. So s is polynomial in log ||«/||, log D, s¢ and n as well. O

Finding a primitive element over Q. Suppose Ky = Q(«) is a number field
encoded by the minimal polynomial of a primitive element « over Q, and K = Ky ([3)
is a relative number field over K, encoded by the minimal polynomial of a primitive
element /3 over K. We would like to represent K directly in the form Q(+y), encoded
by the minimal polynomial of a primitive element v over Q. The first step is to
find such an element -, which can be achieved using a constructive version of the
primitive element theorem (see, e.g., [Wae91]). For completeness, we give the

details as follows.

Lemma 4.5. Suppose K, is a number field and o, 3 are algebraic numbers. Let
d = [Ko(a, B) : Ko). Then ka+ B is a primitive element of Ko(«, B) over K, for
some integer k € [1,d + 1].

Proof. Consider a “bad” nonzero integer k for which K(ka+(3) is a proper subfield
of Ko(«, 8). Let L be the Galois closure of K¢ («, )/ K. Then by the fundamental
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theorem of Galois theory, there exists an automorphism ¢ of L fixing K(ka + )
but not Ky(c, 3). Then either ¢(a) # « or ¢(5) # 5. As ¢ fixes ka + 3, we
have k¢(a) + ¢(8) = ¢(ka + ) = ka + 3, from which we see that actually
¢(a) # o and ¢(F) # P both hold. Then k is determined by ¢(«) and ¢(f3) via
k= (¢(B) — B)/(a — ¢(a)). So the number of bad choices of k is bounded by
the number of (¢(«), ¢(3)) where ¢ ranges over the automorphisms of L fixing K.
The later is the cardinality of the orbit of («, ) under the action of Gal(L/Kj). By

the orbit-stabilizer theorem, it equals
(Gal(L/Ky) : Gal(L/Ko(a, B))] = [Ko(a, ) = Ko] = d.

So there are at most d bad choices of k. The lemma follows since [1, d 4 1] contains

more than d integers. [

This gives an efficient algorithm of finding a primitive element over Q:

Lemma 4.6. There exists a polynomial-time algorithm that given a number field K,
and a relative number field K over K, find a primitive element v of K over QQ and

its minimal polynomial h(X) € Q[X] over Q.

Proof. Suppose K| is encoded by a polynomial g(X) € Q[X] irreducible over Q,
and K is encoded by a polynomial ¢'(X) € K;[X] irreducible over K. Then we
are explicitly given a root o of g(X) and aroot § of ¢'(X) in K, and K = Q(«, ).

Enumerate the integers k € [1,d + 1], where d = [K : Q]. For each k, we compute
v = ka + § € K, and then compute its minimal polynomial h(X) € Q[X] over Q
by solving linear equations over Q. This step runs in polynomial time by Lemma 4.4.
Output 7y and h whenever deg(h) = [K : Q]. By Lemma 4.5, a primitive element -y

is guaranteed to be found. ]

By computing a primitive element over QQ, we can efficiently turn a relative number

field into an ordinary number field:

Corollary 4.1. There exists a polynomial-time algorithm that given a number field
Ky and a relative number field K over K,, computes an ordinary number field K’,
a Q-basis B of K, and an isomorphism ¢ : K — K' encoded by ¢(x) € K’ for
r € B.
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Proof. Find a primitive element v of K over Q and its minimal polynomial
h(X) € Q[X] over Q using Lemma 4.6. Compute K’ := Q[X]/(h(X)) and
B = {1,7,7%,...,7% '}, where d = [K : Q]. Then compute the isomorphism
¢ : K — K’, which sends 7" to X" + (h(X)) fori =0,1,...,d — 1. O

As an application, we generalize Lemma 3.10 to obtain an efficient algorithm that

computes embeddings of relative number fields over a given number field.

Lemma 4.7. There exists a polynomial-time algorithm ComputeRelEmbeddings
that given a number field K, and relative number fields K and K' over K, computes
all the embeddings of K in K' over K.

Proof. Identify K and K’ with ordinary number fields using Corollary 4.1. Run the
algorithm ComputeEmbeddings in Lemma 3.10 to compute all the embeddings of

K in K, and ignore those not fixing K. 0

4.2 Adjoining roots of polynomials
One of the most basic techniques of constructing number fields is adjoining roots of

polynomials. It can be efficiently performed by the following lemma.

Lemma 4.8. There exists a polynomial-time algorithm AdjoinRoot that given a
number field K, a relative number field K over Ky, and a polynomial h(X) € K[X]
irreducible over K, computes the relative number field K' = K («) over Ky (up to
isomorphism over K), where o is an arbitrary root of h(X). Moreover, suppose K
is encoded by the minimal polynomial of a primitive element 3 € K over K. Then
K" is encoded by the minimal polynomial of an element of the form 5 + ka over K,
where 1 < k < [K': Ko| + 1.

Proof. Form the K-algebra K" := K[X]/(h(X)) which is a field. We need to
encode K" as a relative number field over K. Let o := X + (h(X)) € K” which is
aroot of h(X). Then «v and f3 are explicitly known in K. Letd := [K" : Ky| + 1.
By Lemma 4.5, there exists k € [1, d+1] such thaty = S+ ka is a primitive element
of K" over Ky. Compute such an element v by enumerating k and checking if the
degree of the minimal polynomial of « over K equals d. Once + is found, compute
the relative number field K’ := K[ X|/(g(X)) over Ky, where g(.X) is the minimal
polynomial of y over K. It is isomorphic to K = K («) over K, via the Ky-linear
map sending X + (g(X)) to 7. O
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By repeatedly adjoining roots, we obtain an algorithm that computes the splitting

field of a given irreducible polynomial over a number field K. See Algorithm 7.

Algorithm 7 SplittingField
Input: number field K, and g(X) € Ko[X] irreducible over K|
Output: the splitting field of g over K as a relative number field over K|

1: K < Ky, regarded as a relative number field over K
. factorize g over K

: while g has an irreducible non-linear factor over K do

2
3
4: pick an irreducible non-linear factor gy of g over K
5 run AdjoinRoot on (K, K, go) to obtain K’

6 K+ K’

7 factorize g over K

8: return K

Line 2 and Line 7 are implemented using the polynomial-time factoring algorithms
for number fields [Len83; Lan85].2 And we have

Lemma 4.9. Given a number field Ky and a polynomial g(X) € Ko[X] irreducible
over Ky, the algorithm SplittingField computes the splitting field K of g over
Ky in time polynomial in [K : K] and the size of the input.

Proof. The algorithm initializes K to K, and keeps adjoining roots of g to K until
it contains all these roots. The resulting field K is by definition the splitting field
of g over K. At most ¢ := log[K : K| intermediate fields are constructed other
than K. By induction and Lemma 4.8, each intermediate field is encoded by the
minimal polynomial of a primitive element kya; + - - - + ksas over Ky where s < ¢,
all a; are roots of g and 1 < k; < [K : K| + 1. The claim about the running time
then follows from Lemma 4.4 and Lemma 4.8. [

Choosing Ky = Q proves Lemma 3.20. Similarly, we have an algorithm con-
structing a (K, g)-subfield system whose associated subgroup system is a system

of stabilizers. See Algorithm 8 below.

Again, Line 8 is implemented using the polynomial-time factoring algorithms for
number fields [Len83; Lan85]. The condition at Line 11 is checked using the
algorithm ComputeRelEmbeddings in Lemma 4.7.

3Here we factorize g over the relative number field . It can be reduced to the problem of

factoring polynomials over an ordinary number field by Corollary 4.1.
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Algorithm 8 Stabilizers
Input: number field Ky, m € N, and g(X) € Ky[X] irreducible over K
Output: (K, g)-subfield system F

1: if m = 0 then

2: return ()

3: m < min(deg(g), m)

& F — {Ko[X]/(g(X))}

5: fori <— 2 to m do

6: Fod — F

7: for K € F,qdo

8: factorize g over K

9: for irreducible non-linear factor g, of g over K do
10: run AdjoinRoot on (K, K, go) to obtain K’
11: if K’ is non-isomorphic to all fields in F over K then
12: F — FU{K"}

13: return F

We have the following lemma.

Lemma4.10. Given a number field Ky, an integer m € N, and a polynomial g(X') €
Ko[X]irreducible over K, the algorithm Stabilizers computes a (Ky, g)-subfield
system F, such that the subgroup system P associated with F is the system of
stabilizers of depth m over G(g/ Ky) with respect to the action of Gal(g/Ky) on the
set of roots of g in L, where L denotes the splitting field of g over K. Moreover, the

algorithm runs in time polynomial in c(P) and the size of the input.

Proof. If m = 0, the algorithm simply returns F = (). It replaces m with
min(deg(g), m) at Line 3, which does not change the desired subgroup system.
So we may assume m < deg(g). The condition at Line 11 guarantees that the fields
in F are mutually non-isomorphic over K. For k € [m], let P, be the the system
of stabilizers of depth k over G(g/K,) with respect to the action of Gal(g/K,) on
the set of roots of g in L, and let 73,3 be the corresponding poset of subfields of L
determined by the Galois correspondence. Then 73,3 consists of the fields of the form

Ko(ag,...,a;), where i € [k] and ay, . .., a; are roots of ¢ in L.

We want to show that at the end of the algorithm, the subgroup system P associated

with F equals P,,. And it suffices to prove that for k& € [m], after the kth iteration
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of the loop in Lines 5-12, every field in F is isomorphic to some field in P,E, over

K, and vice versa. This follows from a simple induction on £.

Denote by d the maximum degree of the fields in F over K. Then d and |F| are
bounded by ¢(P). By induction and Lemma 4.8, each field in F is encoded by
the minimal polynomial of a primitive element kyc; + - - - + ks over Ky where
s < m < deg(g), all a; are roots of g, and 1 < k; < d + 1. The claim about the

running time then follows from Lemma 4.4 and Lemma 4.8. [

By Lemma 4.2, the complexity ¢(P) of the subgroup system P in Lemma 4.10 is
bounded by (deg(g))™, where m’ = min{deg(g), m}. Lemma 3.21 then follows
by choosing Ky = Q.

4.3 Reduction to primitive group actions

Suppose K| is a number field, g(X) € Ky[X] is irreducible over K, and L is
the splitting field of g over K. The Galois group Gal(g/K,) = Gal(L/K)) acts
faithfully and transitively on the set of roots of g in L, and hence is a transitive

permutation group on this set.

Motivated by Theorem 3.9, we are interested in the problem of constructing a
(Ko, g)-subfield system F such that all strongly antisymmetric P-schemes are dis-
crete (resp. inhomogeneous) on H, where P is the subgroup system over Gal(g/K))
associated with F, and H is a subgroup in P satisfying L7 =~ Kq[X]/(9(X)).
In this section, we describe a reduction, based on the work [LM85; Evd92], that
reduces the problem to the special case that Gal(g/K)) is a primitive permutation

group.

Definition 4.5 (primitive permutation group). Suppose G is a permutation group
on a finite set S. A nonempty subset B of S is called a set of imprimitivity 4 of G if
forall g € G, either YB = B or BNYB = (). A set of imprimitivity is trivial if it
is a singleton or the whole set S. We say G is primitive if it only has trivial sets of

imprimitivity. Otherwise GG is imprimitive.

It is well known that for transitive permutation groups, primitivity is equivalent to

maximality of stabilizers.

4A set of imprimitivity is also called a block by some authors. We reserve the term block to

denote a set in a partition instead.
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Lemma 4.11. Ler S be a finite set where |S| > 1, and let v € S. A transitive

permutation group G on S is primitive iff G, is maximal in G.

See, e.g., [Wie64] for the proof of Lemma 4.11. We also need the following result,
proved in [LM85].

Theorem 4.1 ([LM85]). There exists a polynomial-time algorithm Tower that given
a number field Ko and a polynomial g(X) € K| X]| irreducible over K, computes

a tower of relative number fields over K
Ko C K C---CKp 1 CKyg

together with the inclusions K;,_y — K; and the polynomials g;(X) € K;_1[X]
irreducible over K;_y for i € [k|, such that K\, =g, Ko|X]/(9(X)), and the
following conditions are satisfied for i € [k|:

1. K is isomorphic to K;_1[X]/(g:(X)) over K;_4, and

2. the Galois group G; := Gal(L;/K;_1) acts primitively on the set of roots of
gi in L;, where L; is the Galois closure of K;/K;_1.

For i € [k], let H; := Gal(L;/K;) C G;,. See Figure 4.1 for an illustration. Note
that the first condition above is equivalent to K; = K;_;(«) for some root «; of
g; in L;. So H; is the stabilizer of «;. Then the second condition is equivalent to

maximality of H; in G;.
The following theorem is the main result of this section.

Theorem 4.2. Suppose there exists an algorithm PrimitiveAction that, given
a number field K, and a polynomial g(X) € Ky[X] irreducible over K, with
Gal(g/Ky) acting primitively on the set of roots of g in L, where L is the splitting
field of g over Ky, computes a (Ko, g)-subfield system in time T (Ko, g). Then there
exists an algorithm GeneralAction that given Ky and g as above, but without the

assumption that Gal(g/Ky) acts primitively on S, computes

e a (Ky, g)-subfield system F, and,

>The paper [LM85] presented their algorithm only for Ky = Q, but it easily extends to a general
base field K.
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Figure 4.1: The tower of fields and Galois groups in Theorem 4.1

e a tower of relative number fields Ko C K, C --- C K1 C K} over K,
and g;(X) € K;_1[X] for i € [k] satisfying the conditions in Theorem 4.1,
such that Ky =, Ko[X]/(g(X)) and the sizes of the polynomials g; are
polynomial in the size of the input

in time polynomial in Zle T(K;_1, g;) and the size of the input. Moreover, if for
each i € [k|, the (K;_1, g;)-subfield system J; computed by PrimitiveAction on
the input (K;_1, g;) satisfies

1. K 1[X]/(9:(X)) € F

2. All strongly antisymmetric P-schemes are discrete (resp. inhomogeneous) on
H, where P is the subgroup system over Gal(g;/ K;_1) associated with F; and
H is a subgroup in P whose fixed field is isomorphic to K; over I;_;.

Then F satisfies

1. Ko[X]/(9(X)) € F,

2. All strongly antisymmetric P-schemes are discrete (resp. inhomogeneous) on
H, where P is the subgroup system over Gal(g/Ky) associated with F and
H is a subgroup in P satisfying L7 =5 Ko[X]/(g(X)).

See Algorithm 9 for the pseudocode of the algorithm GeneralAction. It proceeds

as follows: maintain F, which initially only contains K,[X]/(g(X)). Then we
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call the algorithm Tower to compute a tower Ko C K; C --- C K1 C Ky
and ¢;(X) € K;_1[X] for ¢ € [k] as in Theorem 4.1. Next, run the hypothetical
algorithm PrimitiveAction in Theorem 4.2 on (/K;_1, g;) foreachi € [k] to obtain
a (K;_1,g;)-subfield system F;. For i € [k], add the fields in F; to F, but encode
them as relative number fields over K (using Lemma 4.6). In addition, avoid adding
fields to JF that are isomorphic to some existent field K € F over Ky, so that all the
fields in F are mutually non-isomorphic over K. After all F; are processed, output
F.

Algorithm 9 GeneralAction
Input: number field K and g(X) € Ko[X] irreducible over K
Output: (K, g)-subfield system F
1 F = {Ko[X]/(9(X))}
2: run Tower on (K, g) to obtain a tower Ky C K; C --- C Kj_1 C K} and
gi(X) € K;_1[X] irreducible over K;_; fori € [k]

3: fori < 1to k do

4 run PrimitiveAction on (K;_1, g;) to obtain F;

5 for K € F; do

6: compute a relative number field K’ over K such that K’ =g, K
7 if K’ is non-isomorphic to all fields in F over K then

8 F — FU{K'}

9: return F

The proof of Theorem 4.2 is based on the following lemma.

Lemma 4.12. Let k € Nt and G}, C Gj_1 C --- C G C Gy be a chain of
finite groups. For i € [k|, let N; be a subgroup of G; that is normal in G;_4,
m : Gi_1 — Gi_1/N; be the corresponding quotient map, and P; be a subgroup
system over G;_1 /N, that contains G;/N;. Define

P={gr; ' (H)g':1<i<kHEP;,g¢c Gy},

which is a subgroup system over G and contains 7, ' (G;/N;) = G, for all i € [k].

Then we have

1. Ifforalli € [k, all strongly antisymmetric P;-schemes are discrete on G;/N,,

then all strongly antisymmetric P-schemes are discrete on Gy.
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2. Iffor somei € [k|, all strongly antisymmetric P;-schemes are inhomogeneous

on G;/N;, then all strongly antisymmetric P-schemes are inhomogeneous on

G.
The same holds if strong antisymmetry is replaced by antisymmetry.
We defer the proof of Lemma 4.12 to Section 6.1.

Proof of Theorem 4.2. The claims about K; and g; follow from Theorem 4.1. Use
the following notations for i € [k]:

e [;: the splitting field of g; over K;_;, which is a subfield of L.

[ Gz = Gal(LZ/KZ_l) and Nz = Gal(L/L,)

e 7;: the natural projection Gal(L/K; 1) — Gal(L/K;_1)/N; = G,.

e P;: the subgroup system over (G; associated with F;.

Then by construction, the subgroup system over Gal(L/K)) associated with F is
P={gn; " (H)g':1<i<k HEP;,gecqG}

Assume the conditions on F; in Theorem 4.2 are satisfied. Then for all i € [k],
all strongly antisymmetric P;-schemes are discrete (resp. inhomogeneous) on
Gal(L;/K;) € P;. Applying Lemma 4.12 to the chain

Gal(L/Ky) C Gal(L/Ky—1) C -+ C Gal(L/K,) C Gal(L/Ky)

and N, 7;, P;, we conclude that all strongly antisymmetric P-schemes are discrete
(resp. inhomogeneous) on the subgroup Gal(L/K}) € P. And the corresponding
fixed field K, is isomorphic to K[ X|/(g(X)) over K, as desired.

The total running time of the algorithm PrimitiveAction and the total size of F;
are both bounded by Y% | T'(K;_1, g;). The other operations take time polynomial
in the total size of F; and the size of the input. The claim about the running time
follows. [l

As an application, we prove the main result of [Evd92] for the special case that the
input polynomial satisfies Condition 3.1 (i.e., it is defined over F,, square free, and

complete reducible over [F)).
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Theorem 4.3 ((Evd92]). Under GRH, there exists a deterministic polynomial-time
algorithm that, given a polynomial f(X) € F,[X] satisfying Condition 3.1 and a
lifted polynomial f (X) € Z[X] of f whose Galois group Gal( f/Q) is solvable,

computes the complete factorization of f over I,

The proof relies on the following bound for the orders of primitive solvable permu-

tation groups, proved by Palfy [P4l82].

Theorem 4.4 ([Pal82]). Let G be a primitive solvable permutation group on a set
of cardinality n € NT. Then |G| < 247/3n° for a constant ¢ = 3.24399 . . ..

Proof of Theorem 4.3. As in Section 6, we factorize f into its irreducible factors
fi(X), ..., fx(X) € Z[X] over Q in polynomial time using the factoring algorithm
in [LLL82]. The Galois groups Gal(f;(X)/Q) are quotient groups of Gal(f/Q),
and hence are solvable as well. By replacing f(X) with f;(X) and f(X) with
fi(X) := fi(X) mod p € F,[X] for each i € [k], we reduce to the case that f is
irreducible over Q.

Let L be the splitting field of f over Q. When Gal(f/Q) acts primitively on
the set of roots of f in L, its order is bounded by a polynomial in deg(f) by
Theorem 4.4. Then by Theorem 4.9, we can construct F in polynomial time such
that Q[X]/(f(X)) € F and all strongly antisymmetric P-schemes are discrete on
H, where P is the subgroup system over Gal(f/Q) associated with F and H is a
subgroup in P satisfying L = Q[X]/(f(X)). By Theorem 4.2, we also have a
polynomial-time algorithm of constructing such F in the general case. The theorem

then follows from Theorem 3.9. ]

In Chapter 5, we prove a generalization of Theorem 4.3 (see Theorem 5.13), which
implies the main result of [Evd92] in its general form. In particular, the assumption

that f satisfies Condition 3.1 is no longer required.

4.4 Other techniques of constructing number fields

In this section, we survey some other techniques of constructing number fields.
While we do not use these techniques directly in the thesis, they are worth mentioning
because of their own interest and their applications to other problems [Lan84; LM85;
Len92; Coh93].
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Taking the compositum of number fields. Note that the fields computed in
the two algorithms SplittingField and Stabilizers in Section 4.2 are (up to
isomorphism over Kj) compositums of conjugates of the field K[ X]/(g(X)). The
general problem of constructing the compositum of (relative) number fields is solved

by the following lemma.

Lemma 4.13. There exists a polynomial-time algorithm that given a number field
Ky and relative number fields K, L over K, constructs all the compositums K'L'
up to isomorphism over Ky where K' (resp. L') ranges over the conjugates of K

(resp. L) over K in the algebraic closure K, of K.¢

Proof. Take the irreducible polynomial g(X) € K[X] that encodes L, i.e., L =,
Ko[X]/(g9(X)). Factorize g(X) into irreducible polynomials g1(X),. .., gr(X)
over K. Then compute and output the fields K[X]/(g1(X)), ..., K[X]/(gx(X)).

To see that this gives the desired output, note that we may fix K = K’ as fields
are constructed only up to isomorphism over K. Let aq, ..., a, be the roots of g
in Ky, where n = deg(g). Then the conjugates of L in K, over K, are precisely
Ko(an), ..., Ko(ay). Fori € [n], there exists aunique j; € [k] such that o, is the root
of g;,, and the compositum of K and Ky («;) is just K (o) =g, K[X]/(g;,(X)). O

Taking the intersection of number fields. The intersection of two number fields

can be computed efficiently, as shown in [LM85].

Theorem 4.5 ([LM85]). There exists a polynomial-time algorithm that given

o number fields K = Q(«), K' = Q(p) encoded by the minimal polynomials
of primitive elements o € K and 3 € K' over Q respectively, and

e the minimal polynomial ho(X) € K[X] of B over K,7
computes the number field K N K' up to isomorphism.

The algorithm in [LM85] also extends to relative number fields. We omit the details.

®Here K and L are embedded in K via some Ky-linear embeddings. The choices of these

embeddings do not matter as we construct K’ L’ for all the conjugates K’ and L’ over Kj.
"The polynomial hy is needed for the problem to be well defined.
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Adjoining a square root of the discriminant. Suppose K is a relative number
field over K, encoded by the minimal polynomial h(X) € Ky[X] of a primitive
element « € K over Ky. Let L be the Galois closure of K/Kj and let G =
Gal(L/Kj). Then G acts on the set .S of roots of & in L and hence can be identified
with a subgroup of Sym(.S).

Suppose S = {ay, ..., a,}. Define the discriminant of h to be

Ay = H (i — aj)?.

1<i<j<n
We have YA, = Ay, forall g € G. So A, € LE = K.

Now consider the subfield K := Ko(v/Ap) of L, where VA, := [, o, (qi—a)
is a square root of Ay, in L. A permutation g € G fixes /Ay, precisely when ¢ is an

even permutation of .S, which implies
Gal(L/Ky) = G N Alt(S).
With this observation, we have

Lemma 4.14. There exists a polynomial-time algorithm that given a number field
Ky and a relative number field K over Ky encoded by h(X) € Ky[X], computes

LEAYS) up to isomorphism over K, where L is the Galois closure of K /K,

G = Gal(L/Ky), and S is the set of roots of h in L.

Proof. We have LETAMS) = K((1/A}) by the above discussion. Let n = deg(h).

Then discriminant A, satisfies the identity
Ay = (=1)"""V/2Res(h, 1),

where Res(h, h') denotes the resultant of h and its derivative h’. and is given by
the determinant of the Sylvester matrix associated with A and A’ [Lan02]. Thus
we can compute Aj, in polynomial time. Then we test if A, is a square in K,
by factoring X2 — A, over Ky. If Ay, is a square, we have Ky(v/A) = K, and
correspondingly G C Alt(.S). In this case we just output K. Otherwise we output
Ko[X]/(X2 = Ay). =

Remark. The technique above was used in [Lan84] for the determination of the
Galois groups of number field extensions. It is not clear, however, if it helps for

the problem of polynomial factoring over finite fields. We note that replacing K
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with K}, = Ko(v/A) and K with K} K has the effect of reducing the Galois group
G to G N Alt(S), but the order of G is reduced by at most a factor of two. This
does not help in the case that G = Sym(S) and P is a system of stabilizers of
depth m < |S| — 2 (with respect to the natural action of G): As both Sym(S)
and Alt(S) are k-transitive for & = |S| — 2, P-schemes for Sym(,S) and those for
Alt(.S) both correspond to m-schemes on S (see Theorem 2.1), and hence they are

the equivalent.

Computing the fixed field of the automorphism group. The following lemma

gives a characterization of the fixed field of an automorphism subgroup.

Lemma 4.15. Suppose K /K, is a field extension and « is a primitive element of K
over K. Fora subgroup U C Aut(K/Ky), the field KY is generated by elementary

symmetric polynomials in the elements 9« (indexed by g € U) over K.

Proof. Let K' be the subfield of K generated by elementary symmetric polynomials
in9a, g € U over K,. We obviously have K’ C K. By Galois theory, it holds that
[K : KY] = |U]| (see, e.g., [Lan02, Section VI.1, Theorem 1.8]). So it suffices to
prove [K : K'] < |U|.

Consider the polynomial ¢(X) = [[,.(X — 9a). The coeflicients of ¢(X) are,
up to sign, given by elementary symmetric polynomials in Yo, ¢ € U and hence
o(X) € K'[X]. As ¢(a) = 0, the minimal polynomial of « over K’ divides ¢(X),
and its degree is at most deg(¢) = |U|. So we have [K'(«) : K| < |U|. The claim
follows by noting that K'(a) = K. O

Lemma 4.15 provides a method of computing the fixed field of the automorphism
group Aut(K/Ky):

Theorem 4.6. There exists a polynomial-time algorithm that given a number field
K and a relative number field K over K, computes the fixed field K *"5/Ko) C K.

Proof. Suppose K is encoded by the minimal polynomial of a primitive element «
over K. We compute all the automorphisms of K in Aut(K/Kj) using Lemma4.7.
Then we adjoining to K the first k£ elementary symmetric functions in 9o, g €
Aut(K/K,) where k = |Aut(K/Kj)|. The resulting field is exactly KAut(K/Ko) py
Lemma 4.15. L
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More generally, given Ky, K and a subgroup U C Aut(K/Kj) of automorphisms

of K, the same proof shows that KU can be constructed in polynomial time.

Now suppose L is a Galois extension of K, that contains K. Let G = Gal(L/K))
and H = Gal(L/K). Then Aut(K/K)) is identified with N (H )/H, and we have
KAwE/Ko) — Na(H)/H — [ Na(H) o Theorem 4.6 states that LV¢() can be
constructed in polynomial time given K = L and K|,. In the context of polynomial
factoring using the P-scheme algorithm, this means that we can efficiently enlarge
a subgroup system P by including the normalizers Ng(H ) of H € P.

A natural question arising from this observation is whether adding the normalizers
(or more generally subgroups between N (H ) and H) to the subgroup system helps a
P-scheme algorithm obtain the complete factorization (resp. a proper factorization).
By Theorem 3.9, this reduces to the question whether it helps for proving all strongly
antisymmetric P-schemes are discrete (resp. inhomogeneous) on a distinguished
subgroup H € P.

For discreteness of strongly antisymmetric P-schemes, we give an affirmative an-
swer in general: we show that for some subgroup system P and H € P, there
exist strongly antisymmetric P-schemes that are not discrete on [, but adding

normalizers to the subgroup system rules out their existence.

Example 4.1. Choose a finite group G and a subgroup H C G such that Ng(H) is a
proper normal subgroup of G.8 Choose P = {gHg™' : g € G} which is a subgroup
system over (G. Define a P-collection C = {Cy: : H' € P} as follows: the group
N¢(H) acts on H\G by left translation Y Hh = Hgh and H\G is partitioned into
N¢(H)-orbits. Choose a complete set of representatives B C H\G for these orbits.
Define Cy = {B : g € Ng(H)}. For any other subgroup H' in P, choose g € G
such that H' = gHg™', and define Cyr = {cpy,(B) : B € Cy}. ltis easy to
see that C is a well defined strongly antisymmetric P-scheme. Moreover, it is not
discrete on H since N (H) does not act transitively on H\G.

Now define P’ = P U{N¢(H)} which is also a subgroup system over G. We claim
that any antisymmetric P’-schemes C’ must be discrete on any subgroup in P’. To
see this, note that C’ is discrete on N (H) € P’ since Ng(H ) is normal in G. Then
C' is also discrete on all the other subgroups H' € P’ by compatibility, and the claim

follows. In particular, it is impossible to extend C to an antisymmetric P’-scheme.

8For example, we may choose G to be the semidirect product (K x K) x Cy, where K is a
nontrivial finite group and Co permutes the two direct factors of K x K. Let H = K x {e}. Then
Ng(H)=K x K <G.
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Despite the example above, adding normalizers to the subgroup system seems not
helpful for attacking the most difficult cases in polynomial factoring: for a subgroup

system P over a finite group G, define
P, ={U:HCUCNg(H),H € P},

which is also a subgroup system over (G. For several important families of per-
mutation groups, we show that if P is the corresponding system of stabilizers of
certain depth m (where m is not too large), any P-scheme C can be extended to a
P, -scheme C’ with antisymmetry and strong antisymmetry preserved. In particular,

if C is not discrete or inhomogeneous on some subgroup H € P, then neither is C’.

Lemma 4.16. Let S be a finite set and let G be Sym(S) or Alt(S) acting naturally
on S. Let P be the system of stabilizers of depth m over G with respect to this action
where m < |S|/2. Then any P-scheme C can be extended to a P..-scheme C' such

that C' is antisymmetric (resp. strongly antisymmetric) if so is C.

Lemma 4.17. Let V be a finite dimensional vector space over a finite field and let G
be GL(V) acting naturally on S :=V — {0}. Let P be the system of stabilizers of
depth m over G with respect to this action where m < dimpg V. Then any P-scheme
C can be extended to a P, -scheme C' such that C' is antisymmetric (resp. strongly

antisymmetric) if so is C.

We defer the proofs of Lemma 4.16 and Lemma 4.17 to Section 6.4 . There we
define the closure P, of a subgroup system P, and then show that P-schemes can
always be extended to P.-schemes with antisymmetry and strong antisymmetry
preserved. Lemma 4.16 and Lemma 4.17 then follow immediately once we verify

that P.; = P, in these cases.
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Chapter 5

THE GENERALIZED P-SCHEME ALGORITHM

In Chapter 3, we developed the P-scheme algorithm that factorizes polynomials
satisfying Condition 3.1, i.e., they are defined over a prime field [F),, square-free, and
completely reducible over IF,,. In this chapter, we extend this algorithm to factorize
general polynomials f(X) € [F,[X] over a finite field F, of characteristic p. The
generality is reflected in the following three aspects: (1) F, may be a non-prime
field, (2) the degrees of the irreducible factors of f may be greater than one, and (3)

the multiplicities of the irreducible factors of f may be greater than one.

Motivation. Techniques like Berlekamp’s reduction [Ber70], square-free factor-
ization [Yun76; Knu98] and distinct-degree factorization [CZ81] were commonly
used in literature to reduce the problem to the special case that the input polynomial
satisfies Condition 3.1. However, these reductions do not preserve the information
of the lifted polynomial f employed by the P-scheme algorithm. Therefore, it is
desirable to avoid these reductions and extend the P-scheme algorithm to the general

setting instead.

As a concrete example, consider the following polynomial f (X) € Z[X] irreducible
over Q, taken from [KMOO]:

FX) =X 428X + 28X 1 — 28X + 140X® + 360X " + 147X°
+196X° +336X* — 546 X3 — 532X2 + 896X + 823.

For p = 43, the reduced polynomial f(X) = f(X) mod p has seven distinct linear

factors and one irreducible factor of degree 7 over I,

F(X)=(X+2)(X +4)(X +9)(X 4+ 19)(X + 23)(X + 30)(X +42)
(X7 +14X* + 15X° + 31X* + 15X + 38).

The standard way of factoring f over I, is first applying distinct-degree factorization

[CZ81] to obtain a partial factorization f = f; f;, where
fo(X) = (X +2)(X +4)(X +9)(X +19)(X + 23)(X + 30)(X +42)

is the product of the linear factors and satisfies Condition 3.1. Then we factorize

fo over F,. To achieve this goal deterministically, we pick a lifted polynomial
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fo(X) € Z|X] of f, which we may assume to be irreducible, and run the P-scheme
algorithm in Chapter 3. Suppose the (Q, f)—subﬁeld system in the algorithm is
constructed by Lemma 3.21 and the associated subgroup system P is the system of
stabilizers of depth m, where m € N7 is sufficiently large. In the worst case, the
action of Gal( fo /Q) on the set of roots of f is permutation isomorphic to the natural
action of the symmetric group Sym(7) on [7]. Then we need m > 3 to obtain a
proper factorization of f, since by Theorem 2.1 and Lemma 2.19, there exists a

strongly antisymmetric P-scheme homogeneous on a stabilizer if m < 2.!

On the other hand, the action of the Galois group of f on the set of roots of f is
permutation isomorphic to the action of the wreath product? C7 ¢ C5 on [7] x [2],
where C; permutes [7] cyclically and Cs permutes the two copies of [7]. This
action has a base of size two, which suggests that choosing m = 2 is sufficient
for completely factoring f, provided that we have a generalization of Theorem 3.2
that employs the polynomial f. The goal of this chapter is to establish such a

generalization.

The example above generalizes to an infinite family of instances: for every k € N*,
there exists f(X) € Z[X] irreducible over Q of degree 2k such that the action of the
Galois group on the set of roots of fis permutation isomorphic to the action of C},1Cy
on [k] x [2].3 And for such f, there exists infinitely many prime numbers p such
that f(X) = f(X) mod p has k distinct linear factors and one irreducible factor of
degree k.* Using the generalized P-scheme algorithm developed in this chapter,
it is sufficient to choose m = 2 in order to completely factorize f mod p, leading
to a polynomial-time factoring algorithm for such instances ( f, f) On the other
hand, using distinct-degree factorization and the P-scheme algorithm in Chapter 3,
the best known general upper bound for m is O(log k) (see Theorem 3.12), and the
resulting algorithm takes superpolynomial time.

Lifted polynomial. To formulate the main result of this chapter, we first need
to generalize the notion of lifted polynomials (see Definition 1.1). Recall that
a lifted polynomial of f(X) € F,[X] is a polynomial f(X) € Z[X] of degree

IFor the same reason, one needs to choose m > 3 if the m-scheme algorithm [IKSO09] is used.

2For the definition of the wreath product of groups, see Definition 6.11.

3Shafarevich’s theorem on solvable Galois groups [Sha54; ILF97] implies that the existence of
integral polynomials realizing the family of groups Cj ! C2 as Galois groups. For an algorithm
explicitly computing such a polynomial, see [KMOO].

4This follows from Chebotarév’s density theorem. See, e.g., [Neu99].
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deg(f) satisfying f(X) mod p = f(X). For the general case F, = Foa, we fix

the following notations: assume I, is encoded by a monic irreducible polynomial
h(Y) € F,[Y] of degree d, i.e., it is identified with IF,[Y]/(h(Y")) via an isomor-
phism vy : F,[Y]/(h(Y)) — F, which we can efficiently compute. Lift i to a

monic polynomial B(Y) € Z[Y] of degree d which is necessarily irreducible over

Q. Define Ay := Z[Y]/(h(Y)) and K, := Q[Y]/(A(Y)). Composing 1/ with the
natural projection Ay — FF,[Y]/(h(Y)) sending x to x mod p, we obtain a surjec-
tive ring homomorphism @/;0 : Ay — IF,. Finally extend @ZJO to the ring Ag[X] by
applying it to each coefficient:

Po 1 Ag[X] — F,[X].
With these notations, we generalize the definition of lifted polynomials as follows.

Definition 5.1 (lifted polynomial). Suppose f(X) € F,[X] is a polynomial of
degree n € NT. A lifted polynomial of f (with respect to h and 1) is a polynomial
f(X) € A[X] of degree n satisfying 1o(f) = f. An irreducible lifted polynomial
of f is a lifted polynomial of f that is irreducible over K.

Given f(X) € F,[X], we can choose a lifted polynomial f of f efficiently. Further-
more, we argue that f can be assumed to be irreducible over K. To see this, we

need the following lemma.

Lemma 5.1. There exists a polynomial-time algorithm that given p and a poly-
nomial f (X) € Ao[X] satisfying 1;0( f) =+ 0, computes an integer D satisfying
D =1 (mod p) and a factorization of D - f into irreducible factors ﬁ over K.
Furthermore all of the factors f;(X) are in Ao[X].

The proof can be found in Appendix C. Compute D and f; using the lemma above.
We have &O(D . f) = &o(f) = fsince D =1 (mod p). So the polynomials &U(ﬁ)
are factors of f, and we have reduced the problem to factoring each tio( f;) € F,[X]

using its irreducible lifted polynomial ﬁ

The discussion above justifies the assumption that an irreducible lifted polynomial
f of f is given, with respect to h and 1. The notations 71, 1o, Ag, and K are fixed
throughout this chapter.

Main result. The main result of this chapter is a generalization of Theorem 3.2:
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Theorem 5.1 (informal). Suppose there exists a deterministic algorithm that given a
polynomial g(X') € Ay[X] irreducible over K, constructs in time T'(g) a collection
F of subfields of the splitting field L of g over K such that

o ['=Ky[X]/(g9(X))isin F, and

e all strongly antisymmetric P-schemes are discrete on Gal(L/F') € P, where

‘P is the subgroup system associated with F.

Then under GRH, there exists a deterministic algorithm that given f(X) € F [X]
and an irreducible lifted polynomial f(X) € Ao[X] of f, outputs the complete

factorization of f over F in time polynomial in T'( f) and the size of the input.

See Theorem 5.9 for the formal statement. For simplicity, here we only state the
result for computing the complete factorization of f. The results for computing a
proper factorization are slightly more complicated to state, and we refer the reader
to Section 5.10 for details.

Overview of the generalized P-scheme algorithm

Recall that a P-scheme algorithm in Chapter 3 consists of three parts: (1) areduction
to the problem of computing an idempotent decomposition of the ring O, where
F = Q[X]/(f(X)), (2) computing idempotent decompositions for a collection
of number fields, and (3) constructing the collection of number fields used in the
previous part. The factoring algorithm in this chapter has the same structure but with
some differences: we generalize the reduction in Part (1), where F' now denotes the
number field Ko[X]/(f(X)). And in Part (3), we construct a collection of relative
number fields over K instead of ordinary number fields. The main difference is in

Part (2), which we now explain.

‘P-schemes of double cosets. In Chapter 3, we proved that for a subfield K of the
splitting field L of f, G the Galois group of f, and H = Gal(L/K), an idempotent
decomposition of the ring Ok corresponds to a partition of the right coset space
H\G. The crucial condition for this claim to hold is that p splits completely in the
splitting field L of f , which in turn relies on the assumption that f is square-free
and completely reducible over the field of definition. In general, one can prove that
an idempotent decomposition of O corresponds to a partition of the double coset
space H\G /Dgq, instead of the right coset space H\G, where Dq, C G is known
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as the decomposition group (of a fixed prime ideal 9, of O, over K;). For the
special case studied in Chapter 3, the decomposition group Dy, is trivial, and hence

the double coset space H\G/Dgq, coincides with the right coset space H\G.

To address the general case, we define the notion of P-collections (resp. P-schemes)
of double cosets, generalizing (ordinary) P-collections (resp. P-schemes). Various
properties including (strong) antisymmetry, discreteness and homogeneity can be
extended to P-schemes of double cosets. In addition, as the rings O are not

necessarily semisimple in general, we replace them with the rings Ry, defined by
Ry = {:U € Ok /Rad(Ok) : aP = x},

where Rad(Op) denotes the radical of Ok. These rings have the advantage of
being finite products of [F,,, so that we can directly use the results in Chapter 3. Then
we generalize the algorithm in Chapter 3 to compute a collection of idempotent
decompositions of the rings R so that they correspond to a strongly antisymmetric

P-schemes of double cosets.

In addition, we introduce the following notations concerning partitions of double
coset spaces: for every double coset HgDq, € H\G/Dgq, where H C G, we
associate two positive integers f(H gDq,) and e( HgDgq, ), called the inertia degree
and the ramification index of H gDg, respectively.> Then we say a partition P of
H\G/Dq, has locally constant inertia degrees (resp. ramification indices) if for
every block B in P, all the double cosets in B have the same inertia degree (resp.
ramification index). We design efficient algorithms that force the partitions in a P-
collection of double cosets to have locally constant inertia degrees and ramification
indices. These algorithms may be regarded as the analogues of distinct-degree
factorization [CZ81] and square-free factorization [Yun76; Knu98] that factorize a

polynomial according to the degrees and the multiplicities of the irreducible factors.

The discussion above is summarized by the following theorem, which generalizes
Theorem 3.1 in Chapter 3.

Theorem 5.2 (informal). Under GRH, there exists a deterministic algorithm that
given a poset P* of number fields between K, and L corresponding to a poset
P of subgroups of G, outputs idempotent decompositions of Ry for K € P*

SThese names come from the fact that f(HgDq,) (resp. e(HgDgq,)) is the inertia degree
(resp. ramification index) of the prime ideal of O« lying over p corresponding to HgDgq,. See
Definition 5.2 for details.
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corresponding to a strongly antisymmetric ‘P-scheme of double cosets C with respect
to Dq,. Moreover, all the partitions in C have locally constant inertia degrees and

ramification indices. The running time is polynomial in the size of the input.

From a P-scheme of double cosets to an ordinary P-scheme. Theorem 5.2 is
still not enough for proving our main result (Theorem 5.1), since the algorithm in
Theorem 5.2 only produces a strongly antisymmetric P-scheme of double cosets
rather than an (ordinary) P-scheme. While strongly antisymmetric P-schemes of
double cosets are interesting objects, we do not know if their existence implies the

existence of strongly antisymmetric (ordinary) P-schemes.

To overcome this problem, we strengthen the algorithm by maintaining not only
idempotent decompositions of a collection of rings R, but also elements in rings
of the form O or (O /Rad(Ok)) ®r, F,i, i € N*. More specifically, we compute
auxiliary elements s; € Ok (resp. t5 € (Ox/Rad(Ok)) ®r, F,i) for number
fields K and idempotents 6. Then we define a P-collection C based on these
auxiliary elements and the P-scheme of double cosets C computed in Theorem 5.2.
Moreover, we describe subroutines that properly refines the partitions in C unless C
is a strongly antisymmetric P-scheme. This allows us to strengthen Theorem 5.2
so that the algorithm produces a strongly antisymmetric (ordinary) P-scheme C in
addition to a P-scheme of double cosets. See Theorem 5.8 for the formal statement.

Our main result (Theorem 5.1) then follows easily.

Outline of the chapter. Notations and mathematical preliminaries are given in
Section 5.1, and algorithmic preliminaries are given in Section 5.2. In Section 5.3,
we reduce the problem of factoring f to that of computing an idempotent decompo-
sition of Rx. In Section 5.4, we give (a preliminary version of ) the main body of the
algorithm that computes idempotent decompositions corresponding to a strongly
antisymmetric P-scheme of double cosets. This P-scheme also has the property
that all of its partitions have locally constant inertia degrees and ramification indices,

as guaranteed by the subroutines described in Section 5.5 and Section 5.6.

The next three sections address the problem of producing an (ordinary) P-scheme
from the above P-scheme of double cosets. More specifically, in Section 5.7, we
give a subroutine that computes the auxiliary elements s; and ¢5, and use these
elements to define a P-collection C. In Section 5.8, we introduce a property about
P-collections called (C, D)-separatedness, and use it to give a criterion for C being

a strongly antisymmetric P-scheme. In Section 5.9, we modify the algorithm in
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Section 5.4 to produce a strongly antisymmetric P-scheme, based on the results in
Section 5.7 and Section 5.8.

Finally, in Section 5.10, we combine the results in previous sections to obtain the
generalized P-scheme algorithm, and use it to prove the main result of this chapter
(Theorem 5.1). Using the algorithm, we also obtain generalizations of the main
results in [Hua91a; Hua91b; Ron88; Ron92; Evd92; Evd94; IKS09].

5.1 Preliminaries
For a number field K, denote by Oy the quotient ring Ok /pOf. For K, =
Q[Y]/(h(Y)), we have

Lemma 5.2. The ideal pOy, is a prime ideal of Oy,. And O, = F,.

Proof. Let Y := Y + (h(Y)) € Ok,. Consider the ring homomorphism i :
F,[Y]/(h(Y)) = Of, sending Y + (h(Y)) to Y +pOk,. Clearly i is a nonzero map
since i(1) = 1. AsF,[Y]/(h(Y)) is a field, the map i is injective. As F,[Y]/(h(Y))
and O, both have dimension deg(h) over F,, the map i is an isomorphism. So
Ok, 2 F,[Y]/(h(Y)) 2 F, and pO, is prime. O

In the following, we give some notations and facts from algebraic number theory.

The proofs can be found in standard references like [Neu99].

Splitting of prime ideals. Let K be a finite extension of K. The ideal pO splits

in the unique way into a product of prime ideals of Ok, up to the ordering:

k

k
PO = Hm:(%) _ ﬂgpf(‘ﬁi)j
i=1 i=1
where 1, . .., B, are distinct and e(B;) € NT. We say By, . .., Py are the prime
ideals of Ok lying over p. For i € [k], define ky, := O /PB; which is a finite field,
called the residue field of °B3;. The inclusion Ok, — Ok induces an embedding of
Ok, = F, in ryp,, making sy, an extension field of Oy, . Let f(;) := [k, : Ox,)-
We call e(%B3;) and f(°B;) the ramification index and the inertia degree of °33; (over
pOk,) respectively. It holds that

k

> e(B)f(PBi) = [K : K.

i=1
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Vector spaces B° /B, We also use the following facts implicitly:

For a number field K, « € N and a nonzero prime ideal *J3 of O, the abelian group
P /P is an one-dimensional vector space over the field kyy = O /3, where the

scalar multiplication is defined by
(u+P) - (v+ P =ww + P foru € Ok, v € P
Fori,j € Nand u € " — B!, the map
x4+ P s ux P!

is an isomorphism from 37 /P71 to P SPHITL both regarded as vector spaces

over rgyp. In particular, for i, j € Nand u € " — P+, we have v/ € P9 — P+,

Now suppose K, K’ are finite extensions of Ky and K C K’. And ‘g, 9 are prime
ideals of Ok and Ok respectively, both lying over p, such that Q N Ox = ‘B.
Then e(P) divides e(Q) and f(P) divides f(Q). And for i € N, the inclusion
Ok — Of induces an inclusion 7 /P! < Q7 /Q" where i’ = i-e(Q)/e(P).

The decomposition group and the inertia group. Let L/ K be a Galois extension
of number fields with the Galois group G = Gal(L/Kj). Let I3 be a prime ideal of
Oy, lying over p. The group

Dpi={geG:*P=F}CC
is called the decomposition group of B3 over K. And the group
Iy :={g € G:%2=x (mod P)forallz € O}

is a normal subgroup of Dy, called the inertia group of °3 over K. Each automor-
phism g € Dy of L restricts to an automorphism of Oy, fixing Ok, and satisfying
993 = P, and hence induces an automorphism g of the residue field sy fixing Ok,
defined by

Iz +P) =%z +P.
The map 7 : g — g is a surjective group homomorphism from Dy to Gal(rq/Ok,)
whose kernel is precisely Zgy, i.e, we have a short exact sequence

1— qu — Dqg 1) Gal(lim/@Ko) — 1.

The Galois group Gal(kg/Ok,) is cyclic and is generated by the Frobenius auto-

morphism x + x4 of kg over O, 2 F,.
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The wild inertia group. Let L, G and *]3 be as above. The group

Wy ={g€G:%2=2 (mod*P?) forallz € O}.

is a normal subgroup of Zy, called the wild inertia group of °B over K.

Choose 71, € P — P2, We have a group homomorphism Zy — lﬁ;} sending g € Zyp
to the unique element ¢, € g satisfying 977, + P> = ¢, (7, + P*). This map is
independent of the choice of 77, and its kernel is precisely Wy. It is also known
that Wy, is a p-group. See [Neu99, Section I1.10].

In our factoring algorithm, the group G is a subgroup of Sym(n) where n is the
degree of the input polynomial f(X) € F,[X]. We can always assume p > n,
since the case p < n is solved in polynomial time by Berlekamp’s algorithm in
[Ber70]. Under this assumption, the p-subgroup Wy of G is trivial, and hence the

map Ly — mﬁ above is injective. In particular, the inertia group Zsy is cyclic.

Prime ideals vs. double cosets. We have the following generalization of Theo-
rem 3.4, which gives a one-to-one correspondence between prime ideals lying over

p and double cosets. See [Neu99] for its proof.

Theorem 5.3. Let L/Ky be a Galois extension of number fields and let G =
Gal(L/Ky). Fixaprime ideal Qg of Oy, lying over p. For any subgroup H C G and
its fixedfield K = LY, the map H gDq, — Q0N Ok is a one-to-one correspondence
between the double cosets in H\G /Dgq, and the prime ideals of Ok lying over p.¢
Moreover, for g € G and the prime ideal 3 = 9, N O corresponding to HgDq,,
define

n(P) :=[{Hh € H\G : HhDq, = HgDq,}|.

Then

n(¥)
e(P)

e(P) = {Hh € H\G : HhIy, = Hyly,}| and f(R) =

Motivated by Theorem 5.3, we define the ramification index and the inertia degree

of a double coset:

®Note that this map is well defined: for another representative hgh’ € G of HgDq,, where
h € Hand h' € Dq,, we have hgh/Do NOkg = tho NOkg = h(gﬂo NOk) =79 N Ok since
"0y = Qg and O is fixed by H.
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Definition 5.2. Let G be a finite group, H,D subgroups of G, and T a normal
subgroup of D. Define the ramification index of a double coset HgD € H\G/D
with respect to (D, T) to be

e(HgD) := |{Hh € H\G : HhZ = HgT}|,

which is well defined.” And define the inertia degree of H gD with respect to (D, T)

10 be {Hh € H\G : HWD = HygD}|
L . = g
f(HgD) = “(HgD) :

Suppose L/ K is a Galois extension of number fields with the Galois group G. Fix
a prime ideal 9, of Oy, lying over p. Let H be a subgroup of G and K = L.
Then by Theorem 5.3, the ramification index (resp. inertia degree) of a double coset
HgDgq, € H\G/Dq, with respect to (Dq,, Zq,) is precisely the ramification index

(resp. inertia degree) of the corresponding prime ideal YQ, N Ok of O.

We also introduce the following notations concerning partitions of a double coset

space.

Definition 5.3. Let G, H,D,Z be as in Definition 5.2. We say a partition P
of H\G /D has locally constant ramification indices (resp. inertia degrees) with
respect to (D,Z) if for every B € P, all the double cosets in B have the same
ramification index (resp. inertia degree) with respect to (D, T). For such a partition
Pandany B € P, denote by e(B) (resp. f(B)) the ramification index (resp. inertia
degree) of any double coset in B.

Radicals of rings and polynomials. Let A be a (commutative) ring. An element
x € A is nilpotent if z¥ = 0 for some k € N*. The radical (or nilradical) of A,
denoted by Rad(A), is the ideal consisting of the nilpotent elements of A. It equals
the intersection of all the prime ideals of A (see [AM69]).

Let g(X) € F,[X] be a non-constant polynomial with the following factorization

g(X) =c- ] |(g:i(X))™

k
i=1

"To see that e(HgD) is well defined, consider two representatives g and g’ of HgD. Then
g’ = sgt forsome s € H and t € D. Note that HhtZ = HhTt for all h € G. It follows that the map
Hh — Hht is a bijection from {Hh € H\G : HhZ = HgZ}to {Hh € H\G : HhZ = H¢'T}.
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over IF,, where ¢ € IF, is the leading coeflicient of g and g1, . . ., g are distinct monic
irreducible polynomials over IF,. Define the radical Rad(g) of g to be the monic
polynomial [T, g:(X) € F,[X]. For A = F,[X]/(g(X)), the ideal of A generated
by Rad(g) + (9(X)) € A is precisely Rad(A).

The ring Ry. Suppose K is a finite extension of K and pOj splits into the

product of prime ideals
k
pOx = [ %%,
i=1

where B, . . ., By, are distinct. The radical of O is given by
k k
Rad(Ok) = [ Bi/pOx = (ﬂ ‘Bz‘) /POk.
i=1 i=1
By the Chinese remainder theorem, we have the isomorphism
k k
Ok /Rad(Ok) — H O /B = H’K‘:‘Bm
i=1 i=1

sending z + Rad(Ok) € Ok /Rad(Ok) to (Z mod Py, ..., 7 mod RB;), where
T € Ok isanarbitrary elementlifting z € Oy. In particular, the ring O /Rad(Ok)

is semisimple.

Define R to be the subring of Ok /Rad(Ox) consisting of elements fixed by the

Frobenius automorphism x — z? over IF,, i.e.,
Rk = {z € Og/Rad(Ok) : ¥ =z} .

The isomorphism O /Rad(Ox) — []I_, sy, above identifies Ry with the subring
Hle F, of Hle K, SO R is a finite product of copies of I, and in particular is

semisimple.

Observe that the map m — (m/Rad(Ok)) N R is a one-to-one correspondence
between the maximal ideals of Ok and those of Rg. Combining this fact with

Theorem 5.3, we obtain

Lemma 5.3. Let L, G, Qg be as in Theorem 5.3. For any subgroup H C G and its

fixed field K = LY, the map

(gﬂo N O[{)/}?O}(
Rad(OK)

is a one-to-one correspondence between the double cosets in H\G/Dq, and the

HgDDo — N RK

maximal ideals of R.
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Idempotent decompositions vs. partitions of a double coset space. In the
following, we establish a one-to-one correspondence between the idempotent de-

compositions of Ry and the partitions of a certain double coset space.

For a number field extension L/ K, the inclusion O < Oy induces an inclusion
O — Or. Sowe may regard Ok asa subring of Oy.. Note that Rad(@L) NOk =
Rad(Of). Passing to the quotient rings yields an inclusion O /Rad(Ok) —
Or/Rad(Oy). Restricting to the subring Ry, we obtain an inclusion

Z.K,L : RK — RL.

Also note that if L /K| is a Galois extension with the Galois group G, the action of

G on Oy induces an action on R, that permutes the maximal ideals of R;.

Fix the following notations: let L be a Galois extension of K with the Galois group

G = Gal(L/K,). For a (nonzero) prime ideal Q of Oy, lying over p, define

which is a maximal ideal of Ry, and let Jg be the primitive idempotent of O,
satisfying 0q = 1 (mod Q) and 65 = 0 (mod Q') for all maximal ideal Q' # Q
of Oy, Finally, fix a prime ideal Q, of O, lying over p.

Definition 5.4. Suppose H is a subgroup of G and K = L. Then

e for an idempotent decomposition I of Ry, define P(I) to be the partition of
H\G/Dgq, where HgDq,, Hg' Dgq, are in the same block iﬁg_l(iK,L(é)) =

gl—l 3

(ix.(6)) (mod Qo) holds for all § € I, and

e for a partition P of H\G /Dgq,, define 1(P) to be the idempotent decomposi-

tion of Ri consisting of the idempotents
1 ,
(SB = ZK,L Z 96)30 5
9D €G/Day:HgDgy€B
where B ranges over the blocks in P.
We have the following two lemmas that generalize Lemma 3.5 and Lemma 3.6

respectively. In particular, Lemma 5.5 establishes a one-to-one correspondence
between the idempotent decompositions of Ry and the partitions of H\G/Dgq,.
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Lemma 5.4. The partitions P(I) and the idempotent decompositions I(P) are well
defined. And for any idempotent decomposition I of O, the idempotents § € I

correspond one-to-one to the blocks of P(I) via the map
5+ By = {HgDg, € H\G/Da, : ¢ (ix.(5) =1 (mod D)}

with the inverse map B — dp.

Lemma 5.5. The map I — P(I) is a one-to-one correspondence between the
idempotent decompositions of Ry and the partitions of H\G /Dgq,, with the inverse
map P — I(P).

Their proofs are similar to those of Lemma 3.5 and Lemma 3.6, and can be found

in Appendix C.

P-collections and P-schemes of double cosets. Let G be a finite group and
D C G a subgroup. We generalize projections and conjugations introduced in

Chapter 2 so that they are defined between double coset spaces:

e (projection) for H C H' C G, define the projection f; ;;, : H\G/D —
H'\G/D to be the map sending HgD € H\G/D to H'¢D € H'\G/D, and

e (conjugation) for H C GG and g € G, define the conjugation cg,g : H\G/D —
gHg "\G/D to be the map sending HhD € H\G/D to (gHg ')ghD €
gHg \G/D.

Next we define P-collections and P-schemes of double cosets.

Definition 5.5. Let P be a subgroup system over a finite group G. Then a P-
collection of double cosets with respect to a subgroup D of G is a family C = {Cy :
H € P} indexed by P where each Cy is a partition of H\G /D. Moreover, C is a
P-scheme of double cosets with respect to D if it has the following properties:

e (compatibility) for H, H' € P with H C H' and z, 2" € H\G/D in the same
block of Cy, the images 7y 1, (x) and wg . (x') are in the same block of C'y.

e (invariance) for H € P and g € G, the map cg’g : H\G/D — gHg~'\G/D
maps any block of Cy to a block of Cypg—1.
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e (regularity) for H,H € P with H C H', B € Cy, B' € Cy, the number of

r € B satisfying 5 .,/(z) = y is a constant when y ranges over the elements

of B'.

We also define the following optional properties for a P-scheme of double cosets C
with respect to D:

e (homogeneity and discreteness) C ishomogeneouson H € P if Cy = Op\q/p,
and otherwise inhomogeneous on H. It is discrete on H if Cy = oo/,

and otherwise non-discrete on H.

o (antisymmetry) C is antisymmetric if for H € P, g € Ng(H), B € Cy and
HyD € B, either ci; ,(HgD) = HgD or cj; ,(HgD) & B.

o (strong antisymmetry) C is strongly antisymmetric if for any sequence of
subgroups Hy, ..., H, € P, By € Ch,, ..., By € Cy,, and maps o4, ..., 0y,
satisfying

— 0, is a bijective map from B;_ to B;,

— 0y is of the form cfy, | ,

D D -1
B;_1> 7TH7;_1,H2' B;_1> or (ﬂ-Hi,Hi_l Bz) ’

- Ho = Hk al’ldBo = Bk,
the composition oy, o - - - o 01 is the identity map on By = B;.

The notions of P-collections and P-schemes introduced in Chapter 2 correspond to

the special case that D is trivial.

Extension of scalars of O /Rad(Ok). In Section 5.7-5.8, we need a family of
rings Ag; that are obtained from O /Rad(O) via “extension of scalars”, whose

definitions are given below.

Let K be a finite extension of K. The inclusion Ay C Ok, — Ok induces
an embedding of F, & A,/pAp in Ok /Rad(Ok), endowing O /Rad(Of) the

structure of an F,-algebra. For i € N*, we define the tensor product
Ag,; = (Og/Rad(Ok)) @&, Fy,

which is an [Fi-algebra and is spanned by tensors a ® b over [, where a €
Ok /Rad(Ok) and b € F,i (see [AM69] for the definition of tensor products of



114

rings). Intuitively, the ring A ; is obtained from Oy /Rad(Of) by extending the
scalars from FF, to Fi. And Ok /Rad(Ok) is naturally identified with a subring of
Ak viaa — a® 1. As Og/Rad(Of) is semisimple, so is A ;.8 The Frobenius
automorphism z ~ 27 of O /Rad(Oy) over F, induces an automorphism of A

over [F; sending a ® b to a? ® b. We denote this automorphism by o ;.

The following lemma is also needed, whose proof is deferred to Appendix C.

Lemma 5.6. For any maximal ideal m of O /Rad(Ok), the group (o ;) generated

by ok ; acts transitively on the set of the maximal ideal of Ak ; containing m.

Suppose K, K’ are extensions of Ky and K C K’. Then the inclusion Oy — Ok
induces an embedding ¢ : O /Rad(Of) = Ok /Rad(Ok:), which in turn induces
a ring homomorphism ¢/ : Ax,; — Ak, sending a ® b to «(a) ® b. The map ¢/
is injective since F: is a flat IF,-module (see, e.g., [AM69, Proposition 2.19 and
Exercise 2.4]). This allows us to regard Ag; as a subring of Ag/,;. Note that

ook, =0k i0l.

Finally, suppose L/Kj is a finite Galois extension with the Galois group G. The
action of G on L induces an action on Oy /Rad(O}), which in turn induces an

action on Ay ; via“?(a ® b) := Y%a @ b. This action commutes with o7, ;.°

5.2 Algorithmic preliminaries

In this section, we discuss some basic procedures used in the algorithm.

Computation of radicals, and square-free factorization. We need to compute
the radical of a finite dimensional (commutative) [F,,-algebra. This problem was
studied in [FR85; R6n90] and solved in polynomial time in the more general setting
of associative algebras. We state their result but restrict to the special case of

commutative algebras.

Theorem 5.4 ([FR85; Ron90]). There exists a polynomial-time algorithm that given

a finite dimensional (commutative) F,,-algebra A, computes an F,-basis of Rad(A)
in A.

$We use the fact that F e @, F,: is semisimple for d,i € N*: suppose Fa = F,[X]/(g(X))
where g(X) € [F,[X] is irreducible over F,. Then Fpa ®p, Fpi = Fu[X]/(9(X)) =
K FLX (X)) where g1, ..., gi are the irreducible factors of g over IF:.
j=1"q 9j 9 9 9 q

°This follows from the fact that the action of G on O, /Rad(Or,) respects the multiplication and

hence commutes with the automorphism x +— z9.
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See, e.g., [R6n90, Theorem 2.7].

Next we discuss the problem of computing the radical of a nonzero polynomial

g(X) € F,[X]. This is solved via square-free factorization.

Definition 5.6. A square-free factorization of a nonzero polynomial g(X) € F,[X]

over ¥, is a factorization

k
g(X) =c- ] J(a:(x))™,
i=1
where ¢ € F, is the leading coefficient of g and the factors g1(X), ..., gx(X) €

[F,[X] are monic, square-free, and pairwise coprime.

Theorem 5.5 ([Yun76; Knu98]). There exists a polynomial-time algorithm that

computes a square-free factorization of a given nonzero polynomial g(X) € F [ X].

Given the square-free factorization g(X) = ¢ - Hle(gi(X ))™, the radical Rad(g)
is simply the product of g;(X). So we have

Corollary 5.1. There exists a polynomial-time algorithm that given a nonzero poly-
nomial g(X) € F,[X], computes its radical Rad(g).

Alternatively, we can compute Rad(g) by computing the radical of F,[X]/(g(X))
and then its generator. The details are left to the reader.

Computation of annihilators. Let R be a (commutative) ring. Foraset S C R,
define the annihilator Anng(S) of S to be the ideal

Anng(S) :={re R:rs=0forall s € S}

of R. When S is a singleton {s}, we also write Anng(s) instead of Anng({s}) and

call it the annihilator of s.

When R is an finite dimensional [F)-algebra, we can efficiently compute the anni-
hilator Anng(s) of an element s € R by solving the system of F-linear equations
given by xs = 0. Similarly, when S is an IF,,-subspace of R (in particular, when S
is an ideal of R), we can compute Anng(S) efficiently given R and an F,-basis B
of S by solving the system of [F,-linear equations xs = 0, where s ranges over the
basis B.
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Computation of various rings and ring homomorphisms. The algorithm uses
relative number fields over K rather than ordinary number fields, i.e., every number
field is an extension of K and is encoded as a Ky-algebra Ky[X]/(g(X)) where
g(X) € Ky[X] is irreducible over K.

Given a relative number field K over K, we can identify K, with an ordinary
number field K by Corollary 4.1. It allows us to efficiently compute a p-maximal
order O} as well as the quotient ring O as in Chapter 3. We can also efficiently
compute the rings O /Rad(Ox) and Ry, which are used in the generalized P-
scheme algorithm developed in this chapter. This is summarized by the following

lemma, whose proof is deferred to Appendix C.

Lemma 5.7. There exists a polynomial-time algorithm ComputeRings that given p

and a relative number field K over K, computes the following data

e a p-maximal order O of K and the inclusion Oy — K,
o O and the quotient map O} — Ok,
o Ok /Rad(Ok) and the quotient map O — Ok /Rad(Ok),

o Ry and the inclusion Rg — Oy /Rad(Ok),

where O, Ok /Rad(Of), and Ry are encoded as algebras over F, and O is

encoded as an algebra over 7.

Suppose K and K’ are relative number fields over Ky and ¢ : K — K’ is a field
embedding over K. The map ¢ induces a ring homomorphism ¢ : Ox — O
sending  + pOg € Ok to ¢(x) + pOg+. As the image of an nilpotent element
(resp. an element fixed by the automorphism 2 — zP) under ¢ is also nilpotent
(resp. fixed by 2 ~— 2?), the map ¢ induces a ring homomorphism O /Rad(Ox) —
Ok /Rad(Ok), and we denote this map by ¢. Finally, the map ¢ restricts to a ring
homomorphism Ry — Ry, which we denote by qg The maps &, qg and é can be

efficiently computed from ¢ (and some auxiliary data) by the following lemma.

Lemma 5.8. There exists a polynomial-time algorithm ComputeRingHoms that
given p, relative number fields K, K' over K, a field embedding ¢ : K — K’
over K, and the outputs of ComputeRings (see Lemma 5.7) on the inputs (K, p)
and (K, p) respectively, computes the maps ¢ : O — Ok, ¢ - O /Rad(Ox) —
Ok /Rad(Ok) and ¢ - Ry — Ry,
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See Appendix C for its proof.

5.3 Reduction to computing an idempotent decomposition of R

Now we start describing the generalized P-scheme algorithm. It is always implicitly
assumed that the prime number p, A(Y) € Z[Y] and h(Y) = h(Y) mod p € F,[Y]

are known to the algorithm, so that F,[Y]|/(h(Y")), Ay = Z[Y]/(h(Y)) and K, =
Q[X]/(h(Y)) are also known. And F,,[Y]/(h(Y)) is identified with a finite field F,,
via an isomorphism ¢ : F,[Y]/(h(Y)) — [, that we can efficiently compute.

In addition, we fix the following notations in the remaining sections:
e f(X): the input polynomial in IF,[X] to be factorized,
e f(X): an irreducible lifted polynomial of f(X) in Ag[X],

F': the number field Ko[X]/(f(X)),

L: the splitting field of f over Ky,

G: the Galois group Gal(L/K,) = Gal(f/K,),

o: a fixed prime ideal of O, lying over p.

In this section, we reduce the problem of factoring f to computing an idempotent
decomposition of O, generalizing the result in Section 3.3. For simplicity, we
assume that f is a monic polynomial, and remove this assumption at the end of this

section.

Ring homomorphisms 7 and 7. Let a := X + (f(X)) € F, which is a root of f
in F. As f(X) is a monic polynomial in Ay[X] and Ay C Ok,, we have o € Op
(see [AM69, Corollary 5.4]).

Consider the natural inclusion Ay[X]/(f(X)) = Aola] < Op. Taking the quotients
of both sides of this map mod p and identify Ag/pAy = F,[Y]/(h(Y)) with F, via

1)y, we obtain a ring homomorphism
7 F,[X]/(f(X)) = OF.

Let g := Rad(f). Then the radical of F,[X]/( f(X)) is generated by g(X)+(f(X)).

we obtain a ring homomorphism

7:F,[X]/(9(X)) = Op/Rad(OF),
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which sends an element i(X) + (g(X)) to 7(h(X)) + Rad(OF). Note that both
F,[X]/(9(X)) and O /Rad(Op) are semisimple rings.

We can efficiently compute 7 by the following lemma.

Lemma 5.9. There exists a polynomial-time algorithm that given f, f, F' and the
outputs of ComputeRings (see Lemma 5.7) on the input (F,p), computes the -
algebra F,[X]/(g(X)) (encoded in the standard F,-basis {1,X, ..., Xde9)~1})
and the map 7 : F,[X]/(g(X)) — Or/Rad(Op).

Proof. Compute ¢ using Corollary 5.1 and form the [F-algebra F,[X]/(¢(X)). To
compute 7, we first compute o« = X+(f(X)) € FandY := Y+(h(Y)) € K, C F.
Then compute a + pOp, Y 4+ pOr € Op by identifying F' with an ordinary number
field (see Corollary 4.1) and running the algorithm ComputeResidue in Lemma 3.9
on a,Y € F. Next, compute 7 : F,[X]/(f(X)) — Op as the unique F,-linear
map sending X + (f(X)) to a + pOp and Y + (h(Y)) € F,[Y]/(h(Y)) = F, to
Y + pOp. Finally compute 7 from 7 by passing to the quotients modulo radicals
using the given map O — O /Rad(Op). O

Extracting a factorization from an idempotent decomposition. We extract a
factorization of f from an idempotent decomposition of Rx. This is achieved by the
algorithm ExtractFactorsV2 below (see Algorithm 10), extending the algorithm

in Section 3.3.

The algorithm first computes g = Rad(f), the ring F,[X]/(g(X)), and the map 7
at Line 1 using Lemma 5.9. It also maintains an idempotent decomposition / of the

ring F,[X]/(g(X)) which initially only contains the unity.

The loop in Lines 3-8 enumerates idempotents ¢’ € . For each ¢’, we compute an
ideal J = 771((1 - 0")Op/Rad(OF)) of F,[X]/(g(X)) and an element &, € J sat-
isfying (1—dp)J = {0} by solving systems of linear equations. As F,[X]/(g(X)) is
semisimple, the element d, is the unique idempotent of F [ X'] /(¢(X)) that generates

J. And we use it to refine I.

The loop in Lines 9-12 extracts, for each idempotent 6 € I, a monic factor gz of
N k
f. Furthermore, we compute a square-free factorization gs(X) = [[:2, g5:(X) for

each factor gs. Finally, the algorithm returns the factorization

ks
FX) =T ] g6:(X)-

oel i=1



119

Algorithm 10 ExtractFactorsV2

Input: f, f , F, the outputs of ComputeRings (see Lemma 5.7) on the input (F, p),

and an idempotent decomposition /r of Rp

Output: factorization of f

1:

10:
11:
12:

13:

compute g = Rad(f), F,[X]/(g(X)) and 7 : F,[X]/(9(X)) — Or/Rad(OF)
I < {1}, where 1 denotes the unity of F,[X]/(g(X))
for ¢’ € Ir do
J + 771 = §)Or/Rad(OF))
compute & € J satisfying (1 — dg)J = {0}
for § € I satisfying o0 ¢ {0,0} do
I+ 1—-{6}
I+ TU{0p0, (1 —00)d}
for 0 € I do
compute nonzero hs(X) € F,[X] of degree at most deg(g) lifting 1 — &
g5(X) « ged(F(X), (hs(X))") > = deg(f)
compute a square-free factorization gs(X) = Hfi 1 954(X)

return the factorization f(X) = [[,.; 12, g54(X)

The following theorem is the main result of this section.

Theorem 5.6. The algorithm ExtractFactorsV2 computes a factorization of f

over F, in polynomial time, such that

1. the factorization is complete if 1 is a complete idempotent decomposition,
2. the factorization is proper if I is a proper idempotent decomposition, and

3. at least one factor in the factorization is irreducible over I if I contains a

primitive idempotent.

Analysis of the algorithm. To prove Theorem 5.6, we introduce the following
notations: let S (resp. Sr) denote the set of the maximal ideals of F,[X]/(g(X))
(resp. Op/Rad(Op)). For a maximal ideal m of Op/Rad(Op), the preimage
7~1(m) is a prime (and hence maximal) ideal of F,[X]/(g(X)). So we obtain a map

m:Sp— S,
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sending m to 77! (m). It can be shown that 7 is surjective. !0
Suppose f(X) = [Tr,(f:(X))™ where fi,..., f are distinct monic irreducible

factors of f over F,. Fori € [k], let m; be the (maximal) ideal of F,[X]/(g(X))
generated by f;(X) + (¢9(X)). Then we have

k
S={my,...m} and g(X)=][r(X

The proof of Theorem 5.6 is based on the following lemma.

Lemma 5.10. Let I be the idempotent decomposition of F,[X]/(g(X)) given at the
end of the algorithm ExtractFactorsV2. Define the partition P of S by

P:={Bs:6c€l}, where Bs:={meS:§=1 (modm)}
and the partition P’ of Sr by
P :={Bj:0€lIp}, where Bj:={mecSp:6=1 (modm)}.

Then P is the coarsest common refinement of the partitions {w(B),S — ©(B)},
where B ranges over the blocks in P'. Moreover, for each § € I, the polynomial gs

in the algorithm is given by

u(X)= J] )™

ie[k}:mieBg

Proof. For the last claim, it suffices to prove, for all i € [k], that hs is divisible by
fi iff m; € B;. By the choice of hs, it holds for all ¢ € [k] that h; is divisible by f;
iff 1 — 0 € m,;. The claim then follows from the definition of Bs.

For the first claim, it suffices to show that for every ¢’ € [ enumerated at Line 3 and
do computed at Line 5 in the same iteration, it holds that Bs, € {w(B5,), S—n(Bj)}.
We claim that Bs, = S — m(Bj,). As the ideal J computed at Line 4 is generated
men(B,,) M- Note that for m € Sp, it holds
that 1 — ¢’ € miff m € Bj, by the definition of Bj,. So we have

by 0y, this claim is equivalent to J = ()

mEB’

195 prove this, it suffices to show that any prime ideal of Ao[X]/(f(X)) = Aola] C Op is
contained in a prime ideal of O, which follows from [AM69, Theorem 5.10].
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and hence
J=7" N m]=)7'm= ) rm)= () m
meB, meB, meBY, memn(By,)
as desired. n

We also need the following lemma.

Lemma 5.11. 7 : Sp — S is bijective if f is square-free, i.e., m; = 1 for i € [k].

Proof. Suppose pOp splits into the product of prime ideals by

¢
pOF = H B
i=1

where 1, ..., P, are distinct prime ideals lying over p. For j € [{], let m) :=
%. Then Sp = {m},...,m}}. Let n = deg(f). Assume f is square-free.
Then we have

k
D> _deg(fi) = Zmzdeg (fi)=n=) el (5.1
=1

Jj=1

Fix i € [k]. We know 7 !(i) # 0 since 7 is surjective. Consider j € 7 '(i).
As 7(m;) C m), the map 7 : F4[X]/(9(X)) — Op/Rad(Op) induces a field
embedding
F,X]/((X)) _ Or/Rad(O))
m; m’ ’

The left hand side is isomorphic to IF,[X]/(f:(X)) whereas the right hand side is
isomorphic to Or /B, = Ky, Therefore deg( f;) divides f(3;).

Note that e(*33;) > 1 holds for all j € [¢]. It follows from (5.1) that in fact e(*}3;) = 1
holds for all j € [(]. Moreover, for all 7 € [k], the set 7~!(i) contains only one
element j; € [(], and deg(f;) = f(*B;,). In particular, the map r is bijective. O

Now we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. Polynomiality of the algorithm is straightforward. Suppose
I is a complete idempotent decomposition of Rp. It is also a complete idem-
potent decomposition of O /Rad(Op) since the maximal ideals of O /Rad(OF)

correspond one-to-one to those of Rr viam — m N Rg. So the partition P’ in
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Lemma 5.10 is cog,. By Lemma 5.10 and surjectivity of 7, the partition P equals

00, and the algorithm outputs the complete factorization f(X) = [ ;. (f:(X))™.

Similarly, if /r contains a primitive idempotent 4. Then P’ contains a singleton Bj.
By Lemma 5.10, the partition P contains a singleton 7(Bj), and algorithm outputs a
factorization of f(X') in which the irreducible factors f;(X') appear m, times, where

i is the unique index in [k] satisfying 7(Bj) = {m;}.

Finally, suppose I is a proper idempotent decomposition of 12, and hence a proper
idempotent decomposition of O /Rad(OF). Then P’ # 0g,.. If 7 is bijective, then
by Lemma 5.10, we have P # (g, and the algorithm outputs a proper factorization
of f. Now suppose 7 is not bijective. Then f is not square-free by Lemma 5.11.
As we compute a square-free factorization for each gs, the algorithm still outputs a

proper factorization of f. O]

The reduction for non-monic polynomials. The same trick in Section 3.3 can
be applied to make the above reduction work for a possibly non-monic polynomial
f: let ¢ € Ay be the leading coefficient of f(X) € Ag[X], and let ¢ := 9(c) €
Fx. Compute the monic polynomials f(X) == ' f(X/e) € A[X] and
f(X) ==t f(X/e" ) € F [X]. Run the algorithm ExtractFactorsV2 on f’
and f’ instead of f and f, and obtain a factorization of f’. Finally, we recover a

factorization of f from that of f’ by substituting X with ¢X in each factor.

Remark. The reduction in this section exploits the well known connection between
factorization of polynomials over finite fields and the splitting of prime ideals in
number field extensions, which dates back to the classical work of Kummer and
Dedekind (see, e.g., [Neu99, Proposition 1.8.3]). The Kummer-Dedekind theorem,
however, requires the map F,[X]/(f(X)) — Or to be an isomorphism. For this
reason, known factoring algorithms that use an irreducible lifted polynomial f
often assume p is regular with respect to f . See, e.g., [Hua84; Hua91a; Hua91lb;
Ro6n92].11 This assumption is not needed in our algorithm. The key observation
is that we can always employ the surjective map 7 from the set of prime ideals of
Or/Rad(Op) to that of F,[X]/(g(X)), where g = Rad(f). In algebro-geometric
terminology, the map 7 is interpreted as the morphism of reduced affine schemes

L Spec(@F>red — Spec(Ag[a]/pAo[a])red

""We say p is regular with respect to f if pAgla] is coprime to the conductor of Agla]. See
[Hua84] for the exact formulation of this condition. We remark that the journal version [Hua91a]

(and [Hua91b; R6n92]) assumes the stronger condition that p is coprime to the discriminant of f .
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induced from the morphism Spec O — Spec Ap[a]. The latter morphism is known

as the normalization of Spec Ag[a| (see [Har77, Exercise 11.3.8]).

5.4 Producing a P-scheme of double cosets C

In this section, we present an algorithm that computes the idempotent decomposi-
tions of a collection of rings Rk corresponding to a P-scheme of double cosets.
It extends the algorithm in Section 3.4 and serves as (a preliminary version) of the

main body of the generalized P-scheme algorithm.

The pseudocode of the algorithm is given in Algorithm 11 below. Its input is a
(Ko, f)-subfield system F (see Definition 4.1). The algorithm outputs, for every
K € F, an idempotent decomposition [ of the ring Rx, together with some

auxiliary data.

Algorithm 11 ComputeDoubleCosetPscheme

Input: (K, f)-subfield system F
Output: for every K € F: the outputs of ComputeRings (see Lemma 5.7) on
the input (K, p), and an idempotent decomposition /i of Ry
1: for K € F do
2: call ComputeRings on (K, p)

(O8]

Ik < {1}, where 1 denotes the unity of Ry
4: for (K, K') € F*do
5: call ComputeRelEmbeddings to compute all the embeddings from K to K’

over K

6: for embedding ¢ : K — K’ over K, do

7: call ComputeRingHoms on p, K, K’ and ¢ to compute ¢, ¢ and ¢
8: repeat

9: call CompatibilityAndInvarianceTestV2
10: call RegularityTestV2
11: call StrongAntisymmetryTestV2
12: call RamificationIndexTest
13: call InertiaDegreeTest

14: until /5 remains the same in the last iteration for all X € F

15: return the outputs of ComputeRings on the input (K, p) and [ for K € F

We fix P to be the subgroup system over G' = Gal(f/K,) associated with F, i.e.,

P:={HCG:L" = K forsome K € F}.
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The first half (Lines 1-7) of the algorithm is the preprocessing stage: for each
K € F, we run ComputeRings (see Lemma 5.7) on (K, p) which returns the
following data:

e a p-maximal order O of K and the inclusion O — K,
o Ok and the quotient map O — Ok,
e Ok /Rad(Ok) and the quotient map Ox — Ok /Rad(Ok),

e Ry and the inclusion R — Ok /Rad(Ok).

For (K,K') € F, we also compute all the embeddings ¢ from K to K’ and
the corresponding ring homomorphisms ¢ : Ok — Ok, ¢ : Ok /Rad(Ox) —
O/ /Rad(O) and é : R — Ryr. Moreover, for each K € F, we initialize the
idempotent decomposition [ of Rk to be the trivial one containing only the unity
of Ry.

The second half (Lines 8—14) of the algorithm refines the idempotent decompositions
I for K € F. To analyze it, we associate a P-collection C of double cosets with
these idempotent decompositions. For each H € P, define a partition C'y of the
coset space H\G/Dgq, as follows: Let K be the unique field in F isomorphic to
LH over K. Fix an isomorphism 74 : K — L over K|, which induces a ring
isomorphism 7y : R — Rpu. Define Iy := 7y(Ix), which is an idempotent
decomposition of R;x. By Definition 5.4, it corresponds to a partition P (/) of
H\G/Dgq,."? And we define
Cy = P(Ig).

Finally, define
CZ:{CHIHGP},

which is a P-collection of double cosets (with respect to Dgq,,).

The subroutines in Lines 9—11 extend those in Section 3.5, 3.6, and 3.7 respectively:

Lemma 5.12. There exists a subroutine CompatibilityAndInvarianceTestV2
that updates I in time polynomial in log p and the size of F so that the partitions
Cy € C are refined. Moreover, at least one partition Cy is properly refined if C is

not compatible or invariant.

2Definition 5.4 is made with respect to a fixed prime ideal Qg of Oy, lying over p. This ideal is

chosen at the beginning of Section 5.3.
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Lemma 5.13. There exists a subroutine RegularityTestV2 that updates I in
time polynomial in log p and the size of F so that the partitions C'y € C are refined.
Moreover, at least one partition C'y is properly refined if C is compatible but not

regular.

Lemma 5.14. Under GRH, there exists a subroutine StrongAntisymmetryTestV2
that updates [ in time polynomial in log p and the size of F so that the partitions
Cy € C are refined. Moreover, at least one partition C'y is properly refined if C is

a P-scheme of double cosets, but not strongly antisymmetric.

The proofs of Lemma 5.12-5.14 (and the corresponding subroutines) are almost
the same as those of Lemma 3.13-3.15 in Chapter 3. For this reason, we only list
the changes that need to be made rather than describe the complete proofs and the

subroutines.

Proof sketch of Lemma 5.12-5.14. We make the following changes to the proofs of
Lemma 3.13-3.15 and the corresponding subroutines:

each quotient ring O is replaced with the ring Ry, which is still isomorphic
to a finite product of copies of F,. A maximal ideal B of Oy is replaced with
the maximal ideal (3/Rad(Of)) N Ry of Rg. The subroutines enumerate field
embeddings over K instead of arbitrary field embeddings. For each field embedding
¢ : K — K’ over Ky, we use the ring homomorphism ¢ : Rk — Ry in place
of q§ : O — Opgr. The ring isomorphisms Ty : Ok — Opu are replaced with
TH : RK — RLH.

A right coset H g is replaced with a double coset H gDg,, and a right coset space
H\G is replaced with H\G/Dgq,. A projection 7wy g is replaced with WZ?}(}/, and a

. . . . D ..
conjugation cy 4 is replaced with ¢ Hi}o (see Definition 5.5).

Finally, instead of applying Corollary 3.1, Lemma 3.5, and Lemma 3.6 from Chap-
ter 3, we apply Lemma 5.3, Lemma 5.4, and Lemma 5.5, respectively. The details

are left to the reader. O]

In addition, the subroutines at Line 12 and Line 13 properly refine the partitions in

C unless they all have locally constant ramification indices and inertia degrees:

Lemma 5.15. There exists a subroutine RamificationIndexTest that updates Iy

in time polynomial in log p and the size of F so that the partitions Cy € C are refined.
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Moreover, at least one partition C'y is properly refined unless all the partitions in C

have locally constant ramification indices (with respect to (Dq,,Zq,))-

Lemma 5.16. There exists a subroutine InertiaDegreeTest that updates I in
time polynomial in log p and the size of F so that the partitions C'y € C are refined.
Moreover, at least one partition C'y is properly refined unless all the partitions in C

have locally constant inertia degrees (with respect to (Dq,,Zq,))-

Lemma5.15 and Lemma 5.16 are proved in Section 5.5 and Section 5.6, respectively.

Combining Lemma 5.12-5.16 yields the main result of this section:

Theorem 5.7 (Theorem 5.2 restated). Under the assumption of GRH, the algorithm
ComputeDoubleCosetPscheme runs in time polynomial in log p and the size of F,
and when it terminates, C is a strongly antisymmetric P-scheme of double cosets
(with respect to Dg,). Moreover, all the partitions in C have locally constant

ramification indices and inertia degrees (with respect to (Dq,, Zq,))-

5.5 Testing local constantness of ramification indices
In this section, we describe the subroutine RamificationIndexTest that properly
refines at least one partition in C unless all the partition have locally constant

ramification indices.

Algorithm 12 RamificationIndexTest
1: for K € Fdo

2 fori < 1to [K : K| do

3: J < the image of Anng (Rad(Ok)?) C Ok in Ok /Rad(Ok)
4: find 6y € J N Ry satisfying (1 — dg)J = {0}

5 for § € Ik satisfying dp0 & {0,6} do

6 Ix < Ik — {6}

7 I < I U{600, (1 —60)0}

The pseudocode of the subroutine is given in Algorithm 12 above. We enumerate
K e Fandi=1,2,...,[K : Ky|. For each K and i, we compute an ideal J of
Ok /Rad(Ok), defined to be the image of Anng, (Rad(Ok)*) under the quotient
map Ok — Ok /Rad(Ok). We also compute an element g € JN Ry C Ry, satis-
fying (1—80)J = {0}. As O /Rad(Of ) and Ry are semisimple, and m — mN Ry

is a one-to-one correspondence between the maximal ideals of O /Rad(Ok) and
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those of Ry, we know d; is the unique idempotent of O /Rad(Ox) (resp. Ry)
that generates .J (resp. J N Rg). Then we use dy to refine /.

Next we prove Lemma 5.15.

Proof of Lemma 5.15. The claim about the running time is straightforward. Sup-
pose there exists € P such that C'y does not have locally constant ramification
indices. Choose B € Cy and g,¢' € G such that HgDqg,, HgDy, € B and
e(HgDq,) < e(Hg'Dg,).

By Theorem 5.3 and Definition 5.2, the ideal pO# splits into the product of prime
ideals "y N Opx by

pOLH = H (hQO N OLH)E(HhDDO) .
HhDq, €H\G/Dqg,
For HhDq, € H\G/Daq,, define Punp,, = (hQO NOpu) /pOpu, which is a
maximal ideal of O 1#. By the Chinese remainder theorem, we have

Opn =[] Owu/B™.

IEH\G/DQO

And Rad(Opn) = [eerng/psy. Ba- Sofori € N, we have
0

Amng  (Rad(Opn)') =[]  gped0ee=i, (5.2)

IGH\G/DQO
Choose i = e(HgDy,) and let J be the image of Anng (Rad(Op#)?) in the

quotientring O, n /Rad(Opu ). Let & be the unique idempotent of O u /Rad(Opu)
that generates .J. It follows from (5.2) that

=1 (mod ‘BHQDDO/Rad((’_)LH)) and 6o =0 (mod Py, /Rad(Opn)).

Therefore

—1

(ipn1(6) =1 (mod Qp) and ¢ (igu(6)) =0 (mod Qp), (5.3)

where ipu ;, : Rpn — Rp is the inclusion induced from the natural inclusion

OLH — OL.

On the other hand, by Lemma 5.4, the block B € C'y corresponds to an idempotent
0 =0 € Iy. And

—1

(TZLHyL((;)) =1 (mod Qo)
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holds for all & € G satistying HhDgq, € B. In particular, it holds for h = g and
h = ¢'. Tt follows from (5.3) that o0 & {0,0}.

Identifying L with a field K € F using the isomorphism 75 : K — L over K
chosen in Section 5.4, we see that the subroutine is guaranteed to find an idempotent
d € I satisfying 6p0 & {0, 0} at Line 5. The lemma follows. O

5.6 Testing local constantness of inertia degrees
In this section, we describe the subroutine InertiaDegreeTest that properly refines

at least one partition in C unless all the partition have locally constant inertia degrees.

Algorithm 13 InertiaDegreeTest

1: for K € F do

2: for i < 1to [K : Ko do

3: J < the ideal of Ox/Rad(Ok) generated by {2 — z : = €
Ok /Rad(Ok)}

4: find 6y € J N Ry satisfying (1 — dg)J = {0}

5: for 0 € I satisfying 0p0 & {0,0} do

6: Ix « Ik — {4}

7: I« I U {609, (1 —09)d}

The pseudocode of the subroutine is given in Algorithm 13. We enumerate
K e Fandi = 1,2,...,[K : Kg]. For each K and i, we compute an ideal
J of Ok /Rad(Of), generated by the elements z” — x, where z ranges over
Ok /Rad(Of). Note that J is just the [F,-linear subspace of O /Rad(Ox) spanned
by 2?" — x where x ranges over an [F,-basis of O /Rad(Ok). So it can be effi-
ciently computed. We also compute an element 6y € J N Rx C Ry satisfying
(1—60)J = {0}. Asin Algorithm 12, it is the unique idempotent of O /Rad(O)
(resp. Ry) that generates J (resp. J N Rg). Then we use d to refine /.

Next we prove Lemma 5.16.

Proof of Lemma 5.16. The claim about the running time is straightforward. Sup-
pose there exists H € P such that Cy does not have locally constant inertia
degrees. Choose B € Cy and g,¢' € G such that HgDq,, Hg'Dq, € B and

f(HgDDO) > f(Hg/DDO)'

For HhDya, € H\G/Dgy,. define Punp,, = ("Qo N Opx) /pOpu, which is a
maximal ideal of O . By Theorem 5.3, Definition 5.2, and the Chinese remainder
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theorem, we have
Opu /Rad(Opn) = H Opn /Punpy,
HhDq,€H\G/Dqg,

and each factor Opu /B iy, is an extension field of F,, of degree f(HhDaq,).
Choose i = f(Hg'Dq,) and let J be the ideal of Opn /Rad(Opn) generated by
27" — z where x ranges over O n /Rad(Opx). Let &, be the unique idempotent of
Opx /Rad(Opr) that generates .J. Note that we have

2 £z (mod Prgps, /Rad(Opn))  for some z € Opn /Rad(Opn),
and
' =z (mod Prgpy, /Rad(Opn)) forall z € Opn /Rad(Opn).
So J is contained in Ppyp,, but notinPp,p,, . It follows that
dp=1 (mod ‘BHgDQO/Rad((’_)LH)) and dp =0 (mod Py, /Rad(Opn)).

Then (5.3) in the proof of Lemma 5.15 holds. The rest of the proof follows the proof
of Lemma 5.15. O

5.7 A P-collection C induced from C and auxiliary elements

The idempotent decompositions /i produced in Section 5.4 define a P-scheme of
double cosets C rather than an (ordinary) P-scheme. Section 5.7-5.9 are devoted to
turning it to a P-scheme C. In particular, this section focuses on the definition of C

as a P-collection.

We assume p > deg(f) in Section 5.7-5.9. As mentioned in Section 5.1, this

assumption implies that the wild inertia group Wy, C G of Qg over K, is trivial.

Suppose the partitions in C all have locally constant ramification indices and inertia
degrees (with respect to (Dq,, Zq,)). Then for K € F and € Ik, the (nonempty)
set of maximal ideals P of Ok satisfying

B/rOk
Rad(Ok)
all have the same ramification index e(*J3) and the same inertia degree f(*3). We
denote e(*P3) by es and f(3) by fs. Note that e; and fs5 are coprime to p by

§=1 (mod*P) where P := N Rk

Theorem 5.3 and the assumption p > deg(f).

Recall that for a finite extension K of K and i € N*, we denote by A ; the ring
(Ok/Rad(Ok)) ®r, Fyi. To define C, we need an auxiliary collection of elements

in rings O or A K,i- We call such a collection of elements an Z-advice:
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Definition 5.7. Suppose T = {Ix : K € F} is a collection of idempotent de-
compositions of the rings Ry, K € F, that defines to a ‘P-collection of double
cosets C (with respect to Dy, ), such that all the partitions in C have locally constant
ramification indices and inertia degrees (with respect to (Dq,,Zq,)). An Z-advice
{8, T} consists of the following data:

o S={s;:6 € Ix,es > 1}, where each s5 € S is an element of O such
that s5 € m — m? for all the maximal ideals m of Oy satisfying § = 1
(mod m/Rad(Ok)).

o T ={ts:0 € Ik, fs > 1}, where each ts € T is an element of Ak g, such
that ts & m for all the maximal ideals m of A g, satisfying 6 = 1 (mod m),
and o 5,(t;) = & - ts, where § € F s is a primitive fsth root of unity. 13

An Z-advice can be computed from Z by the following lemma. Its proof is deferred

to Appendix C.

Lemma 5.17. Under GRH, there exists a subroutine ComputeAdvice that given
T = {Ix : K € F} as in Definition 5.7, either properly refines some idempotent
decomposition I € I, or computes es, fs for K € F, § € I and an T-advice.'#

Moreover, the subroutine runs in time polynomial in log p and the size of F.

We also need the following notations: recall that for 4 € P, we chose an isomor-
phism 75 : K — L over K, where K is the unique field in J isomorphic to L
over K. The induced isomorphism O = O, u identifies each s; € S (where S is
as in Definition 5.7) with an element in Opx, which we denote by ss ;7. Similarly,

we identify each t5 € 7 with an element in A, f,, denoted by Z; p.

Next we define a P-collection C using Z and an Z-advice:

Definition 5.8. Let 7 = {Ix : K € F} be as in Definition 5.7 and {S, T} be
an Z-advice. Let C = {Cy : H € P} be the P-collection of double cosets with
respect to Dq, associated with L (see Section 5.4). For H € P, let K be the
unique field in F isomorphic to L over K, and define the partition Cu of H\G
so that Hg, Hg' € H\G are in the same block of Cy iff the following conditions

are satisfied:

BWe regard 6 € Ry C Ok /Rad(Ok) as an element of Ak p, viad = d® 1,and § € F s; as

an element of Ay f, via € — 1 ® &.
“We need to compute the rings A K, f, before computing the elements t5 € A ¢,. These rings

will be computed before the call of the subroutine ComputeAdvice. See Section 5.9.
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1. HgDq, and Hg'Dq, are in the same block B of Cp.
2. Let 6 be the unique idempotent in I such that 7y (5) = O (see Definition 5.4),

where B € C'y is as in the previous condition. If es > 1, the order of the

unique element c in mgo satisfying
eI =co (" su+ 1)
is coprime to ez, where I = (Qq/pOy, )¢ 0)/es+],

3. Let § € Ik be as in the previous condition. Let mg be an arbitrary maximal

Qo/pOr
Rad(Op)"

cin (A, /mg)™ satisfying

ideal of Ay, s, containing If f5 > 1, the order of the unique element

g_lt(;,H + my==c- (gl_lt(;,H -+ mo)

is coprime to fs.

Define C = {Cy : H € P}, which is a P-collection. We say C is the P-collection
associated with Z and {S, T }.

We check that C is well defined:

Lemma 5.18. The P-collection C in Definition 5.8 is well defined.
The proof of Lemma 5.18 is routine and can be found in Appendix C.

5.8 (C,D)-separated P-collections

We continue the discussion in the previous section. Our goal is to compute 7 =
{Ix : K € F} and an Z-advice {S, T} such that the associated P-collection C
is a strongly antisymmetric P-scheme. To achieve this goal, we introduce another

property of P-collections called (C, D)-separatedness:

Definition 5.9. Let P be a subgroup system over a finite group G, and let C =
{Cy : H € P} be a P-collection of double cosets with respect to a subgroup D of
G. We say a P-collection C = {Cy : H € P} is (C, D)-separated if the following

conditions are satisfied:

1. All the partitions Cy € C are invariant under the action of D by inverse right
translation, i.e. forall B € Cyand g € D, the set'B = {Hhg™' : Hh € B}

is also in Cy.
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2. For H € P, the map my : H\G — H\G/D sending Hg € H\G to HgD
maps each block of Cu bijectively to a block of Cy.

It is worth noting that if C is (C, D)-separated, then all the partitions in C automati-

cally have locally constant ramification indices and inertia degrees:

Lemma 5.19. Suppose C = {Cy; : H € P} is a (C,D)-separated P-collection
where P, C, D are as in Definition 5.9. Let I be a normal subgroup of D. Then
all the partitions in C have locally constant ramification indices and inertia degrees
with respect to (D, T).

Proof. Fix H € P, B € Cy, and B € Cjy such that WH(B) = B, where 7y is as in
Definition 5.9. Let D’ be a subgroup of D. Consider arbitrary HgD', Hg'D' € B
and lift them to Hg, Hg' € B respectively. Choose Ay, ..., hy € D' such that the
D'-orbitof Hgis { Hghy, ..., Hgh;} and the cosets H gh; are all distinct. We claim
Hg'hy, ..., Hg'hy are also distinct. Assume to the contrary that Hg'h;, = Hg'h;,
holds for distinct 1,9y € [k]. Then Hg'h;, and Hg'h,, are in the same block of
Cy. It follows by the first condition in Definition 5.9 that Hgh;, and Hgh,, are
also in the same block. But Hgh;, # Hgh;, and they are both mapped to H gD by
Ty, contradicting the second condition in Definition 5.9. This proves the claim. So
the cardinality of the D’-orbit of any Hg € H\G only depends on the block in C'y
containing H ¢gD. In particular, this holds for D’ = D and D’ = Z. The lemma then
follows from Definition 5.2. [

The following lemma provides a criterion for a (C, D)-separated P-collection to be

a strongly antisymmetric P-scheme.

Lemma 5.20. Let P be a subgroup system over a finite group G, and let C =
{Cy : H € P} be a P-scheme of double cosets with respect to D C G. Suppose
C = {C‘H : H € P} is a compatible, invariant, (C, D)-separated P-collection.
Then it is actually a P-scheme. Moreover, if C is antisymmetric (resp. strongly

antisymmetric), so is C.

Proof. For the first claim, we just need to show C is regular. Consider H, H' € P
with H C H'. Let gy : H\G — H\G/D be the map sending Hg € H\G to HgD,
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and define 7y similarly. Then the following diagram commutes.

H\G — 2" 5 g\G

D

H\G/D — ™", g\G/D

For B € Cy and B' € Cyp containing 7y g/(B), we need to show the map
Tum|p : B — B’ has the constant degree, i.e., the cardinality of ﬂ;I}H/(y) N B is
independent of y € B'. AsC is (C, D)-separated, the map 75 sends B bijectively to
7y (B) € Cy, and similarly 7y, sends B’ bijectively to wy/(B’) € Cyr. The claim

then follows from regularity of C.

Note that the conjugations also commute with the maps 7y, i.e., Tgp-1 0 cyp =
¢ppomy for He Pand h € G. Assume C is not strongly antisymmetric. Then
there exists a nontrivial permutation 7 of a block B € Cy for some H € P that
arises as a composition of maps o; : B;_1 — B;, i = 1...,k where B; is a block
of éHw H; € P, and o; is of the form cy, , 4

B, , (where h € G), my, | H,

(3

Bi_1»
or (7, m,_,|,)"" (see Definition 2.7). As the maps 7y,|p, : B; — 7y, (B;) are
bijective and commute with projections and conjugations, we see 7' := g}, 0--- 00}
is a nontrivial permutation of 7y (B) € Cp, where each map o := 7p,|p, © 0; ©

7 Bi_1> ﬂgi,l,Hi B;_1> OI (WEZ-,Hi,l Bz‘)il' SoCis

(7a,_,|B;_,) " is of the form CH b
not strongly antisymmetric. The proof of antisymmetry is the same except that we

only consider maps o; that are conjugations. [

We need to compute Z = {[x : K € F} and an Z-advice {S, 7} such that
the associated P-collection C is (C, Dq,)-separated. The following lemma states
that for P-collections arising from Definition 5.8, the first condition of (C, Dy, )-

separatedness is in fact automatic.

Lemma 5.21. Let T, {S, T}, C and C be as in Definition 5.8. Then all the partitions

in C are invariant under the action of Dq, by inverse right translation.

To prove it, we need the following observation.

Lemma 5.22. Let my be a maximal ideal of Ay, containing lgao—[{fgf). For all
x € Ay, w € Iy, and 0 € Dy, such that the image of o in Gal(kq,/Ok,) is
the Frobenius automorphism x +— x? over IF,, it holds that “x = x (mod my) and

7z = oy 4(x) (mod my).
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Proof. By bilinearity, we may assume r = a ® b where a € O /Rad(O;) and
b€ F,y;. Asw € Iy, it holds that “a = a (mod D“O/IDOL) and hence “(a ® b) =

Rad(Or)
“a®b=a®b (mod my). Similarly, we have “a = a? (mod gao—(fgf)) by definition
and hence “(a ®b) =7a®@b=a'®@b =0y f(a®Db) (mod my). O

Now we are ready to prove Lemma 5.21.

Proof of Lemma 5.21. Consider H € P and Hg, H¢' in the same block of Cy. Fix
h € Dg,. We prove Hgh™!, Hg’h™! are also in the same block by verifying the
three conditions in Definition 5.8. Let B be the block of C'yy containing both H gD,
and Hg'Dgq,. The first condition in Definition 5.8 obviously holds for Hgh~! and
Hg'h™'since Hgh™'Dgy, = HgDg, € B and Hg'h'Dy, = Hg'Dq, € B.

Let K be the field in F isomorphic to L over K. Let § be the idempotent in [
satisfying 75 (d) = 0p (see Definition 5.4). Suppose es > 1. By Definition 5.8, the

order of the unique element c in x  satisfying
-1 /—1
g 857H+[:C'(g 557H+])

is coprime to es, where I = (Qq/pO; )¢ 0)/¢s+1 We have "I = I since h € Dyq,.
Therefore

/—

hgilS(S’H 47 = hC- (hg 185,[{ —l—[),

where "¢ € /430 has the same order as ¢. So the second condition in Definition 5.8
is satisfied by Hgh~' and Hg'h™.

Now suppose f; > 1. Let my be a maximal ideal of A, ;, containing %. By

Definition 5.8, the order of the unique element c in (A, 7, /mo)* satisfying
gilt(;,H +myg=c- (glilt(;,H + mo)

is coprime to fs5. Fix 0 € Dgq, whose image in Gal(kg,/Ok,) is the Frobenius
automorphism x — 2 over F,. Choose w € Zg, and ¢ € Z such that h = wo’. By
Lemma 5.22, we have

i -1

—1 g -1 i -1 o i
(O tom) = (O tom) =0y, (0 tsm) =" (o] 4, (tsn))

=7 (. ts) =& - gilté,H (mod my),

Y tsm =

where ¢ is the primitive fsth root of unity satisfying o f, (t5) = & - t5 as in Defini-
tion 5.7. The same argument shows hg/flt(;, g=&- gHtC;, g (mod my). It follows
that

h71 hlfl
g lsg+mog=c- ( g t57H+m0).
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So the third condition in Definition 5.8 is also satisfied by Hgh~! and Hg'h™t. [

We also show that P-collections arising from Definition 5.8 always satisfy a weaken-
ing of the second condition of (C, Dq, )-separatedness, where bijectivity is replaced

by injectivity:

Lemma 5.23. Let Z, {S, T}, C and C be as in Definition 5.8. Then for H € P, the
map 7y : H\G — H\G/Dgq, sending Hg € H\G to HgDgq, maps each block of
Cy injectively to a block of Cly.

Proof. Consider H € P and g € G and h € Dy, such that Hg # Hgh™'. We want
to prove that Hg and Hgh ™! are in different blocks of Cy.

Let B be the block of C'y containing HgDg, = Hgh™'Dq,. Let K be the field in
F isomorphic to L? over K. Let § be the idempotent in I satisfying 7 (6) = dp
(see Definition 5.4). Fix o € Dg, whose image in Gal(kq,/Ok,) is the Frobenius

automorphism z — 7 over IF,.

As we assume p > deg( f), the wild inertia group Wq, C G of Qg over K is trivial.
So Iy, is a cyclic group of order e(LQy). Fix a generator w of Zy,. By Theorem 5.3
and Definition 5.2, we know e; is the smallest positive integer k satisfying H gw =% =
Hg, and f5 is the smallest positive integer k satisfying Hgo o, = HgZg,.
So there exist unique i € {0,...,fs — 1} and j € {0,...,es — 1} such that
Hgh™' = Hgo~'w™. As Hg # Hgh™', we have (i,j) # (0,0). By replacing h
with w/o? if necessary, we may assume h = w’o?.

First assume ¢ # 0. Then fs; > 1. Let my be a maximal ideal of Ay ;, containing

Qo/pO1,
Rad(Op)

. As shown in the proof of Lemma 5.21, we have
hg_lt&H = ¢t g_lt(;,H (mod my),

where ¢ is a primitive fsth root of unity. The order of % is fs5/ ged(fs,4) > 1 and is
a divisor of f5. So the third condition in Definition 5.8 is not satisfied by Hg and
Hgh™!. Tt follows that Hg and Hgh™! are in different blocks of C, as desired.

Now assume 7 = 0 and j # 0. Then es > 1. Let m, = Qo /pO;, and k = e(Qy)/es.
As shown in the proof of Lemma 5.18, we have 9_1357 g € mF —mF1 Choose

7, € m, — m2. We have a group homomorphism Zy, — Ky, sending g € Ty,

to the unique element ¢, € xJ satisfying 97 + m? = c,(7, + m?). This map is
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injective since its kernel is Wq, = {e}. In particular, we know c,, is a primitive

e(Qo)th root of unity in 3 . Choose ¢ € kg such that

1 k+1 k k+1
9 s +mg T = c(mp +m),

. . . -1 .
which exists since ¢ s and 7§ are both in m* — m**!. Then we have

_ Jj o j
ha s+ bt = s b = (k4 mb )

=c P (mh b = IE (9 s+ mb,

The order of ¢/ € k3 is e(Qqo)/ ged(e(Qo), jk) = es/ ged(es, j) > 1, which is a
divisor of es. So the second condition in Definition 5.8 is not satisfied by /g and
Hgh™!. It follows that Hg and Hgh ™! are in different blocks of Cy, as desired. [J

In the next section, we give subroutines that refine the idempotent decompositions
Ik so that C is eventually a compatible, invariant, (C, D)-separated P-collection,

and hence a strongly antisymmetric P-scheme.

5.9 Producing an ordinary P-scheme
We modify the algorithm ComputeDoubleCosetPscheme in Section 5.4 so that a

(C, Dq,)-separated strongly antisymmetric P-scheme is produced.

The pseudocode of the modified algorithm is given in Algorithm 14. Again, the
algorithm takes a (K, f )-subfield system F as the input, and outputs for every
K € F an idempotent decomposition [x of the ring Ry, together with some

auxiliary data.

The first half (Lines 1-10) of the algorithm is the preprocessing stage: we compute
the same data as in the algorithm ComputeDoubleCosetPscheme. In addition,
for K € F, we compute the inclusion F, — Oy /Rad(Ok) at Line 4, endowing
Ok /Rad(Ok) the structure of an F,-algebra.!s And for 1 < i < [K : K,
we compute the ring Ag,; = Ok /Rad(Ok) ®p, Fyi together with the inclusions
Ok /Rad(Og) — Ak, F,i — Ak, definedby a — a®land b — 1®Db

respectively.

The second half (Lines 11-24) of the algorithm refines the idempotent decompo-
sitions /i for K € F. The loop in Lines 13—-19 is the same as in the algorithm

'5To achieve this, we compute the image Y of Y + (h(Y)) € Ok, C Ok in O by Lemma 3.9.
Then compute the map F,[Y]/(h(Y)) — Ok sending Y + (h(Y)) to Y, and compose it with the
isomorphism ¢y ' : F, — F,[Y]/(h(Y")) and the quotient map O — O /Rad(Of).
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Algorithm 14 ComputeOrdinaryPscheme

Input: (K, f)-subfield system F
Output: for every K € F: the outputs of ComputeRings (see Lemma 5.7) on

the input (K, p), and an idempotent decomposition /i of Ry

1: for K € Fdo
2 call ComputeRings on (K, p)
3 Ik < {1}, where 1 denotes the unity of R
4: compute the inclusion F, — O /Rad(Of)
5 fori < 1to [K : Ky| do
6 compute Ay ; and the inclusions Ox /Rad(Ok) < Ak, Fyi — Ak
7: for (K, K') € F* do
8: call ComputeRelEmbeddings to compute all the embeddings from K to K’
over K
9: for embedding ¢ : K — K’ over K, do
10: call ComputeRingHoms on p, K, K’ and ¢ compute ¢, qE and ¢
11: repeat
12: repeat
13: repeat
14: call CompatibilityAndInvarianceTestV2
15: call RegularityTestV2
16: call StrongAntisymmetryTestV2
17: call RamificationIndexTest
18: call InertiaDegreeTest
19: until /; remains the same in the last iteration for all K € F
20: call ComputeAdviceonZ = {Ix : K € F}
21: until /; remains the same in the last iteration for all K € F
22: call SurjectivityTest
23: call RingHomTest

24: until /i remains the same in the last iteration for all X € F

25: return the outputs of ComputeRings on the input (K, p) and I for K € F
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ComputeDoubleCosetPscheme. It produces idempotent decompositions [y that
define a strongly antisymmetric P-scheme of double cosets C = {Cy : H € P}
with respect to Dy, in which all the partitions have locally constant ramification
indices and inertia degrees (with respect to (Dyq,,Zq,)). After that, we call the
subroutine ComputeAdvice in Lemma 5.17 on Z = {Ix : K € F} at Line 20. It
either properly refines some /i or returns an Z-advice. In the former case, we start

over from Line 13.

So assume an Z-advice {S, T} is returned at Line 20. Let C = {C; : H € P} be
the P-collection associated with 7 and {S, 7 }. Next we need two new subroutines,

SurjectivityTest and RingHomTest:

Lemma 5.24. Under GRH, there exists a subroutine SurjectivityTest that up-
dates I in time polynomial in log p and the size of F so that the partitions Cy € C
are refined. Moreover, at least one partition C'y is properly refined unless for all
H € P, the map my : H\G — H\G/Dgq, sending Hg € H\G to HgDq, maps
each block of Cu surjectively to a block of C.

Lemma 5.25. Under GRH, there exists a subroutine RingHomTest that updates
I in time polynomial in logp and the size of F so that the partitions Cy € C
are refined. Moreover, at least one partition Cy is properly refined unless C is

compatible and invariant.

The proofs of the above two lemmas are the most technical part of this chapter. We

defer them to Appendix C.

We run these two subroutines and repeat, until no idempotent decomposition [ is
properly refined in the last iteration. By Lemma 5.21, Lemma 5.23, Lemma 5.24,
and Lemma 5.25, the resulting P-collection Cisa compatible, invariant, (C, Dgq, )-
separated P-collection. Also note that C is a strongly antisymmetric P-scheme of
double cosets with respect to Dg,. It follows from Lemma 5.20 that C is a strongly

antisymmetric (C, Dyq, )-separated P-scheme. We conclude

Theorem 5.8. Under GRH, the algorithm ComputeOrdinaryPscheme runs in time
polynomial in logp and the size of F, and when it terminates, C is a strongly
antisymmetric P-scheme of double cosets (with respect to Dg, ), and Cisa (C,Dq,)-

separated strongly antisymmetric P-scheme.
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5.10 Putting it together

We combine the results in previous sections to obtain the generalized P-scheme
algorithm. For simplicity, we first focus on computing the complete factorization
of the input polynomial f. The problem of computing a proper factorization of f is

discussed later in this section.

The algorithm takes a polynomial f(X) € F,[X] and an irreducible lifted polyno-
mial f(X) € Ao[X] as the input, and outputs the complete factorization of f. Its

pseudocode is given in Algorithm 15 below.

Algorithm 15 GeneralizedPschemeAlgorithm
Input: f(X) € F,[X] and its irreducible lifted polynomial f(X) € Ay[X]
Output: factorization of f

1: if p < deg(f) then run Berlekamp’s algorithm in [Ber70] to compute the

complete factorization of f, output it and halt

2: call ComputeRelNumberFields to compute a (K, f)-subfield system F such
that (1) F = Ko[X]/(f(X)) € F, and (2) for some H € P satisfying L7 2,
F, all strongly antisymmetric P-schemes are discrete on H, where P is the
subgroup system over G' = Gal(f/K,) associated with F

3: call ComputeOrdinaryPscheme on F to obtain /i for K € F

4: call ExtractFactorsV2 to extract a factorization of f from [/, and output it

Line 1 checks whether p > deg(f) holds. If p < deg(f), we just run Berlekamp’s
algorithm in [Ber70] to compute the complete factorization of f in time polynomial
in p and deg( f), output it, and halt. This step justifies the assumption p > deg( f)

made in Section 5.7-5.9.

The subroutine ComputeRelNumberFields at Line 2 is the generic part of the
algorithm. It is supposed to compute a (K, f )-subfield system F such that ' € F,
and the associated subgroup system P over (i satisfies a certain combinatorial
property (see Theorem 5.9 below). The algorithm ComputeOrdinaryPscheme (see
Section 5.4) at Line 3 takes the input F and outputs data that includes the idempotent
decomposition I of Rr. Finally, we call the subroutine ExtractFactorsV2 (see

Section 5.3) at Line 4 to extract a factorization of f from /.

The following theorem is the main result of this chapter.

Theorem 5.9. Suppose there exists a deterministic algorithm that given a polynomial
9(X) € Ko|X] irreducible over K, constructs a (Ko, g)-subfield system F in time
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T(g) such that

o Ky[X]/(g(X))isinF, and

o for some H € P satisfying (L(9))" =k, Ko[X]/(9(X)), all strongly anti-
symmetric P-schemes are discrete on H, where P is the subgroup system over
Gal(g/ Ky) associated with F, and L(g) is the splitting field of g over K.

Then under GRH, there exists a deterministic algorithm that given a polynomial
f(X) € F,[X] and an irreducible lifted polynomial f(X) € Ao[X] of f, outputs

the complete factorization of f over F, in time polynomial in T'(f) and the size of

the input.

Proof. Consider the algorithm GeneralizedPschemeAlgorithmabove and imple-
ment the subroutine ComputeRelNumberFields using the hypothetical algorithm
in the theorem. The case p < deg( f) is solved by Berlekamp’s algorithm in [Ber70].
So assume p > deg(f). Choose g = f. By Theorem 5.8, the P-collection C =
{Cy : H € P} defined by Cy = P(7y(Ik)) is a strongly antisymmetric P-scheme
of double cosets with respect to Dy, and the P-collection C = {Cy : H € P} as-
sociated with the collection of idempotent decompositions Z = {Iyx : K € F} and
the Z-advice produced by the algorithm ComputeOrdinaryPscheme is a (C, Dy, )-
separated strongly antisymmetric P-scheme. By the second condition in the the-
orem, we have Cy = 00 mc (and hence Oy = ooH\G/DQO) for some H € P

satisfying L =, F. So the idempotent decomposition I is complete. By

Theorem 5.6, the algorithm outputs the complete factorization of f over F,.

The subroutine ComputeRelNumberFields runs in time 7'(f). In particular, the

size of F is bounded by T°(f). The claim about the running time then follows from
Theorem 5.8 and Theorem 5.6. [

By Theorem 5.9 and Lemma 4.10, we have the following partial generalization of
Corollary 3.2.

Corollary 5.2. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X] of degree n € N and an irreducible 16 lifted polynomial
f(X) e Ao[X] of f, computes the complete factorization of f over F, in time

19The assumption that f is irreducible is not necessary, and can be avoided by adapting
Lemma 4.10. We omit the details.
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polynomial in n™%) and the size of the input, where G is the permutation group

Gal(f/Ky) acting on the set of roots of f.

The unifying framework via the generalized P-scheme algorithm. In the fol-
lowing, we use Theorem 5.9 and Corollary 5.2 to derive generalizations of the main
results in [Hua91a; Hua91b; Ron88; R6n92; Evd92; Evd94; IKS09] in a uniform

way.

Given a polynomial f(X) € F,[X] and a (possibly reducible) lifted polynomial
f(X) € Ag[X] of f. We reduce to the case that the lifted polynomial is irreducible
as follows: using Lemma 5.1, we compute an integer D satisfying D = 1 (mod p)
and a factorization of D - f into irreducible factors fl, cee fk € Ao[X] over K.

Then we have i
£) = T do(£) ()

and the problem of factoring f(X) is reduced to the problem of factoring each
Uo(fi) € F,[X] with the aid of its irreducible lifted polynomial f;(X) (see the dis-
cussion after Lemma 5.1). Moreover, for i € [k], the Galois group Gal(f;(X)/Ko)
is a quotient group of Gal(f/K;), and hence |Gal(f;(X)/Ko)| < |Gal(f(X)/Ky)|.

So assume f is irreducible over K,. We choose F = {F,L} where ' =
Ko[X]/(f(X)) and L is the splitting field of f over K,. Compute F in time
polynomial in [L : Ky] = Gal(f(X)/Kj,) and the size of f using Lemma 4.9. By
Lemma 2.4, all antisymmetric P-schemes are discrete on H for all H € P since the
trivial subgroup {e} is in P. Therefore by Theorem 5.9 and the reduction above,

we have the following generalization of Theorem 3.10.

Theorem 5.10. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X] and a lifted polynomial f(X) € Ay[X] of f, computes
the complete factorization of f over F, in time polynomial in |Gal(f/K,)| and the
size of the input.

Note |Gal(f/Q)| < deg(f) when Gal(f/Q) is abelian. So we have the following

generalization of Corollary 3.3.

Corollary 5.3. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X] and a lifted polynomial f(X) € Ao[X] of f such
that Gal(f/K,) is abelian, computes the complete factorization of f over F, in

polynomial time.
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Suppose only the polynomial f is known. Let n = deg(f). We can efficiently
compute a lifted polynomial f (X) € Ap[X] of f whose size is polynomial in n and
log ¢.!7 Reduce to the case that f is irreducible over K as above. As Gal(f(X)/K)

is a subgroup of Sym(n), we have the following generalization of Theorem 3.11.

Theorem 5.11. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X]| of degree n € N*, computes the complete factorization

of f in time polynomial in n! and log q.

Now suppose we lift f to f , reduce to the case that f is irreducible over K, but
compute F using Lemma 4.10 instead. By Corollary 5.2 and Lemma 2.6, we have

the following generalization of Theorem 3.12.

Theorem 5.12. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X]| of degree n € N*, computes the complete factorization

logn

of f over F in time polynomial in n'°*®™ and log q.

We also have the following theorem that generalizes Theorem 4.3 and the main result
of [Evd92]. The proof is the same as that of Theorem 4.3, except that Theorem 5.9
is used instead of Theorem 3.9, and the base field Q is replaced by K.

Theorem 5.13. Under GRH, there exists a deterministic polynomial-time algorithm
that, given a polynomial f(X) € F,[X] and a lifted polynomial f(X) € Ao[X] of
f whose Galois group Gal( f /Ky) is solvable, computes the complete factorization
of f over I,

Computing a proper factorization of f. Unlike the special case considered in
Chapter 3, replacing discreteness by inhomogeneity in the second condition of The-
orem 5.9 does not automatically yield an algorithm computing a proper factorization
of f. The reason is that even if a (C, Dy, )-separated P-scheme C is inhomogeneous
on a subgroup H € P, the corresponding P-scheme of double cosets C may still be
homogeneous on H. In fact, this is always the case when H\G/Dgq, is a singleton,

or equivalently, when Dy, acts transitively on H\G by inverse right translation.

Still, by adapting the condition, we obtain some results on computing a proper

factorization of f:

"We also need to choose h(Y) € Z[Y], h(Y) = h(Y)modp € F,[Y] and 1y :

F,[Y]/(h(Y)) — F, first, so that Ay = Z[Y]/(h(Y)), Ko = Q[Y]/(h(Y)) and the notion of
lifted polynomials are defined. The isomorphism 1)y can be efficiently computed by [Len91].
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e We formulate a new condition on P-schemes and use it to obtain algorithms

computing one irreducible factor of f. See Theorem 5.14 and Corollary 5.4.

e We formulate conditions on P that involve not only ordinary P-schemes
but also P-schemes of double cosets, and these conditions can be used for
computing the complete factorization as well as a proper factorization. See
Theorem 5.14.

e Finally, we prove a generalization of Lemma 2.18 for P-schemes of double
cosets, and use it to prove a generalization of Theorem 3.13. See Theo-
rem 5.15.

First, we introduce the following definition.

Definition 5.10. For a P-scheme (resp. P-scheme of double cosets) C = {Cy :
H € P} and H € P, we say C has a singleton on H if the partition Cy; has a block

that is a singleton.

The following theorem is a variant of Theorem 5.9 with weakened conditions on the
subgroup system P.

Theorem 5.14. Suppose there exists a deterministic algorithm that, given a polyno-
mial g(X) € Ko|X] irreducible over K, constructs a (Ko, g)-subfield system F in
time T'(g) such that

o Ky[X]/(9(X))isinF, and

o for some H € P satisfying (L(g))" 2, Ko[X]/(9(X)), all strongly anti-
symmetric ‘P-schemes of double cosets C with respect to Dy, that admit a
(C, Dq, )-separated strongly antisymmetric P-scheme are discrete (resp. are
inhomogeneous, have a singleton) on H,'8 where P is the subgroup system
over Gal(g/Ky) associated with F, and L(g) is the splitting field of g over
K.

Then under GRH, there exists a deterministic algorithm that, given a polynomial
f(X) € F,[X] and an irreducible lifted polynomial f(X) € Ao[X] of f, outputs
the complete factorization (resp. a proper factorization, an irreducible factor) of f

over IF, in time polynomial in T'( f) and the size of the input.

18Here Dy, is the decomposition group of a fixed prime ideal Qg of O L(g) lying over p. Different

choices of Qg lead to conjugate subgroups and hence do not matter.
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Proof. The proof is the almost same as that of Theorem 5.9. The second condition
in the theorem are used to show C'y = 00Dy, (resp. C'y # ODDO , C'y has a singleton)
for some H € P satisfying L7 =, Ko[X]/(f(X)), and hence the corresponding
idempotent decomposition is complete (resp. is proper, has a singleton). Then apply
Theorem 5.6. The details are left to the reader. ]

Observe that if a P-scheme of double cosets C has a singleton on H, then a (C, Dq, )-
separated P-scheme also has a singleton on /. So we have the following corollary,

which is an analogue of Theorem 5.9.

Corollary 5.4. Suppose there exists a deterministic algorithm that, given a polyno-
mial g(X) € Ko|X] irreducible over K, constructs a (K, g)-subfield system F in
time T'(g) such that

o Ko[X]/(9(X))isinF, and

o for some H € P satisfying (L(9))" =k, Ko[X]/(9(X)), all strongly anti-
symmetric P-schemes have a singleton on H, where ‘P is the subgroup system

over Gal(g/ Ky) associated with F and L(g) is the splitting field of g over K.

Then under GRH, there exists a deterministic algorithm that, given a polynomial
f(X) € F,[X] and an irreducible lifted polynomial f(X) € Ao[X] of f, outputs an

irreducible factor of f over F in time polynomial in T ( f) and the size of the input.

Finally, we give a generalization of Theorem 3.13:

Theorem 5.15. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X] of degree n € NT that has k > 1 irreducible factors
over IF, computes a proper factorization of f in time polynomial in n’ and log q,

where ( is the least prime factor of k.

To prove Theorem 5.15, we need the following generalization of Lemma 2.18, whose

proof is deferred to Appendix C.

Lemma 5.26. Let G be a finite group acting transitively on a set S. Let D be a
subgroup of G and let k be the number of D-orbits in S. Suppose k > 1. Let { € N*
be the least prime factor of k. Let P = P,, be the system of stabilizers of depth m
for some m > { (with respect to the action of G on S). Then for any x € S and any
P-scheme of double cosets C with respect to D that is homogeneous on G, there

exists no antisymmetric (C, D)-separated P-scheme.
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Proof of Theorem 5.15. We may assume the irreducible factors of f over I, are all
distinct and have the same degree d, since otherwise a proper factorization of f can be
found by square-free factorization [Yun76; Knu98] or distinct-degree factorization
[CZ81]. Compute d as the smallest positive integer for which the automorphism
x — 24" fixes F,[X]/(f(X)). Then compute k = n/d and ¢.

As in the proof of Theorem 5.11, we choose a lifted polynomial f € Ay[X] of f
whose size is polynomial in n and log ¢, and reduce to the case that f is irreducible
over K. Use Lemma 4.10 to compute F so that the associated subgroup system P
is the system of stabilizers of depth ¢ with respect to the action of Gal(f/K) on
the set of roots of f in L. This step takes time polynomial in ¢(’P) and the size of 1.
which is polynomial in n‘ and log . The theorem then follows from Theorem 5.14
and Lemma 5.26. [

Remark. We may also derive Theorem 5.15 from Theorem 3.13 by reducing to the
case that f satisfies Condition 3.1: by square-free factorization, we may assume f
is square-free. Compute the subring R of F,[X]/(f(X)) fixed by the Frobenius
automorphism z — z? over IF,,. Then find an element z € R such that the minimal
polynomial g of z over [, is a degree-k polynomial satisfying Condition 3.1. Such
an element z exists if p > k. Then reduce to the problem of computing a proper

factorization of g over IF,. We leave the details to the reader.
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Chapter 6

CONSTRUCTING NEW P-SCHEMES FROM OLD ONES

In the previous chapters, we developed a framework for polynomial factoring whose
correctness relies on combinatorial properties of P-schemes. Motivated by it, we
continue our study on P-schemes in this chapter and also in subsequent chapters.
Techniques introduced in this chapter have a common theme, namely constructing

new P-schemes from old ones. Such techniques include

e Inverse right translation on the set of P-schemes.

e Restriction of P-schemes to a subgroup, and its analogue for m-schemes.

e Passing to quotient groups.

e Induction of P-schemes.

e Extension of P-schemes to the closure of P.

e Restriction of m-schemes to a subset, and its generalization for P-schemes.
e Constructing primitive m-schemes from a general one.

e Direct products and wreath products.

The first three of them are introduced in Section 6.1. We use them to prove

Lemma 4.12, as promised in Chapter 4.

In Section 6.2, we discuss the induction of P-schemes. For G’ C G and a subgroup
system P over G, this operation produces a P-scheme from a P’-scheme, where
P’ is a certain subgroup system over GG'. We apply this operation in Section 6.3 to
establish reductions among a family of conjectures concerning P-schemes, whose
resolution would imply that polynomial factoring over finite fields can be solved in
deterministic polynomial time under GRH if an irreducible lifted polynomial with
a special Galois group is given. See below for a more detailed discussion on these

conjectures.

The rest of the above list is discussed in Section 6.4-6.7. In particular, we discuss

primitivity of homogeneous m-schemes in Section 6.6. By exploiting the connection
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between homogeneous primitive orbit m-schemes and primitive permutation groups,
we prove that for m > 3, every antisymmetric homogeneous orbit m-scheme on a
finite set S where |S| > 1 has a matching. Previously this was known for m > 4, as
proved in [IKS09].

Schemes conjectures. The work [IKS09] proposed a conjecture on m-schemes

called the schemes conjecture.

Conjecture (schemes conjecture). There exists a constant m € N such that every
antisymmetric homogeneous m-scheme on a finite set S where |S| > 1 has a

matching.

Assuming this conjecture (and GRH), polynomial factorization over finite fields can
be solved in deterministic polynomial time, as shown in [IKS09]. We reprove this

result in Section 6.3 using a P-scheme algorithm.

For each family G of finite permutation groups, we also formulate an analogous
conjecture, called the schemes conjecture for G, in terms of the notation d(G)

introduced in Definition 2.8.

Conjecture (schemes conjecture for G). There exists a constant m € N7 such that
d(G) <mforall G € G.

We show that assuming this conjecture (and GRH), a polynomial f over finite fields
can be factorized in deterministic polynomial time if we are also given an irreducible
lifted polynomial f of f whose Galois group is in G (as a permutation group on the
set of roots of f ).

Using induction of P-schemes, we establish reductions among these conjectures for
various families G, so that the schemes conjecture for G reduces to that for G’ if the
permutation groups in G are “less complex” than those in G’. In particular, all these
conjectures reduce to the one for the family of symmetric groups, and the latter turns
out to be equivalent to (a slight relaxation of) the original schemes conjecture. In
summary, the scheme conjectures for various families of finite permutation groups

form a hierarchy of relaxations of the original schemes conjecture.

Therefore, in order to prove the original schemes conjecture, it is necessary to prove
our analogous conjectures for families of less complex permutation groups. On the

other hand, one may hope that progress on the latter would shed some light on the
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original conjecture. We will follow this approach in subsequent chapters and prove

some nontrivial results.

6.1 Basic operations on P-schemes
In this section, we introduce some basic operations on P-schemes, including inverse
right translation, restriction, and passing to quotient groups. We then use them to

prove Lemma 4.12.

Inverse right translation of P-schemes. Let P be a subgroup system over a finite
group GG. For each H € P, the group G acts on H\G by inverse right translation
9Hh = Hhg™!. This action induces an action of G on the set of partitions of H\G,
defined by /P = {B : B € P} for a partition P of H\G. Then G also acts on the

set of P-collections by inverse right translation:

Definition 6.1. The action of G on the set of P-collections by inverse right transla-
tion is defined as follows: for a P-collectionC = {Cy : H € P} and g € G, define
IC={Cy : H € P}.

Lemma 6.1. For a P-scheme C and g € G, the P-collection ?C is also a P-scheme.

Moreover, if C is antisymmetric (resp. strongly antisymmetric), so is ?C.

Proof. This follows in a straightforward manner from G-equivariance of projections

and conjugations (see Lemma 2.2). [

So G also acts on the set of P-schemes by inverse right translation, which preserves

antisymmetry and strong antisymmetry.

Restriction to a subgroup. We define the restriction of a subgroup system P over

G and that of P-collections to a subgroup of G.

Definition 6.2 (restriction). Let P be a subgroup system over a finite group G. For
a subgroup G’ of G, define

P|G’ = {HGPIHEG,},

which is a subgroup system over G, called the restriction of P to G'.

LetC = {Cy : H € P} be a P-collection. For H € P|q, regard H\G' as a subset
of H\G in the obvious way. Then the partition Cy of H\G restricts to a partition
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of H\G', denoted by Cy|¢r. Define

C‘Gl = {CHle H e ’P‘Gl}

which is a P|g/-collection, called the restriction of C to G'.

Next we show that when C is P-scheme, its restriction C|g to a subgroup G’ is a
P|c/-scheme. Moreover, antisymmetry and strong antisymmetry are preserved by

restriction.

Lemma 6.2. Let P be a subgroup system over a finite group G. For a subgroup
G’ of G and a P-scheme C, the restriction C|c is a P|¢-scheme. Moreover, if C is

antisymmetric (resp. strongly antisymmetric), so is C|c.

Proof. We have projections 7y 5+ and conjugations cy, defined between coset
spaces H\G for various subgroups H C (. And we also have projections and
conjugations between coset spaces H\G' for H C G'. We use 7}, ;v and ¢y, for

the latter maps to distinguish them from the former.

For each H € P|¢, we have a projection 7y v : H\G — G'\G. This allows us to

partition H\G into “fibers” of 7y ¢, i.e., preimages of elements in G'\G:

yeG\G
We say © € H\G is in the y-fiber if 7y /() = y, and y is called the index of .
Note that the subset H\G' C H\G is precisely the y-fiber with y = G'e € G'\G.

Consider H, H' € P|c and amap 7 : H\G — H'\G that is either a projection
T, OF a conjugation ¢y , for some g € G’ satisfying H' = gHg™'. We claim
THG = TH G O T, i.e., the map 7 preserves the indices of elements. This can be
checked directly: for Hh € H\G, we have my /(Hh) = G'h. f 7 = 7y, We
have 7y ¢ o T(Hh) = gy v (H'h) = G’'h. And if T = ¢y, with g € G', we have
T o T(Hh) = mp o (H'gh) = G'gh = G'h. So the claim holds.

This means the map 7 is also fibered over G'\ GG such that its “y-fiber” 7, := 7| _—1 W)
H,G'

maps the y-fiber of H\G to the y-fiber of H'\G. Setting y = G’e gives us the map

7, : H\G" — H'\G" that is either the projection 7}, ., or the conjugation ¢} .

From this observation it is easy to see that compatibility, invariance, or regularity

of C|¢ follows from the corresponding property of C: fix y = G’e. Assume to the
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contrary that C|s/ does not satisfy compatibility. Then some projection 7, = Ty b
maps two elements in the same block of C'yr|¢ into different blocks of C'y|¢r. But
then 7 = 7y i+ also maps these two elements that are in the same block of C'y into
different blocks of C'y/, contradicting compatibility of C. Invariance is proved in the
same way except that we consider conjugations instead of projections. For regularity,
note that for each projection 7y, 5, : H\G" — H'\G" and blocks B € Cyle, B’ €
C/|er, we have B = BN (H\G'), B' = B' N (H\G') where B € Cy, B' € Cyyp.
And for z € B’ we have 71';}{,(2) NB= W;I}H,(z) NBN(H\G) = W;I}H/(Z) N B.
Regularity of C|s then follows from regularity of C.

Now assume C| is not antisymmetric. Then for some H € Pl and g € N (H),
the map cf; , restricts to a nontrivial permutation of some block B € Cp|gr. Then
we have g € N¢(H) and ¢y , restricts to a nontrivial permutation of B, where B is
the block of Cy satisfying B N (H\G') = B. So C is not antisymmetric.

Finally, assume C|¢ is not strongly antisymmetric. Then there exists a nontrivial
permutation 7 of a block B € Cy | for some subgroup H € P|s such that 7 is

a composition of maps o; : B,y — B;, 7 = 1...,k, where each B; is a block of

Cu,ler, Hi € Pler, and 0; is of the form ¢, | |,_, (where g € G'), 7y, | w.|B._ ;>
or (1 1, |B,)~" (see Definition 2.7). Each block B; is of the form B; N (H;\G")
for some B; € Cp,. In the case that o; is of the form (7 ;. |
m () N Bi| = |mgl g (2) N By| = 1forall 2 € B;_y. So 7wy, m, ,

well defined. Then 7 = 7|p for the nontrivial permutation 7 = oy, - - - 0 oy of the

B,) "', we know

B; is

block B = B, € Cy, where each map ¢; is of the form cy, , 4 B, s TH 1 H|B,

or (g, 1, ,|5,) " SoC is not strongly antisymmetric. O

Next we describe the analogue of Definition 6.2 for m-schemes.

Definition 6.3. Ler II = {Py,..., P,,} be an m-scheme on a finite set S. For
(z1,..., 1) € S®) where k < m, define the (m — k)-collection

H‘m,.-.,xk- = {PI/’ s 7PT/n—k}

onthe set S — {xy,... 11}, where P/ is the partition of S such that two elements
(y1,...,4), (W, ... ) are in the same block of SV iff (x1,. .., Tk, Y1, ..., y;) and
(z1,..., %y}, ..., y,) are in the same block of ST+,

We also have the analogue of Lemma 6.2 for m-schemes.
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77777

.....

The proof is straightforward by definition. Indeed, if we view 1I as a P-scheme via
Definition 2.12 and Definition 2.13, where P is the system of stabilizers of depth m

with respect to the natural action of G = Sym(S) on S. Then Il|,, ., is simply

.....

the restriction of this P-scheme to the subgroup G, ., . We leave the details to

.....

the reader.

Passing to quotient groups. Let G be a finite group and let /NV be a normal in G.
Write G for G'/N and ¢ for the quotient map G' — G.

For a subgroup H C G, the group G acts on H\G by inverse right translation
(through its quotient group ). The stabilizer of He € H\G is ¢~ *(H). So by
Lemma 2.1, we have an equivalence between the action of G on H\G and that on
¢~1(H)\G, given by the bijection Ay, : H\G — ¢ }(H)\G sending Heé(g) to
¢ Y (H)g for g € G.

Let P be a subgroup system over G. Define P = {¢~'(H) : H € P}, which is a
subgroup system over G. By identifying H\G with ¢—1(H)\G via Ay, for H € P,
we see that a P-scheme over G is equivalent to a P-scheme over G. This is made

formal by the following lemma.

Lemma 6.4. Let P and P be as above. For a P-collection C = {Cy : H € P},
define the P-collection C' = {Cl1(sy - H € P} by choosing

C:j)*l(H) = {)\He<B) - B c CH}

Then C — C' is a one-to-one correspondence between P-schemes over G and P-
schemes over G. Moreover, C is antisymmetric (resp. strongly antisymmetric) iff
C' is antisymmetric (resp. strongly antisymmetric). And C is homogeneous (resp.

discrete) on a subgroup H € P iff C' is homogeneous (resp. discrete) on ¢~ (H).

Proof. We check that the maps Ay, commute with conjugations and projections:
write gy and cpy 4 for conjugations and projections between coset spaces of G

and write 7 ;, and ¢ , for those between coset spaces of G. Then we always have

)‘H’e O 7TH,H’ = W;b_l(H),(b_l(H/) o AH@
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for H,H' € P, H C H', and

>\H’e O CH ¢(g) = C;,1(H)’g o) )\He'
for HHH € P,g e G, H = ¢(9)Hp(g)~'. Also note that the maps A, are

bijections. The lemma then follows easily by definition. [

We conclude this section by proving Lemma 4.12 using the results developed above.

First we prove the following lemma.

Lemma 6.5. Let k € N and G, C Gj_1 C --- C Gy C Gy be a chain of finite
groups. Let P be a subgroup system over G. We have:

1. If for all i € [k|, all strongly antisymmetric P|q,_,-schemes are discrete on

G, then all strongly antisymmetric 'P-schemes are discrete on G|,

2. Iffor some i € [k, all strongly antisymmetric P|g,_,-schemes are inhomoge-
neous on (;, then all strongly antisymmetric P-schemes are inhomogeneous

on Gy,
The same holds if strong antisymmetry is replaced by antisymmetry.

Proof. Assume that there exists a strongly antisymmetric P-scheme C = {Cy :
H € P} that is not discrete on Gy. Then there exist two different elements
z,x" € GE\G lying in the same block of Cg,. Pick the greatest integer i € [k]
satisfying ¢, ¢, ,(z) = mg,.¢, . (2'). Suchiexists as 7¢, ¢, (v) = 7a,.q,(2). Let
Yy = mg,.¢(x) and ¥ = g, ¢, (2'). Then (1) y # y' by maximality of 7 and the
fact that x # 2/, (2) y, v’ are in the same block of C;, by compatibility of C and the
fact that =, 2 are in the same block of C¢;, , and (3) 7, ¢, , (V) = 76, , (y') since

TG;,Gi1 (y) = TGy,Gi—1 (JZ) and TG;,Gi—1 (y/) = TGy,Gi—a (l‘l)

Suppose 7¢;.¢._, (V) = 76,.6., (¥) = Gi—1g. By replacing C with C (with respect
to the action of GG on the set of P-schemes by inverse right translation) and
applying Lemma 6.1, we may assume G;_1g = G;,_1e. Then we can write y = G;h
and y' = G;I/ for some h,h' € G,_;. By Lemma 6.2, the restriction C|g, , =
{Cu
in the same block of C¢,, they are also in the same block of Cg,|¢,_,. Asy # v/,

G, - H € Plg,_,} is a strongly antisymmetric P|q,_,-scheme. As y,y’ are

we know C|g,_, is not discrete on G;. This proves the first claim of the lemma.
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For the second claim, assume to the contrary that it does not hold. Choose i € [k]
such all strongly antisymmetric P|g, ,-schemes are inhomogeneous on G;. Let
C = {Cyg : H € P} be a strongly antisymmetric P-scheme that is homogeneous
on GGy. By compatibility, we know C is homogeneous on G;. Then C|g,_, is
also homogeneous on G;. It is also strongly antisymmetric by Lemma 6.2, which

contradicts the assumption.

The proof for antisymmetry is the same. ]

Now we are ready to prove Lemma 4.12. For convenience, we restate the lemma.

Lemma 6.6. Let k € Nt and G;, C Gj_; C --- C Gy C Gq be a chain of
finite groups. For i € [k|, let N; be a subgroup of G; that is normal in G;_1,
7« Gi_1 — Gi_1/N; be the corresponding quotient map, and P; be a subgroup
system over G;_1 /N, that contains G;/N;. Define

P={gr; ' (H)g':1<i<kHEP;,g¢c Gy},
which is a subgroup system over G and contains 7, ' (G;/N;) = G, for all i € [k].

Then we have

1. Ifforalli € [k, all strongly antisymmetric P;-schemes are discrete on G;/N;,

then all strongly antisymmetric P-schemes are discrete on Gy.

2. Iffor somei € [k|, all strongly antisymmetric P;-schemes are inhomogeneous

on G;/N;, then all strongly antisymmetric P-schemes are inhomogeneous on
Gk.

The same holds if strong antisymmetry is replaced by antisymmetry.

Proof. Fix i € [k]. By Lemma 6.4 and the definition of P, if all strongly antisym-

metric P;-schemes are discrete (resp. inhomogeneous) on (;/N;, then all strongly

antisymmetric P|q,_,-schemes are discrete (resp. inhomogeneous) on G;. The
same holds if strong antisymmetry is replaced by antisymmetry. The lemma now

follows from Lemma 6.5. ]

6.2 Induction of P-schemes

Let G be a finite group and let G’ be a subgroup of GG. Let P be a subgroup system
over GG and let
P ={G'NngHg ' :HeP,gc G},
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which is a subgroup system over GG’. In this section, we show that every P’-scheme
induces a P-scheme in a way that preserves antisymmetry and strong antisymmetry.

To achieve it, we need the following lemma.

Lemma 6.7. Given gy, ...,gx € G such that {g;’",..., g, '} is a complete set of

representatives of H\G/G', there exists a bijection

k
¢: [[(¢' ngHg ' N\G — H\G

i=1

defined as follows: For g € G, define the map
brg: (G'NgHg \G — H\G

sending (G'NgHg ')hto Hg 'h for h € G'. The maps ¢y , are well defined. For
i € [k], the restriction of ¢ to (G' N g;Hg; ")\G' is ¢m.,-

Proof. Consider the action of G’ on H\ G by inverse right translation. Fori € [k], let
O; = {Hg;'g~' : g € G’} be the G'-orbits of Hg; ' € H\G. Then {O,..., 04}
is the partition of H\G into the G’-orbits, i.e., H\G = [[*_, O;. Fix i € [k]. The
stabilizer of Hg; VisG'ng;H 9; !. So by Lemma 2.1, we have an equivalence of
actions of G/

Aprg1 2 O3 = (G Ng:Hg; )\G'

sending"(Hg; ") = Hg'h~' to (G' N g;Hg; " )h =" for h € G'. The inverse of this
map is exactly ¢ g,. As we are allowed to choose g; to be any g € G, all the maps
®u,q are well defined. O

For each H € P, the subgroups G'NgHg ! arein P’ forall g € G. By Lemma 6.7,
we can combine partitions of G’ N g;Hg; '\G’, i = 1,...,k, into a partition of
H\G. This leads to the following definition.

Definition 6.4 (induction). Let G, G', P and P’ be as above. Let C' = {C}; : H €
P’} be a P'-scheme. For H € P, choose g1, ..., g, € G such that {g;',...,g;"}
is a complete set of representatives of H\G /G'. Define the partition Cy of H\G by

Chy = {¢H,gi(B) i€ [k],B € Cév"ﬂgngi_l} ’

where the maps ¢g 4, are as in Lemma 6.7, i.e., each ¢p 4, sends (G' N giHg; ' )h
to Hg;'h for h € G'. Define the P-collection C = {Cy : H € P}, called the
induction of C' to P.
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The P-collection C constructed as above is indeed a P-scheme:

Theorem 6.1. The P-collection C in Definition 6.4 is a well defined P-scheme, which
does not depend on the choices of the elements g;. Moreover, if C' is antisymmetric

(resp. strongly antisymmetric), so is C.

Proof. Fix H € P. It follows from Lemma 6.7 that C'y is indeed a partition of
H\G. We need to show that C'y is independent of the choices of the elements
gi,- -, gk Soconsider gi,..., g, € G suchthat {g;™",... g, '} is a complete set

of representatives of H\G /G’ as well. We want to show

Cy = {¢H7gg(3) ic[k,Be c&,mggwl} .

As the right hand side is also a partition of H\G, it suffices to show that ¢,/ (B) €
Cy fori € [k] and B € C&,mg,ﬂg(,l. Fix ¢ and B. Choose j € [k] such that

Hg;'G' = Hg;'G’'. And choose g € G’ such that Hg;' = Hg} 'g~'. We have

the conjugation
. Gl /H /—1 G/ G/ H —1 Gl
Ce'ngiHg, Y\ (G'NgiHg  )\G — (G'Ny; 9; N

sending (G’ N g/ Hg,")h to (G' N nggj_l)gh for h € G'. By invariance of C’, the

(2

. / .
set cG,mggnglvg(B) is a block of OG/mnggj*l' So ¢pg, © cG,mggnglvg(B) is a block

of C'y. We claim
¢H79j © CG’ﬁggHgfl,g = ¢H7927

which holds since

Pt g © Corngng 1y (G' N gHGTh) = ¢y, ((G' N gjHg; " )gh) = Hg; ' gh
= Hg"'h = ¢nq((G'NgiHg")h)
for b € G'. Tt follows that ¢, (B) € Ch, as desired. So Cy does not depend on

the choices of g1, . . ., gs.

Next we prove that C is a P-scheme. To prove compatibility, consider H, H' € P
satisfying H C H'. For g € G, the following diagram commutes:

(/N gHg NG — T (G0 gH ™ \C

¢H,gl l(bH/,g

Tl H

H\G » H\G.
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For B € Cpy, we want to show that 7 ;/(B) is contained in a block of C'yyr. Choose
ge Gand B € Clurgrg—1 such that B = ¢14(B). Such g and B exist by the
definition of C'y and the fact that this definition does not depend on the choices of

g1, - - -, g (in particular we may choose g; = g). Then

WH,H/(B) = TH,H' © ¢H,g(l§) = ¢H’,g(y) o 7rG'mgHgfl,G'mgH'gfl(B)-

Here mgingrg—1 crngr g1 (B) is contained in a block of Cémg 1rg-1 DY compatibility
of C’, and hence 7y p/(B) is contained in a block of Cpy. It follows that C is

compatible.

For regularity, consider H, H' as above and B € Cy. Choose B’ € C'y: containing
mo.m (B). We claim that 7y /| : B — B’ has constant degree, i.e., the number of
preimages | (7. 1| 5) " (y)| is independent of the choices of y € B’. Choose g € G
and B € Clungrig—1 such that B = O14(B). Let B' = mangrg1.cingtirg-1(B).
Then B’ = ¢y 4(B'). By regularity of C’, the map mgingmg—1.cingrrg-tl : B — B’
has constant degree. The claim follows by noting that ¢ 4|5 - B — B and
Gwglp B — B’ are bijective. So C is regular.

For invariance, consider H, H' € P and h € G satisfying H' = hHh™*. Forg € G,
we have G'NgHg™! = G'Ngh™'H'(gh~')~!, and the following diagram commutes

(G'NgHg )\G' —— (G'NgHg )\G'

¢H’9l l(bH/,gh—l

H\G ah s H\G,

where id denotes the identity map. It follows that ¢, maps blocks of C'yy to blocks

of Cy+. So C is invariant.

Now assume C is not strongly antisymmetric and we prove that C’ is not either. By
definition, there exists a nontrivial permutation 7 = o 0---o0; of ablock B € Cy

for some H € P such that each 0; : B,_; — B; is a map of the form 7y, | m,

Bi_1»
Bi_1s and B; € CHi» H, e P,B=By=DB,,H=H,=

(7TH1:,H1:—1 Bi)_l’ Of CH;_y,h
H,;, (see Definition 2.7).

By the two diagrams above, we can choose ¢g; € G and B; € C’é/mgi Hg ! for
0 <4 <k, and choose ¢; : B;_1 — B; of the form g

\Hi—1g9;",G'NgiHig; " 1Bi_1°

(Trng: Hig7 G 0gi 1 167 |5,)", or the identity map on B; for i € [k], such that
¢Hi,gi(Bi) = B; and 0; o ¢Hi—17gi—1|éi_1 - ¢Hi,9i

"For the case that o; = (mp, 1, ,|B;) ", we choose 5; =

5, ©0; for i € [k].!' Define

(” Nng;H;g '.G'N H, —1 |B~ ) !
G'NgiH;g; ~,G'Ngi—1H;—19;_,'B; ’
which is well defined since ¢, , ¢, , and ¢q, 4, are bijective.
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T = 0} o --- o g1 which is a map from By to By,. Then the following diagram
commutes.
By ——— By

bit.90] BOl lm,gugk

T

B — B

We have Hg,'G' = Hg; 'G’, since otherwise the image of ¢y ,, and that of ¢y,
would be disjoint (see Lemma 6.7). So Hgo_1 = Hgk_lg_1 for some g € G'. The
first part of the proof shows that ¢y g, © coiry, Holg = ®H,g,.- By composing 7
with ¢ging, g1 o> WE May assume 9k = 9o and Bj, = By. Then as 7 is a nontrivial
permutation of B and ¢p4,|5, : Bo — B is bijective, we know 7 is a nontrivial

permutation of Bg. So C is not strongly antisymmetric.

The proof for antisymmetry is the same except that we only consider maps 7 that

are conjugations. O

Corollary 6.1. Let G, G, P, P’ be as above and let H be a subgroup in P.

1. Suppose all antisymmetric P-schemes are discrete on H. Then all antisym-

metric P'-schemes are discrete on G' N gHg ™! forall g € G.

2. Suppose all antisymmetric P-schemes are inhomogeneous on H, and G’ acts
transitively on H\G by inverse right translation. Then all antisymmetric

P’-schemes are inhomogeneous on G' N gHg~! for all g € G.
The same claims hold if antisymmetry is replaced with strong antisymmetry.

Proof. We prove the claims by contrapositive. For the first claim, suppose C' =
{C%;, : H' € P'} is an antisymmetric P’-scheme that is not discrete on G’ N gHg ™!

for some g € G. Choose B € C”G , that is not a singleton. By Theorem 6.4,

'NgHg~
the induced P-scheme C = {Cyr : H' € P} is antisymmetric. Moreover, we know

C is not discrete on H since the block ¢ ,(B) € Cpy is not a singleton.

For the second claim, suppose C' = {C%, : H' € P’} is an antisymmetric P’-
scheme that is homogeneous on G’ N gH g~ for some g € G. By Theorem 6.4, the
induced P-scheme C = {Cy, : H' € P} is antisymmetric. As G’ acts transitively
on H\G, the double coset space H\G/G’ has only one double coset Hg~'G’, which
implies that ¢y, : G' N gHg "\G — H\G is surjective. As C’ is homogeneous on

G' NgHg™ !, we know C is homogeneous on H .

The proof for strong antisymmetry is the same. U
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Now let S be a finite G-set and let G’ be a subgroup of G. Fix m € NT and let
P ={Gr : 1 <|T| < m} be the system of stabilizers of depth m with respect to the
action of G on S. Note that for ' C S, we have G’ N gGrg~™' = G' N Gor = Gy
SoP' ={G'NngHg': H € P} is exactly the system of stabilizers of depth m

with respect to the action of G’ on S restricted from that of G. Therefore we have:

Corollary 6.2. Let G be a finite group acting on a finite set S, G' a subgroup of G,
and m € N*. Let P (resp. P’) be the system of stabilizers of depth m over G (resp.
G') with respect to the action of G (resp. G') on S.

1. Suppose all antisymmetric P-schemes are discrete on G, for all x € S. Then

all antisymmetric P’'-schemes are discrete on G/, for all x € S.

2. Suppose all antisymmetric ‘P-schemes are inhomogeneous on G, for some
xg € S, and G’ acts transitively on S. Then all antisymmetric P’-schemes are

inhomogeneous on G, for all x € S.
The same claims hold if antisymmetry is replaced with strong antisymmetry.

In particular, we see d(G) and d'(G) (cf. Definition 2.8) are monotone with respect

to inclusion of permutation groups:

Corollary 6.3. Let G be a finite permutation group on a finite set S, and let G' be
a subgroup of G on S. Then d(G') < d(G) and d'(G") < d'(G).

We also mention the following variant of Corollary 6.2, which allows G’ C G to act

on a proper subset of S.

Corollary 6.4. Let G be a finite group acting on a finite set S, G' a subgroup of G,
and m € NT. Let T a subset of S such that the action of G’ on S fixes T setwisely
and S — T pointwisely. Let P (resp. P’) be the system of stabilizers of depth m over
G (resp. G') with respect to the action of G (resp. G') on S (resp. T'). Suppose all
antisymmetric P-schemes are discrete on G, for all x € S. Then all antisymmetric
P'-schemes are discrete on G for all v € T. The same claims hold if antisymmetry

is replaced with strong antisymmetry.

Proof. If S = T, the claim holds by Corollary 6.2. So assume S # T. Let P”
be the system of stabilizers of depth m over G’ with respect to the action of G’
on S. Then P” = P’ U {G}. A P’-scheme C always extends to a P”-scheme
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C' :=CU{Cg}, where Cg is the only partition of the singleton G\ G, and such an

extension clearly preserves antisymmetry and strong antisymmetry. The claim then

follows from Corollary 6.2. [

6.3 Schemes conjectures
We investigate the following conjecture proposed in [IKS09], known as the schemes

conjecture.

Conjecture 6.1 (schemes conjecture). There exists a constant m € N such that
every antisymmetric homogeneous m-scheme on a finite set S where |S| > 1 has a

matching.

It was shown in [IKS09] that this conjecture is true for orbit m-schemes with m = 4.
We improve this result in Section 6.6 by showing that one can even choose m = 3.
For general m-schemes, antisymmetric homogeneous m-schemes with no matching
do exist for m = 1,2,3 (see Section 2.5) but no counterexamples are known for
m > 4.

The following theorem was proved in [IKS09].

Theorem 6.2. Assuming GRH and the schemes conjecture, there exists a determin-
istic polynomial-time algorithm that computes the complete factorization of a given
polynomial f(X) € F,[X] over a finite field F,.

We reprove this theorem using the machinery of P-schemes. First note that by
Lemma 2.10, an m-scheme with a matching is not strongly antisymmetric. So we
can replace the schemes conjecture by the following variant, which is implied by

the original one.

Conjecture 6.2. There exists a constant m € N7 such that every strongly antisym-

metric m-scheme on a finite set S where |S| > 1 is inhomogeneous.

We also need the following simple lemma whose proof is deferred to Section 6.5. It

shows that inhomogeneity in Conjecture 6.2 can be replaced by discreteness.

Lemma 6.8. Suppose there exists a strongly antisymmetric m-scheme on a finite
set S that is not discrete, where m € N and |S| > 1. Then for some finite set
T satisfying 1 < |T| < |S

m-scheme on T'.

, there exists a strongly antisymmetric homogeneous
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Now we complete the proof of Theorem 6.2.

Proof of Theorem 6.2. Firstassume that F, = I, isa prime field and f is square-free
and completely reducible over [F,. Fix the constant m € NT as guaranteed by the
schemes conjecture, and let n = deg( f). The algorithm first lifts f to f(X) € Z[X]
of degree n such that all coefficients of f are between zero and p. We can assume f is
irreducible over QQ using the factoring algorithm for rational polynomials [LLL82].
Let S be the set of roots of f in its splitting field. The Galois group Gal( f /Q) of f

is then a permutation group on S.

Run the P-scheme algorithm in Chapter 3 that we used to prove Corollary 3.2. By
Corollary 3.2, it suffices to prove d(Gal(f/Q)) < m. Assume to the contrary that
d(Gal(f/Q)) > m. By Corollary 6.3, we have d(Sym(S)) > m, where Sym(S)
acts naturally on S. Then by Lemma 2.7, there exists a strongly antisymmetric non-
discrete m-scheme on S. By Lemma 6.8, for some finite set 7" satisfying |7'| > 1,
there exists a strongly antisymmetric homogeneous m-scheme on 7'. But this is a

contradiction to Conjecture 6.2 and hence to the schemes conjecture.

For general f and I, we either reduce to the previous case using Berlekamp’s reduc-
tion [Ber70] and square-free factorization [Yun76; Knu98], or run the generalized

‘P-scheme algorithm in Chapter 5 and apply Corollary 5.2 instead. U

Schemes conjectures for a family of permutation groups. In the proof of The-
orem 6.2, we reduce to the case of the full symmetric group Sym(S) and then apply
the schemes conjecture. On the other hand, if the Galois group G is “less complex”
than Sym(S), we expect that the schemes conjecture can be replaced with a more
moderate assumption. Formalizing this intuition leads to a hierarchy of conjectures,

which we explain now.

Let G be a family of finite permutation groups. We formulate a conjecture for G as

follows.

Conjecture 6.3 (schemes conjecture for G). There exists a constant m € N such
that d(G) < mforall G € G.

By Corollary 3.2 and Corollary 5.2, assuming this conjecture (and GRH) guarantees
a polynomial-time factoring algorithm for the case that the Galois group G is in G

as a permutation group:
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Theorem 6.3. Assuming GRH and the schemes conjecture for G, there exists a
deterministic polynomial-time algorithm that given a polynomial f(X) € F,[X]
and an irreducible? lifted polynomial f of f, computes the complete factorization
of f over I, provided that the Galois group of f, as a permutation group on the set

of roots of f, is permutation isomorphic to some group in G.

There exist reductions among these schemes conjectures defined for various families
G. To formulate them, we need the following notation: for two families G and G,
write G < G’ if any permutation group G € G is permutation isomorphic to a
subgroup of some permutation group G’ € G’ (where action of this subgroup is

restricted from that of G’). Then we have

Theorem 6.4. The schemes conjecture for G is implied by that for G' if G < G'.
Proof. This follows directly from Corollary 6.3. U

In particular, all these conjectures are subsumed by that for the family of symmetric
groups {Sym(n) : n € N*}, where each symmetric group Sym(n) acts naturally on
[n]. The latter is equivalent to Conjecture 6.2 by the connection between m-schemes

and P-schemes (see Theorem 2.1).

Therefore, the conjectures for different families of finite permutation groups form a
hierarchy, partially ordered by the relation <, and Conjecture 6.2 is the most difficult
one. One possible approach to the schemes conjecture is first relaxing it to those for
simpler permutation groups which may be easier to prove. We will prove results in

the same spirit in subsequent chapters.

Finally, we note that the schemes conjecture hold for the family of primitive solvable
permutation groups, or more generally for primitive permutation groups G not
involving Alt(d) (i.e., Alt(d) is not isomorphic to a subquotient of (), where d is a

constant.

Theorem 6.5. The schemes conjecture for G is true if G is the family of primitive
solvable permutation groups, or the family of primitive permutation groups G not

involving Alt(d), where d € NT is a constant.

>The assumption that f is irreducible is not necessary, and can be avoided by adapting
Lemma 4.10. We omit the details.
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Proof. Let G be a primitive permutation group. Seress [Ser96] proved b(G) < 4
when G is solvable. More generally, it was shown in [GSS98] that there exists a
function g(-) such that b(G) < g(d) if G does not involve Alt(d). The theorem then

follows from Lemma 2.5. ]

Remark. The scheme conjectures in this section are formulated in terms of discrete-
ness of P-schemes and are used for complete factorization. One can also formulated
conjectures in terms of inhomogeneity and use them for proper factorization. We
leave the details to the reader. To establish reductions between these conjectures (in
terms of inhomogeneity rather than discreteness), one needs to restrict to families

of transitive permutation groups as transitivity is required in Corollary 6.2.

6.4 Extension to the closure of a subgroup system

Suppose P, P’ are subgroup systems over a finite group G and P C P’. We can
construct a P-scheme from a P’-scheme by simply discarding the partitions of H\G
for H € P’ — P. Conversely, we want to know if a P-scheme can be extended
to a P’-scheme. In this section, we show that this is possible in some cases by
formulating the notion of the closure P, of a subgroup system P and proving that
P-scheme can always be extended to a P.-scheme. As an application, we prove

Lemma 4.16 and Lemma 4.17 as promised before.

Definition 6.5 (closure). Let P be a subgroup system over a group GG. Denote by
P the set of subgroups H of G satisfying the following conditions:

1. P contains a subgroup H' C H, and the set of such subgroups has a unique
maximal element (with respect to inclusion), denoted by up(H), or simply

u(H) when there is no confusion.

2. w(H) is a normal subgroup of H.
Then Py is a subgroup system? over G containing P, called the closure of P.

The usage of the term closure is justified by the obvious fact P C P, and the next

lemma.

Lemma 6.9. (P)o = Pa.

31t is easy to see that P, is closed under conjugation in G, so it is indeed a subgroup system

over GG.
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Proof. Consider H € (Pg)a. Write H' = up,(H) and H" = up(H'). We show
that H € P, and up(H) = H".

We first verify that H” is normal in H. By definition, we know H' is normal in H.

Then for any g € H, we have
H" — up(H') _ Up(nggil) — gup(H’)gfl — gH//g—l.
So H” is normal in H.

Next we show that H” is the unique maximal element in P subject to H” C H.
Assume to the contrary that there exists an element U C H” in P C P, that is a
subgroup of H. As H’ is the unique maximal element in P, subjectto H' C H, we
have U C H'. Furthermore, as H” is the unique maximal element in P subject to
H" C H', we have U C H”, contradicting the assumption U C H”.

By definition, we have H € P, and up(H) = H". O

We show that a P-scheme can always be extended to a P.-scheme where antisym-

metry and strong antisymmetry are preserved.

Lemma 6.10. Let P be a subgroup system over a group G and let C = {Cy :
H € P} be a P-scheme. There exists a unique Pe-scheme C' = {C%; : H € Py}
extending C (i.e., C; = Cy for H € P), given by

C}{ = {Wu(H),H(B) :Be Cu(H)}~

Moreover, if C is antisymmetric (resp. strongly antisymmetric), so is C'. And C' is

not discrete on H € P, if C is antisymmetric and not discrete on u(H ).

Proof. We have u(H) € P C P, for H € P. It follows from Lemma 2.3 that C’

as defined above is the only possible one extending C.

Then we check that C’ is indeed well defined, i.e., for H € P, the set C =
{mue),u(B) : B € Cym} is indeed a partition of H\G. For two blocks By, B; €
Chu(my, we prove that 7,y g (B1) and 7, 1 (B2) are either identical or disjoint.
Suppose there exist u(H)g, € By and u(H )gs € By satisfying 7,1y, 5 (u(H)g1) =
Ty, g (u(H)gs), i, Hgy = Hgs. Then gog;' € H C Ng(u(H)). Note that
Cu(H)’Qle—l(U(H)gl) = u(H)gs. So by invariance of C, we have Cu(H)’ngl—l(Bl) =
B,. Then by Lemma 2.2, we have

7Tu(H),H(BQ) = Tu(H),H © CU(H)ng;l(Bl) = CH,929;1 o 7Tu(H),}LI(Bl) = 7Tu(H),H(Bl)
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as desired. So C’ is well defined. Moreover, we have u(H) = H for H € P. It
follows that C" does extend C.

Next we show that C’ is a P,-scheme. For H, H' € P, with H C H’, we have
u(H) C H’ and hence u(H) C u(H’) by the unique maximality of u(H’). By

transitivity of projections (see Lemma 2.2), the following diagram commutes:

wW(HN\G 2 (H\G

7ru(H),Hl lﬂ'u(H/)’Hl

H\G — 5 gnG

To show compatibility, consider y,3’ € H\G lying in the same block B €
CY. Choose B € Cy satisfying T, q(B) = B and choose x,2' € B
satisfying m,(my u(x) = y, Tum),u(2’) = y'. By compatibility of C, the ele-
ments 7y(g)u(a) () and Ty uary(2') lie in the same block of Cygry. Then
Tu(H"),H' © Tu(H)u(k’) Maps = and 2’ into the same block of C%;, by the defini-
tion of C'. By commutativity of the diagram above and the facts 7, u(2) = v,
Tum),u(x") =y, we see that my g/ (y) and mg g (y') lie in the same block of C;,.

So C’ is compatible.

For regularity, let B be a block of C},. Then 7y p/(B) is contained in a unique
block B’ of C'%;, by compatibility of C’. Lift B to a block Be Chu(rry along 7, (m1) 1,
and let B’ = 7TU(H)7U(H/)(B) € Cymry- By regularity of C, the map m,(m),um| 5 :
B — B’ has constant degree, i.e., the number of preimages |(mu(ery.u(mn|z) "' (V)]
is independent of the choices of y € B'. We show that Tumy,u| g (and similarly
Tu(mYy,m| ) also has constant degree. Consider y,3' € B. As ﬂu(H)Jq(B) = B,
there exists z,2’ € B satisfying T, n(z) = y and 7, m(2') = y. Note
that all the elements in () 1| 5) " (y) (tesp. (mum),u|g) " (y')) are of the form
Cu(tr),g(x) (resp. cy(m)q(x')) for some g € H since H C Ng(u(H)). And we have
Cu(in) o() € B iff ey 4(2') € B for g € H by invariance of C. It follows that
(g, 2) ™ (W) = [(Tugm,m| ) (Y)]. S0 T, i 5 (and similarly 7y 7] 5,)
has constant degree. Then 7y ;| also has constant degree by the commutativity

of the diagram above. So C’ is regular.

For invariance, note that for H, H' € P, with H' = gHg™ !, we have u(H') =
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gu(H)g~'. And the following diagram commutes by Lemma 2.2:

Cu(H),g

u(H)\G u(H")\G

ﬂu(H),Hl lﬂ—u(H’),H’

H\G —2*  H\G

For a block B of (7, lift it to a block B of Cumy- Then cpg(B) = Tymry,m ©
cu(mr) o(B) by the commutativity of the diagram above. Note that ¢,z 4(B) is a
block of Cygy by invariance of C. So cy4(B) is a block of C%;, by definition.

Therefore C’ is invariant.

Now assume C’ is not strongly antisymmetric and we prove that C is not either.
By definition, there exists a nontrivial permutation 7 = o o --- 0 07 of a block
B € (', for some H € P, such that each o; : B,_; — B; is a map of the
Biot» TH, 1| Bi1» OF (Mg, y|) " and B; € Cly, H; € P,
B = By = By, H= Hy = Hj, (see Definition 2.7). By the two diagrams above, we
can lift each B; to Bi € Cy(m,) for0 < ¢ < kandlift each o; toamap 7, : Bi—l — Bi

form cp, | 4

of the form ¢, )4 By y» OF (Tu(m)u(m,_)|5,) " respectively,

i.e., 7Tu(H1),H1<Bz) = BZ and g; O WU(Hi—1)7Hi—1

Bi—l ’ 71-U(Hifl)vu(Hi)

Bi1 = Tw(H,),H;

5, © 0i.* Then
7= Gpo---04 is a map from By to By lifting 7. Note that WU(H)J{(B()) =
7Tu(H)7H(Bk> = B. So cu(H),g(Bk) = B, for some g € H. By composing 7 with
Cu(H),g (and noting that cy 4 is the identity map), we may assume By, = By. So 7 is
a permutation of By. Moreover 7 is nontrivial since it lifts 7. So C is not strongly
antisymmetric. The proof for antisymmetry is the same except that we only consider

maps 7 that are conjugations.

Finally, to prove the last claim, assume C is antisymmetric and C’ is discrete on
H € P.. We prove that C is discrete on u(H ). Consider distinct elements x, 2’ €
u(H)\G and let y = mym),u(2), ¥ = Tum),u(2’). If y # o/, they are in different
blocks of C'; and hence z, 2’ are in different blocks of C,, ) by the definition of C;.
So assume y = y'. Then z = u(H)g, ' = u(H)g' for some g,¢" € G satisfying
Hg=Hg, ie,gg ' € HC Ng(u(H)). As ' = cym)g4-1 (), the elements =
and 2’ are in different blocks of C, () by antisymmetry of C. So C is discrete on
u(H), as desired. O

“For the case that o; = (mp, m, ,|B,) "', we lift g, p, . |B; to Tu(H:)u(H,—1) |3, As C is
antisymmetric, both 7, (g7, .y m,_, ‘Bi—l and 7, m1,), 1, ‘Bi are bijective. SO Ty (m,),u(H,_1) ‘Bi is also

bijective and its inverse is well defined.
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Recall that for a subgroup system P over a finite group G, we let P, = {H : H' C
H C Ng(H'),H' € P} which is also a subgroup system over G (see Section 4.4).
Clearly P, C P,. We show that equality holds if P is join-closed.

Lemma 6.11. Let P be a subgroup system that is join-closed, i.e., (H, H') € P for
all H,H' € P. Then P, = P..

Proof. Consider H € P,. We prove H € P, by verifying the conditions in
Definition 6.5.

Choose a maximal element H’ € P subjectto H" C H. Such an element exists by the
definition of P,. We first show that H’ is unique. Assume to the contrary that there
exists another maximal element H” C H in P different from H'. Then (H', H") D
H' is also a subgroup of H and lies in PP by join-closedness, contradicting maximality

of H'. So H' is unique.

Next we prove H’ is normal in H. Assume to the contrary that there exists g € H
such that gH'g™' # H'. As gH'g"! C gHg ! = H and gH'g~' € P, the join
(H',gH'g~1') D H'is also a subgroup of H and lies in P by join-closedness, again

contradicting maximality of H'. [

As an application, we consider a system of stabilizers with respect to the natural

action of a symmetric group or an alternating group.

Lemma 6.12. Let S be a finite G-set where G is Sym(S) or Alt(S) acting naturally

on S. Let P = P, be the corresponding system of stabilizers of depth m, where
m < |S|/2. Then P’ := P U{G} is join-closed.

Proof. Note P’ = {G7 : 0 <T < m}. Let T and T" be subsets of S of cardinality
at most m. We show that (G, G1) € P’. Obviously we have (Gr, G1) C Grog.

First assume G = Sym(S). We have Gr = Sym(S — T), G = Sym(S — T")
and Grarr = Sym(S — (T'NT")) by restricting to the subsets S — 7', S — 1"
and S — (7' N T") respectively. The group Sym(S — (7' N 7T")) is generated by
transpositions (x y) with z,y € S — (T'NT"). We claim that every such (x y) is
contained in (G, G7). This is obvious if « and y are bothin S — T or S — T". So
weassumezr € T —T"andy € T" —T. Asm < |S|/2, the set S — (T"UT") is not
empty. Pick z € S — (T'UT"). Then (z y) = (y 2)(z 2)(y 2)~* € (G, Gr) since
y,z€S—Tandz,z€ S —T". So (Gr,Gr') = Grar € P'.
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Next assume G = Alt(S). If |S| < 4, one can directly verify that (G7, G7/) equals
G, Gr or Gp/. So assume |S| > 5. Note that Grapr = Alt(S — (T'NT")) is
generated by 3-cycles (z y z) with x,y,z € S — (T'NT"). We claim that every
such (z y 2) is contained in (G, Gp). This is obvious if x, y, z are all in S — 7" or
S—T'. Soweassume z,y € T'—T"and z € T" — T (the other cases are symmetric).
Pick w € S — (T'UT") and let (w z u) be a 3-cycle for some u € S — T — {z,w}.
Then (zy z) = (w 2z u)(z y w)(w 2z u)~* € (Gr, Gy since w, z,u € S — T and
x,y,w € S —T'. So again (G, Gr) = Grap € P O

Corollary 6.5. Let S be a finite G-set where G is Sym(S) or Alt(S) acting naturally
on S. Let P = P, be the corresponding system of stabilizers of depth m, where
m < |S|/2. Then P, = Py.

Proof. Let P’ = P U {G}. Then by Lemma 6.12, we have P, C P = P/ =
Pa U{G}. If G € P, we have P, U {G} = P, and hence P, C Pg. On the other
hand, if G ¢ P, none of the groups in P is normal in GG, and hence G ¢ P,. So we
still have P, C P. O

Remark. The condition m < |S|/2 is necessary: suppose |S| > 6 is even and
let m = |S|/2. Partition S into S; and S, of the same cardinality m. When
G = Sym(S) (resp. G = Alt(.5)), the subgroup (Gg,,Gs,) is the product of two
copies of the symmetric group (resp. alternating group) of degree m. It is a proper
subgroup of G but stabilizes no element of S. Therefore (Gg,,Gs,) & P U{G}.
Indeed, we have (G, , Gg,) € (Pm)+—(Pm)asince Gs, C (Gs,,Gs,) € Na(Gs,)

whereas both G5, and G, are maximal among subgroups of (Gg,, Gg,) in P,,.

Lemma 4.16 now follows from Lemma 6.10 and Corollary 6.5.

We also consider the case G = GL(V') with the natural action on a vector space V.

Lemma 6.13. Let V be a finite dimensional vector space over a finite field F'. Let

‘P = P, be the system of stabilizers of depth m with respect to the natural action of
G:=GL(V)on S:=V — {0}, where m < dimp V. Then P, = Pj.

Proof. Consider H € P, and we prove that H € P,. Choose H' € P such that
H' C H C Ng(H'). Tt suffices to show that H' is the unique maximal element in

P subject to H' C H. Assume to the contrary that there exists another maximal
element H” C H in P. As m < dimpV, we have H' = Gy and H” = Gy for
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some proper linear subspaces V', V" of V. As H” ¢ H', we have V! Z V". Also
note that V — (V' U V") # () since

VIOV = VI + VI = V'OV <2VI/IF] < [V].

Pickv € V! = V"and v € V — (V' UV”). Choose g € H" = Gy~ sending v to
v" which is possible since v,v' ¢ V. Asg € H" C H C Ng(H') = Ng(Gy), we

have YV’ = V'. But9v =o' ¢ V', and we get a contradiction. O
Lemma 4.16 now follows from Lemma 6.10 and Lemma 6.13.

6.5 Restricting to a subset

Suppose I = {P,..., P,} is an m-scheme on a finite set S and 7" is a subset
of S. Then we can restrict II to 7" and obtain an m-collection on 7', denote by
I1||7.5 In this section, we investigate this operation and use it to prove Lemma 6.8 in
Section 6.2. We also discuss its generalization for P-schemes, where P is a system

of stabilizers.

Definition 6.6. Let II = { Py, ..., P,,} be an m-collection on a finite set S, where
m € N*. For a subset T of S, define the m-collection 11|y := {P/,...,P..} onT,
where P] := Py|pw) is the restriction of Py, to T® C S® for k € [m].

Lemma 6.14. Suppose 11 = {P,,..., P,} is an m-scheme on S and T C S is a
disjoin union of blocks in Py. Then 1|7 is also an m-scheme. Moreover, if 11 is
antisymmetric (resp. strongly antisymmetric), so is 11||r. And if 11 does not have a

matching, neither does 11| .

Proof. By compatibility of II, for £k € [m] and B € P, either B C T ®) or
BNT® = (), and hence T™®) is a disjoint union of blocks of Py. Then the various
properties of II||7 (compatibility, regularity, etc.) follow from those of II in a

straightforward manner. [

In particular, suppose Il = { Py, ..., P, } is a strongly antisymmetric m-scheme on
S that is not discrete. Let 7" be a block of P, such that |T'| > 1. Then II||7 is a

strongly antisymmetric homogeneous m-scheme on 7'. Lemma 6.8 now follows.

31t should not be confused with the notation I, .., in Definition 6.3, which is an (m — k)-

77777

scheme on S — {z1,..., 2}
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Next we discuss the analogue of Lemma 6.14 for P-schemes. Let G be a finite group
acting on a finite set S. Let P = P,, be the corresponding system of stabilizers
of depth m over G for some m € N*. By Lemma 2.1, for z € S, we have an

equivalence of group actions
At G — G \G

between the action of G on the G-orbit Gz and that on G, \G by inverse right
translation. It sends 9z to G,.g~! for g € G.

Definition 6.7. Ler m, G and P be as above. Let C = {Cy : H € P} be a P-
scheme. Let T be a subset of S such that for z € T, the set \,(GzNT) is a disjoint
union of blocks in Cg,. Moreover, define G' to be the setwise stabilizer Gy and

suppose it satisfies the following conditions:

1. For U,U" C T satisfying 1 < |U|,|U'| < m and G}, C Gy, we have
Gy C Gy

2. Fork € [m|and x € T, we have G'v = Gz N T,

Let P’ be the system of stabilizers of depth m over G' with respect to the action
of G" on T (restricted from the action of G on S). We define a P’'-collection
C'={Cy: H € P'} as follows:

For H € P', choose a nonempty subset U C T of cardinality at most m such
that H = Gy, Identify G;\G' with a subset of Gy\G via the injective map
iv : Gi\G' — Gy \G sending Gy;g to Gyg for g € G'.6 Then define C}; to be the
restriction of Cg,, to Gi;\G'.

The assumption that \,(GzN7T) is a disjoint union of blocks in C¢;_ forall z € T'is
the analogue of the assumption in Lemma 6.14 that 7" is a disjoint union of blocks
in P;. If G acts transitively on S, we have Gz = S, in which case this assumption
is equivalent to that A\.(7") is a disjoint union of blocks in C¢_ for some z € T.
Note that we also need two additional conditions on GG’. They are satisfied in the

following important cases.

®This is indeed a well defined injective map by Lemma 2.1. Let G’ act on Gy \G by inverse
right translation and let O be the G'-orbit of Gre. The stabilizers of Gye is G};. So we have a
bijection O — G{;\G’ whose inverse (composed with O — Gy\G) is iy.
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Example 6.1. Suppose G is the full symmetric group Sym(S) acting naturally on
S. The image of the permutation representation G’ — Sym(7") is Sym(7"). In
this case the two conditions in Definition 6.7 are satisfied for any subset 7' of S
whose cardinality greater than m + 1.7 Indeed, if we view the P-scheme C as an
m-scheme by Theorem 2.1, the construction of C’ from C is precisely the restriction

of an m-scheme to the subset 7" (see Definition 6.6).

Example 6.2. Suppose S = V — {0} where V is a finite dimensional vector space
over a finite field F. Let GG be the general linear group GL(V') acting naturally on
S. LetT = V' — {0} C S where V' is a linear subspace of V. The image of the
permutation representation G’ — Sym(7T") is isomorphic to GL(V”). It is easy to

verify that in this case the two conditions in Definition 6.7 are also satisfied.

We prove the following generalization of Lemma 6.14.

Lemma 6.15. The P’-collection C' is a well defined P’'-scheme. Moreover, if C is

antisymmetric (resp. strongly antisymmetric), so is C'.

Proof. In Definition 6.7 we define each C'; by picking U C T of cardinality at most
m satisfying H = G7;. Here the group G and the map iy do not depend on the
choice of U by the first condition in Definition 6.7. So C’ is well defined.

For H, H' € P’ satisfying H C H’, we pick nonempty subsets U, U’ C T of
cardinality at most m such that H = G}, and H' = G7;,. Then Gy C Gy by the
first condition in Definition 6.7. And the following diagram commutes.

Uyald

' ' GU’G/U’ ! !

| Ji

Go\G 27 GG

For H,H' € P’ and g € G’ satisfying H' = gHg ™!, we pick a nonempty subset
U C T of cardinality at most m such that H = GY;, and let U’ = U C T. Then
H' = Gy = gGpg~' and Gy = gGug~'. And the following diagram commutes.

Crt

NG — GG
3 J-
Gu\G —27 5 Gy\G

"The first condition does not hold for |T'| < m + 1: if U, U’ C T are different subsets of
cardinality |T'| — 1, we have G}, = Gy, = G, but Gy # Gy unless T = S.
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Let U be a nonempty subset of 7' of cardinality at most m. We claim ¢;; maps
each block of C/Gb to a block of C¢,,. The rest of the proof focuses on this claim.
Combining it with the two diagrams above, we can derive the various properties
of C' (compatibility, regularity, invariance, antisymmetry and strong antisymmetry)

from the corresponding properties of C in a straightforward manner.

Let B be a block of (7, and B’ be the block of Cg,, containing iy/(B). Assume
to the contrary that i;;(B) # B’. Choose Gpg~!, Gyg' ™' € Gy \G, represented by
g1, ¢~ € Grespectively, suchthat Gyg~' € iyy(B)andGyg'~* € B'—iy(B). We
may assume g € G’ and hence 92 € 9T = T for all z € T. Also note B = ij;' (B’)
by construction. So from Gy¢g'~' € B’ — iy (B) we know Gyg' ™ & iy (G \G').

Assume there exists z € U such that 92 ¢ T. As Gyg~! and Gyg'~' are in the
same block B’ of Cg,,, by compatibility of C we know 7¢,, . ¢.(Grg™') = G.g~*
and T, ¢.(Gug' ™) = G.¢g'~! are in the same block of C.. On the other hand,
we have G.g~!' = \.(92) € \.(GzNT)and G.¢~' = \.(92) € \.(GzNT) since
92€GzNT,9%2¢Tand )\, : Gz — G,\G is a bijection. But this contradicts the
assumption that A\, (Gz N T) is a disjoint union of blocks of C¢. .

Now assume 9z € T for all z € U. Suppose U = {x1,...,x;}, where x; are
distinct and ordered in an arbitrary way. Let z = (1, ..., 2;) € T®). Then9 z is in
GxNT® and hence in G’ by the second condition in Definition 6.7. So 9z = 9"z
forsome g” € G'. Theng~'¢" € G, = Gy. SoGyg ™' = Gug"* =iy (G g"™),
contradicting the fact Gyrg'~! ¢ iy(G};\G’) above. This proves the claim that i
maps each block of C’éb to a block of C¢,, . [

6.6 Primitivity of homogeneous m-schemes

The notion of primitivity is important for permutation groups as well as association
schemes. In this section, we extend it to homogeneous m-schemes. As an appli-
cation, we show that every antisymmetric homogeneous orbit /m-scheme on a finite
set S has a matching if |S| > 1 and m > 3.

Definition 6.8 (primitivity). Let II = { Py, ..., P,,} be a homogeneous m-scheme
on a finite set S. For B € P,, denote by G g the simple graph® on the vertex set S
such that there exists an edge between two distinct vertices u,v iff (u,v) or (v, u)
is in B. We say 1l is primitive if Gg is connected for all B € P,. Otherwise 11 is

imprimitive.

8 A simple graph is an undirected graph without loops or multiple edges.
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The reader familiar with primitivity of association schemes (see, e.g., [CGS78])
may recognize that when m > 3, Definition 6.8 simply defines Il = {P, ..., P,,}
to be primitive iff P(II') is primitive, where II' denotes the homogeneous 3-
scheme { P, P», P3} and P(II') is the corresponding association scheme (see Defi-
nition 2.16).

Remark. Our definition of primitivity coincides with the notion of primitivity at
level 2 introduced in the full version of [IKS09]. The same paper also generalizes
the notion of primitivity to higher levels. We will not discuss their generalization in
this thesis, but refer the interested reader to [IKS09] for further details.

Restricting to a connected component. We note that restricting a homogeneous

m-scheme to a connected component yields another homogeneous m-scheme:

Lemma 6.16. Let 11 = {Py, ..., P,,} be a homogeneous m-scheme on a finite set
S where m > 3. For each B € P, and a connected component I’ C S of G, the
m-collection 11| (see Definition 6.6) is a homogeneous m-scheme on T. Moreover,
if 11 is antisymmetric (resp. strongly antisymmetric), then so is I1||7. And if 11 has

no matching, then neither does 11||r.

Proof. Let T C S be as in the lemma. It is well known that there exist blocks
By, ..., By € P such that the union of these blocks and 15 = {(z,z) : x € S}
yields an equivalence relation ~ on S, and 7" is one of its equivalence classes (see,
e.g., [CGS78)).

For k € [m], define the equivalence relation ~; on S®) such that (zy,. .., 7;) ~
(y1...,y)iffz; ~ y; foralli € [k]. These equivalence relations are respected by the
maps 7~ and c’;. The various properties of I1||7 then follow from the corresponding

properties of I in a straightforward manner. 0

Primitivity of homogeneous orbit m-schemes. The next lemma states that primi-
tivity of homogeneous orbit m-schemes is equivalent to primitivity of the associated

permutation group.

Lemma 6.17. A homogeneous orbit m-scheme on a finite set S associated with

K C Sym(S) is primitive iff K is a primitive permutation group on S.

Proof. LetIl = {Py,..., P,} be a homogeneous orbit m-scheme associated with
a group K C Sym(S). Then K acts transitively on S. The graphs G for B € P,



173

are known as the non-diagonal (undirected) orbital graphs. The lemma then follows
from Definition 6.8 and the well known fact that a transitive permutation group is

primitive iff every non-diagonal orbital graph is connected [Hig67]. [

In general, we can obtain a primitive orbit m-scheme from a possibly imprimitive

one by restricting to a minimal set that is a connected component:

Lemma 6.18. Let II = {Py,..., P} be a homogeneous orbit m-scheme on S
associated with K C Sym(S), where |S| > 1. Let T be a minimal subset of S
such that T is a connected component of G for some B € P,. Let K' be the
image of the permutation representation Kpy — Sym(T'). Then 11||r is a primitive

homogeneous orbit m-scheme on T, and is the orbit m-scheme associated with K'.

Proof. As already noted, for B € P, and any connected component 7" of Gp,
there exist blocks By, ..., By € P, such that the union of these blocks and 15 =
{(z,z) : © € S} yields an equivalence relation on S where 7" is an equivalence

class [CGS78]. Primitivity of II then follows from minimality of 7.

Choose B € P, such that 7" is a connected component of Gi. Note that for g € K
and (u,v) € S@, the edge (u,v) is in G iff (9u,9v) is in Gp. So for g € K, the
set T" is a connected component of Gg. It follows that 7" is a set of imprimitivity
of K,ie,'TNT =0orT =T forallg € K.

Consider k € [m] and z, y € T in the same block of Py |y € II||7. There exists
g € K sending x to y. As T is a set of imprimitivity of K, we have 97" = T" and
hence g € K'. So Il||7 is the orbit m-scheme on 7" associated with K. O

Antisymmetric homogeneous orbit m-schemes for m > 3. As an application,
we prove that for m > 3, an antisymmetric homogeneous orbit m-scheme II on a
finite set S where |S| > 1 always has a matching. In particular, it is not strongly
antisymmetric by Lemma 2.10. The same claim for m > 4 was proved in [IKS09].
Note that strongly antisymmetric homogeneous orbit m-schemes on sets S where
|S| > 1 do exist for m = 1 and m = 2 (see Section 2.5).

We need the following result from finite group theory.

Lemma 6.19. Let G be a primitive solvable permutation group on a finite set \S.
The set S can be identified with a finite dimensional vector space V over a finite

field F such that G acts on it as a subgroup of the general affine group

AGL(V) = {99 : g € GL(V),u € V},
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where ¢4, sends v € V to 9z + u. Moreover, the group G contains the translation

Gen T xH+uforallucV.

See [Sup76, Section 1.4] for its proof. We have

Theorem 6.6. Let I1 = { Py, ..., P, } be an antisymmetric homogeneous orbit m-
scheme on a finite set S associated with a group K C Sym(S), where m > 3 and
|S| > 1. Then II has a matching.

Proof. We may assume m = 3. Assume to the contrary that IT has no matching. Let
T be a minimal subset of S such that 7" is a connected component of G5 for some
B € P,. Let K' be the image of the permutation representation K7y — Sym(7).
By Lemma 6.16 and Lemma 6.18, the m-scheme II||7 is the orbit m-scheme on

T associated with K’ which is antisymmetric, homogeneous, primitive and has no

matching. By replacing IT with IT||7, S with 7', and K with K’, we may assume II
is primitive. Then K is a primitive permutation group on .S by Lemma 6.17. Also
note that | K| is odd by Lemma 2.16. It follows by the Odd Order Theorem [FT63]
that K is solvable. We conclude that K is a primitive solvable permutation group

on S of odd order.

By Lemma 6.19, we can identify .S with a finite dimensional vector space V' over a
finite field F', and K with a subgroup of AGL(V') acting on V' that contains all the

translations ¢. ,,, u € V. Moreover, we have char(F') # 2 since | K| is odd.

Choose v € V — {0}. Letz = (0,v,2v) € S®, y = 7d(x) = (0,v) € S® and
z=r71dx) = (v,2v) € S®. Let B= Kz € Py, B' = 1(B) = Ky € P, and
B" = r}(B) = Kz € P,. We claim that B together with the maps 7|5 : B — B,
wf| . B — B” is a matching of II, which contradicts the assumption. To see this,
note that the translation ¢, :  — x +visin K and sends y to z. So B’ = B". We
also need to prove | B| = | B’|. By the orbit-stabilizer stabilizer theorem, it suffices
to show K, = K, which holds since 2v lies on the affine line spanned by 0 and v,

and K acts affine linearly on V. The claim follows. [

Remark. The first half of our proof basically follows [IKS09] which reduces to the
case that K is primitive solvable. In [IKS09], the proof is completed by a result of
Seress [Ser96] that bounds the minimal base size of primitive solvable permutation
groups of odd order. This result allows them to prove the theorem for m > 4.
We substitute it with the more elementary fact in Lemma 6.19, and use the above

argument to prove the theorem for m > 3.
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6.7 Direct products and wreath products

We describe two more techniques of constructing new P-schemes (resp. m-
schemes) from old ones, namely the direct product and the wreath product. They
extend the direct product and the wreath product of association schemes (see, e.g.,
[SS98]). As an application, we show that either the schemes conjecture (Conjec-

ture 6.1) is true, or there exist infinitely many counterexamples.

Direct products. Suppose P and P’ are subgroup systems over finite groups GG
and G’ respectively. Define

PxP ={HxH :HeP HecP}
which is a subgroup system over G x G'. For H € P and H' € P’, we have a
bijection
¢H,H’ . H\G X H/\G/ — (H X Hl>\(G X G/)
sending (Hg, H'g") to (H x H')(g,¢") for g € G and ¢’ € G'. Then we define the

direct product of a PP-collection and a P’-collection as follows.

Definition 6.9. For a P-collection C = {Cy : H € P} and a P’-collection
C'={Cy4 : H € P'}, define the (P x P')-collectionC x C' = {C% ., : Hx H' €
P x P'} by

};XH’ = {(ﬁH,H/(B X BI> B e CH,B/ e /},

called the direct product of C and C'.

‘We have

Lemma 6.20. The direct product C x C' is a (P x P')-scheme if C is a P-scheme
and C' is a P'-scheme. Moreover, if C and C' are antisymmetric (resp. strongly

antisymmetric), so is C x C'.

Proof. Write 7y g/ (tesp. Ty i, Ty ) for a projection between coset spaces of
subgroups in G (resp. G', G x G'). Similarly write cp  (resp. . ¢ ) for
a conjugation between coset spaces of subgroups in G (resp. G', G x G’). For
H = Hy x Hy,H = H{ x H) € P x P’ satistying H C H’, we have H; C Hj,
H, C H) and

ﬂJI,{l x Ho, H! x H} © ¢H17H2 (l‘,y) = QSH{,HQ (7TH1,H{ (‘T)vﬂng,Hé (y))
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forall x € H;\G and y € H,\G'. Similarly, for H; x Hy € P x P'and (g,¢') €
G x G', we have

C}/ﬁ xHa,(g.9') © ¢H17H2 <:B7 y) = ¢9H19’179’H29”1 (CH179(5E>a Ci%,g’ (y>)

forall x € H;\G and y € H,\G'. The various properties of C x C’' (compatibility,
regularity, invariance, antisymmetry, and strong antisymmetry) then follow from

those of C and C’ in a straightforward manner. O

Similarly, we define the direct product of m-schemes:

Definition 6.10. Let 11 = {Py,..., P} and II' = {P{,..., P, } be m-schemes
on finite sets S and S’ respectively, where m € NT. Define the m-collection
OxI'={P/,...,P"}on S x S in the following way: for k € [m], two elements
2= ((x1,)s - (@), 2 = (2, 9)), -, (@4, yh) € (S x S)*) are in the
same block of P} iff the following conditions are satisfied:

1. Fori,j € [k], it holds that x; = x; iff ¥} = 2, and y; = y; iff y; = y.

2. Omit a minimal subset T of coordinates in [k| such that all x; are distinct,
and so are all ©,. Let k' = k — |T|. Suppose the remaining x-coordinates of
; x; , respectively. Then (v;,,..., ;)

1107 iy

zand 2 are x;,,...,v;, and x

/ /

and (..., ;) are in the same block of Py.°

3. The previous condition holds with x-coordinates replaced by y-coordinates
and Py, replaced by P),.

We have the following analogue of Lemma 6.20 whose proof is left to the reader.

Lemma 6.21. The m-collection 11 x 11" is an m-scheme on S x S’. Moreover, if
IT and 11" are antisymmetric (resp. strongly antisymmetric), so is I1 x II'. And if I

and 11" have no matching, neither does 11 x 1I'.

Remark. The connection between Definition 6.9 and Definition 6.10 is as follows.
Given m € N7, let P (resp. P’, P”) be the system of stabilizers of depth m over
G = Sym(S) (resp. G’ = Sym(S’), G" = Sym(S x S’)) with respect to the
natural action of G on S (resp. G’ on S’, G" on S x S'). Let P be the system of

9The order of these coordinates does not matter by invariance of II. Under the previous condition,
the choice of T" does not matter either.
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stabilizers of depth m with respect to the product action of G x G’ on S x S’.10
Then P C P x P’.11 So we obtain a P-scheme C from C x C'. Using induction of
P-schemes, we obtain a P”-scheme C” (see Definition 6.4). Using the connection
between m-schemes and P-schemes (see Theorem 2.1), we see that the construction
of C” from C and C’ corresponds to a construction of an m-scheme on S x S’ from
those on .S and S’. This is exactly Definition 6.10.

It is obvious that the direct product also preserves homogeneity and discreteness.
By taking iterated direct products, we can construct infinitely many antisymmetric
homogeneous m-schemes with no matching if there exists a single one. As an
application, we know that either the schemes conjecture (Conjecture 6.1) is true, or

there exist infinitely many counterexamples. 12

Corollary 6.6. For any m € N7, there exist either infinitely many antisymmetric

homogeneous m-schemes with no matching or none.

Wreath products. There exists another operation of P-schemes and m-schemes
called the wreath product. While this operation is interesting on its own, we do not
need it anywhere else in this thesis, except that it provides an alternative proof of
Corollary 6.6. For this reason, we only give the definitions as well as the statements,

and leave the proofs to the reader.

We first define the wreath product of groups.

Definition 6.11. Let G and G' be groups and let ) be a G'-set. Let G be the
group consisting of all the functions f : Q — G. Its group operation is defined by
(ff)(x) = f(z)f'(x). Define the wreath product G G’ as the group consisting of
all the pairs (f, g) € G* x G', with its group operation defined by

(£ 9)=(f-7f,99)

for (f,9),(f'.q) € GULG', where 9" : Q — G sends x € Qto f'(9 ' x). In other
words, the group G1G' is the semidirect product G X, G' where ¢ : G' — Aut(G*)

19The product action is defined by 99" (z,2/) = (92,9 2') for (¢,¢') € G x G and (z,2') €
S xS

"'"To see this, note that for a subset U C S x S’ whose projections to S and S’ are U; and Us,
respectively, we have (G' x G')y = Gy, x Gy,-

12This claim also holds for the variant of the schemes conjecture (Conjecture 6.2) for the same

reason.
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sends g € G’ to the automorphism f +— 7 f of G. For convenience, we identify G%
and G' with subgroups of G G' and write (f,g) € GV G as fqg.

Use the following notations: let G and G’ be finite groups and let ) be a finite
G'-set. For a family H = {H, : x € Q} of subgroups of G indexed by (2 and a
subgroup H' of G’ satisfying the following condition:

H, = G for all z € Q not fixed by G’, (6.1)
write H ¢ H' for the subset
{fg: f(x)e Hforallz € Q,g € H'}

of G G, which is a subgroup of G ! G by (6.1). Suppose P and P’ are subgroup
systems over finite groups GG and G’ respectively. Define P! P’ to be the poset of
subgroups of GG’ consisting of the subgroups H{H' forallH = {H, € P : x € Q}
and H' € P’ satisfying (6.1). Then P ¢ P’ is a subgroup system over G ! G'.

For H ={H, € P:x € Q} and H' € P’ satisfying (6.1), we have a bijection

R (H HJC\G) x H\G' = (U H)\(G1 @)

rEQ
defined as follows: for f € [[, ., H,\G whose x-factor is f, € H,\G, pick g, € G
such that f, = H,g,. Then define f' : (1 — G sending x € Q) to g,. Define ¢y
such that it sends (f, Hg') to (H U H')f'¢' for ¢’ € G'. It can be shown that ¢y, pv
is a well defined bijection. Finally, we define the wreath product of a P-collection

and a P’-collection as follows.

Definition 6.12. For a P-collection C = {Cy : H € P} and a P’-collection
C' = {Cy : H € P'}, define the (PUP’)-collection C:C' = {C,yp - HIH' € PUP'}
by

Conir = {¢H7H’ ((H Bx> X B/) :B, € Cy, forxeQ,B € C’}{/} ,

€

where H = {H, : x € Q}. We call CC' the wreath product of C and C'.

We have

Lemma 6.22. The wreath product C2C' is a (P U P')-scheme if C is a P-scheme
and C' is a P’-scheme. Moreover, if C and C" are antisymmetric (resp. strongly

antisymmetric), then so is C1C'.
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Similarly, we define the wreath product of m-schemes:

Definition 6.13. Let 11 = {Py,..., P, } and II' = {P{,..., P, } be m-schemes
on finite sets S and S’ respectively, where m € NT. Define the m-collection
NI ={P/,..., P!} on S x S"in the following way: for k € [m], two elements
2= ((x,), - @), 2 = (2,9, .., (@4, yh) € (S x S)*) are in the
same block of P} iff the following conditions are satisfied.:

1. Fori,j € [k, it holds that y; = y; iff y; = y.

2. Fori € [k], let T; be set of indices j € [k] satisfying y; = y;. Suppose
T, = {i1,...,i¢}, ordered in an arbitrary way. Then (z;,,...,x;,) and

(},, ..., x;,) are in the same block of P,.

3. Omit a minimal subset T' of coordinates in [k| such that all y; are distinct. Let
k' = k—|T|. Suppose the remaining y-coordinates of z and 2" are y; , . .., y;,,
andy; ,...,y;  respectively. Then (y;,....,y;,) and (y;,,....y; ) areinthe
same block of P},.

We have the following analogue of Lemma 6.22.

Lemma 6.23. The m-collection 11 11" is an m-scheme on S x S'. Moreover, if 11
and 11" are antisymmetric (resp. strongly antisymmetric), then so is 11U I, And if 1

and 11" have no matching, then neither does 11 { 11'.

Remark. The connection between Definition 6.12 and Definition 6.13 is as follows.
Given m € N7, let P (resp. P’, P”) be the system of stabilizers of depth m over
G = Sym(S) (resp. G' = Sym(5’), G” = Sym(S x S")) with respect to the natural
action of G on S (resp. G’ on S’, G” on S x S"). Let P be the system of stabilizers of
depth m with respect to the imprimitive wreath product action of G! G’ on S x §’.13
Then P C P P14 So we obtain a P-scheme C from € C'. Using induction of
P-schemes, we obtain a P”-scheme C” (see Definition 6.4). Using the connection

between m-schemes and P-schemes (see Theorem 2.1), we see that the construction

13The imprimitive wreath product action is defined by (£:9) (z,2') = (P g 92") for (f,g) €
GG and (z,2') € S x S".

4To see this, consider a subset U C S x S’. Fora’ € S, let Uy = {x € S : (z,2) € S’}
and H, = Gy,,. Let H = {H, : 2’ € S’} and let U’ be the projection of U to S’. Then
(G1G")y = H 1 Gy . Moreover, if 2/ € S’ is not fixed by Gy, then 2’ ¢ U’ and hence U, = 0,
which implies H,» = G.
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of C” from C and C’ corresponds to a construction of an m-scheme on S x S’ from
those on .S and S’. This is exactly Definition 6.13.
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Chapter 7

SYMMETRIC GROUPS AND LINEAR GROUPS

Let G be a finite permutation group. Motivated by the P-scheme algorithms
developed in Chapter 3 and Chapter 5, we are interested in the problem of bounding
the integer d((), introduced in Definition 2.8.

In this chapter, we study this problem for symmetric groups and linear groups with

various special group actions.

Symmetric groups. For convenience, we introduce the following notation:
Definition 7.1. For n € N*, define dsym(n) := d(G), where G is the symmetric

group Sym(S) acting naturally on a finite set S of cardinality n.’

Note that dgy., (n) is nondecreasing in n by Corollary 6.4. The best known general

upper bound for dgy, (n) is

dsym(n) < ( > logn + O(1),

log 12

proven in [Gua09; Arol3] in different notations, based on the work of [Evd94;
IKS09]. In Section 7.1, we review this result and interpret it as a result about

P-schemes.

In Section 7.3, we study the more general action of Sym(.S) on the set of k-subsets
of S, where 1 < k < |S|, and that on (an orbit of) the set of partitions of S. These
actions are called the standard action of symmetric groups, and play an important
role in the study of minimal base sizes of primitive permutation groups (see, e.g.,

[LS99]). Our results for these group actions will be used in Chapter 8.

Linear groups. Let V' be a vector space of dimension n € N over a finite
field F,. We have the general linear group GL(V') consisting of all the invertible
linear transformations of V' over [F,. It is a subgroup of the general semilinear
group T'L(V'), which consists of all the invertible semilinear transformations of

V. Here we say a map ¢ : V — V is a semilinear transformation of V if

IClearly dsym(n) only depends on n but not on S.
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d(r+y) = ¢(x) + ¢(y) and ¢(cx) = 74(c)p(x) hold for all ,y € V and ¢ € I,

where 7, is an automorphism of the field F,. We have the natural action of GL(V)
and that of 'L(V) on V' — {0}, defined in the obvious way.

Denote by PV the projective space associated with V, i.e., PV is the set of equiv-
alence classes of V' — {0} where z,y € V — {0} are equivalent iff x = cy for
some ¢ € [FX. Define the projective linear group PGL(V) := GL(V)/F and the
projective semilinear group PTL(V) := TL(V)/Fy, where F is identified with
the subgroup of the scalar linear transformations of GL(V') (resp. ['L(V)) so that
c € F sends x € V to cz. The natural action of GL(V') (resp. I'L(V)) on V — {0}
induces an action of PGL(V') (resp. PI'L(V')) on PV, called the natural action of
PGL(V) (resp. PTL(V')) on PV. Finally, when V' = [}, we also use the notations
GL,(¢), T'L,(q), PGL,(q), and PT'L,,(q).

We call the above groups GL(V'), I'L(V), PGL(V), and PT'L(V') linear groups.
In Section 7.4, we investigate d(G) for the natural action of a linear group G. For

convenience, we introduce the following notations:

Definition 7.2. Let V be a vector space of dimension n € N1 over a finite field
F,. Define dgr(n,q) := d(G), where G is the permutation group GL(V') acting
naturally on V- — {0}. Similarly define dry(n,q), dpgr(n,q), and dpry(n,q) by
choosing G to be the permutation group I'L(V'), PGL(V'), PT'L(V') acting naturally
on'V — {0}, PV, PV, respectively.?

We show that the problems of bounding dgy.(n,q) dri(n,q), dpar(n,q), and
dprr(n,q) are all equivalent: an upper bound f(n,q) for any one of them im-
plies an upper bound f(n, q) + O(1) for the others. So it suffices to investigate just
one of them.

Finally, we prove a bound

log q
< 1
dar(n,q) < <logq+ (log 12)/4> n+ 0(1),

slightly improving the trivial bounds.
Self-reduction. The results in Section 7.3 and Section 7.4 require a technique

called self-reduction of discreteness, which we introduce in Section 7.2. It reduces

discreteness of a strongly antisymmetric P-scheme to discreteness of its restrictions

2Clearly these definitions only depend on n and ¢ but not on V.
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to stabilizer subgroups. In many cases, such a reduction greatly simplifies the

problem. Our results in Chapter 8 also rely heavily on this technique.

7.1 The natural action of a symmetric group

We introduce the following notations about m-schemes:

Definition 7.3. For n € N*, let m(n) (resp. m/(n)) be the smallest positive integer
such that any non-discrete antisymmetric m(n)-scheme (resp. m'(n)-scheme) on

[n] has a matching (resp. is not strongly antisymmetric).

It is easy to see that m(n) and m’(n) are nondecreasing in n. We also have
dsym(n) < m'(n) < m(n) by Lemma 2.7 and Lemma 2.10.

It was proven [Gua09] and independently in [Aro13] that m(n) < (m;%) logn +

O(1). We review the proof of this bound, starting from the following lemma:

Lemma 7.1. Let 11 = { Py, ..., P,,} be an antisymmetric m-scheme on a finite set
S where m > 3. Suppose B € P, satisfies |B| > 3. Let x be an element of B so
that 11|, = {P{,..., P, _,} isan (m — 1)-scheme on S — {x} (see Definition 6.3).

Then at least one of the two conditions is satisfied.

1. There exists B' € P| contained in B satisfying |B'| < (|B| — 1)/4.

2. There exist distinct elements y, z € B — {x} such that for the (m — 2)-scheme
Uy, = {P,..., P} _5} on S — {z,y}, the block B" of P containing z
satisfies |B"| < (|B| + 1)/12. Furthermore, (x,y), (y, z), and (z,x) are in
the same block of Ps.

Proof. By replacing IT with II|| 5, we may assume II is homogeneous and S = B.
By antisymmetry, we know |P,| is even. If |P,| > 4, there exists B; € P of
cardinality at most |B|(|B| — 1)/4. Let B’ :={y € B : (z,y) € B,}. Then B’ is a
block of P] by definition, and its cardinality is | By |/|B| < (|B| —1)/4 by regularity
of II. And the first condition is met.

So assume | P,| = 2. Then P, contains two blocks B; and B, of the same cardinality
|B|(|B] —1)/2. Choose y € B — {x} such that (z,y) € B;. Such an element
y exists by regularity and homogeneity of II. By Lemma 2.11 and Lemma 2.12,
we have an antisymmetric association scheme P(II) = P, U {15} that has three

blocks. By Lemma 2.20, the number of elements z € B — {x,y} satisfying
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(y,2),(z,2) € By is precisely (|B| + 1)/4 > 0. The cardinality of the set T :=
{(a,b,¢) : (a,b),(b,c),(c,a) € By}isthen|B|-(|B|+1)/4. Choose z € B—{z,y}
such that (z,y, z) € T. Let B}, B}, and B, be the blocks of P; containing (x, y, z),
(y,z,x) and (z,x,y) respectively, which are all subsets of 7. They have the
same cardinality by invariance of II, and are distinct by antisymmetry of II. So
|By| < |T'|/3 = |By|- (|B| + 1)/12. By regularity of II, the cardinality of the set
{u e S —{z,y} : (z,y,u) € Bi}is |Bi|/|B1| < (|B| + 1)/12, and this set is
exactly the block B” of P/’ containing z by definition. So the second condition is
satisfied. [

Lemma 7.1 implies the following recursive relation:

Lemma 7.2. Forn > 3,

m(n) < max {m ("T_l) +1,m (";;1) +2}.

The inequality also holds for m!(-) in replaced of m(-).

Proof. Let Il = {P,,...,P,} be a non-discrete antisymmetric m-scheme on a

finite set .S of cardinality n, where m > 3. Also assume

n—1 n+1
> _ 1 2 5.
m_max{m( 1 )—l—,m( 12>_|_}

We want to show that II has a matching.

Choose B € P such that |[B| > 1. Let z be an element of B and suppose
I, ={P],..., P,,_,}. ThenIl|, is an antisymmetric (m — 1)-scheme on S — {z}.
Note that TI|| 5 is a homogeneous antisymmetric m-scheme on B by Lemma 6.14,

which implies | B| > 3. Then either of the two conditions in Lemma 7.1 is satisfied.

If the first condition is satisfied, there exists B’ € P| contained in B satisfying
|B'| < (|1B|—1)/4 < (n—1)/4. If |B’| > 1, we see (II|,)|| s is a non-discrete
antisymmetric (m — 1)-scheme on B’. It has a matching since m — 1 > m((n —
1)/4) > m(|B’|). So II also has a matching by Lemma 6.3 and Lemma 6.14. On
the other hand, if | B’| = 1, we let y be the unique element in B’ and let B; be the
block of P, containing (x,y). Note that | B'| = | B;|/| B
As z,y € B, we have 72(B;) = 75(B;) = B. Then By is a matching of II.

, which implies | B;| = | B].

Next assume the second condition is satisfied. So there exist distinct elements y, z €
B—{z} such that for the (m—2)-schemeIl|, , = {P/,..., P)_,}onS—{x,y}, the
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cardinality of the block B” of P/’ containing z is at most (|B|+1)/12 < (n+1)/12.
Furthermore, (x,y), (y, 2), and (z, x) are in the same block By of P». If |[B"| > 1,
we see (11|, )| s~ is a non-discrete antisymmetric (m — 2)-scheme on B”. It has
a matching since m — 2 > m((n + 1)/12) > m(|B"|). So II also has a matching
by Lemma 6.3 and Lemma 6.14. On the other hand, if |B"| = 1, we let B|
be the block of P; containing (x,y,z). We have 73(B}) = 73(B}) = By since
(x,y), (y,2) € By. Also note that |B"| = |Bj|/|Bo|, which implies |By| = |Bj|.
So Bj is a matching of II.

This proves the inequality for m(-). The proof for m/(-) is similar, and we leave it
to the reader. [

Theorem 7.1 ([Gua09; Arol3]). Forall n € N7,

m(n) < <L) logn + O(1).

log 12

More generally, an antisymmetric m-scheme 11 = {Py,..., P,,} on a finite set S
always has a matching if P, has a block B of cardinality k > 1 and m > m(k). In
particular it holds for sufficiently large m = <10ng> logk + O(1).

Proof. Note m(1) = 1 and m(2) = 2. The first claim then follows from Lemma 7.2
and a simple induction. The second claim follows by considering I1|| 5 and applying
Lemma 6.14. [

Theorem 7.1 implies a bound for dgs,,(n), and also a bound for d(G) by Corol-

lary 6.3, where (' is an arbitrary permutation group on a set of cardinality n:

Corollary 7.1. Let G be a permutation group on a set of cardinality n € NT. Then
A(G) < dsym(n) < (253 ) logn + O(1).

We conclude this section with the following technical lemma, which is used later in

the proof of Theorem 7.5.

Lemma 7.3. Let G be a permutation group on a finite set S, and let P be the
S|. LetC = {Cy :
H € P} be a strongly antisymmetric P-scheme. Suppose C is non-discrete on G,
for some x € S. Then there exists (z1,...,2n,) € S such that Ca,,

log 12 )mg_o(m)

block of cardinality at least ("%

corresponding system of stabilizers of depth m where 1 < m <
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Proof. Let P’ be the system of stabilizers of depth m with respect to the natural
action of G’ := Sym(S) on S. Let C' = {C} : H € P} be the induction of C
to P’ (see Definition 6.4), which is strongly antisymmetric by Lemma 6.1 and is
non-discrete on G, for x € S in the lemma since C is non-discrete on GG,,. Assume

the lemma holds for Sym(.S), P’, and an m- tuple (Y1, ., Ym) € S, ie., there

exists B’ € C, of cardinality at least 9(*52 )m?-0(m) By Definition 6.4, we
Ylseees Ym

know B’ is of the form ¢¢;  o(B), where g € G', ¢g;  , is an injection

from (G NgG,, . g )N\GtoG, m \G’, and B is a block of Cangay, . yma=t-

............ .So (x1,...,2,) and

B e Cq, satisfy the condition in the lemma.

JIEEEES) Im

Thus we may assume G = Sym(S) and it acts naturally on S. By Lemma 2.12, it
suffices to show that for any non-discrete strongly antisymmetric m-scheme II =
{Py,..., Py} on S, the partition P, has a block of cardinality at least o (5% Jm?—em
where ¢ = O(1). We prove this claim by induction on m. The case m = 1 is
trivial. For m > 1, assume the claim for m’ < m. Let By be a block of P, of

cardinality £ > 1. By Theorem 7.1, we have m < (@) log k 4+ ¢ for some

g12

(m—c)

¢ = O(1), or equivalently £ > 2 Choose = € By and consider the
(m — 1)-scheme II-scheme I1" := 11|, = {P],..., P),_;} on S — {x}. Itis strongly
antisymmetric by Lemma 6.3. Let B; be a block of P] contained in By, which
exists by compatibility of IT and the fact & > 1. If |B;| = 1, we have seen in
the proof of Lemma 7.2 that II has matching, contradicting the assumption that
IT is strongly antisymmetric. So |B;| > 1. By Lemma 6.14, the homogeneous
(m—1)-scheme II'|| g, = {P/,..., P/ _,} on By is strongly antisymmetric. By the
induction hypothesis, the partition P, _, has a block B’ C B(m Y of cardinality at
least 257 )m=1*~e(m=1) " And B’ is also a block of P!, € II' by definition and
compatibility of IT". Then P,, € II has a block B containing (x, z1, ..., x,,_1) for

all (z1,...,2,_1) € B'. By regularity of II, we have

’B| ‘BO||B/| > 210g12(mic/) ) 2(10i12)(m 1)2—6(7’71 1) > 2(10g12>m2_cm

for sufficiently large ¢ = O(1). O

7.2 Self-reduction of discreteness
In this section, we prove a “self-reduction” lemma, which states that discreteness of
a strongly antisymmetric P-scheme is implied by discreteness of its restrictions to

stabilizer subgroups.

We need the following technical lemma.
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Lemma 7.4. Suppose G is a finite group, P is a subgroup system over G, and
C ={Cy : H € P} is a P-scheme. Suppose Hy, Hy, Hy are subgroups in P such
that Hy C Hy N Hy and C|g,, C|g, are both discrete on Hy. Fori =0, 1,2, let B;
be the block of Cy, containing H;e € H\G. Then (7w, 11,)| 5y © (o1, |B,) ' is @
well-defined bijection from By to By sending Hie € Hi\G to Hye € Hy\G.

Proof. Note that 7y, i, |5, iS a surjective map from B, to B; sending Hoe to
Hie, and 7y, m,|B, is a surjective map from By to Bs sending Hope to Hse. So
it suffices to prove that these two maps are injective. The set By N (Ho\H;)
contains Hpe and is a block of Cp |y, € C|y, by the definition of restriction
(Definition 6.2). By discreteness of C|y, on Hy, this set is just the singleton { Hye}.
On the other hand, the set Ho\H; C Hy\G is precisely the preimage of He
under g, g, : Ho\G — H1\G. So By N (Hy\H,) is the preimage of H;e under
THy.H, | By : Bo — Bi. By regularity of C, the map 7y, m, |, is injective. Similarly

TH,.H, | B, 1S also injective. O

The bijection in Lemma 7.4 can be used to separate elements in a strongly antisym-

metric P-scheme:

Lemma 7.5. Let G be a finite group acting on a finite set S, and let x € S. Let P
be a subgroup system over G such that G, € P, and let C = {Cy : H € P} be
a P-scheme. Suppose y = 9x and z = 9x in S satisfy (1) G, G.,G,. € P and
(2)Clg, and C

blocks of Cg, sending G,g~' to G,g'~! that can be written as a composition of

. are both discrete on G .. Then there exists a bijection between

conjugations, projections and their inverses between blocks of Cg,, Cq,, Cqg, and
Ce,.. In particular, if C is strongly antisymmetric, then G,g~" and G,g'~' are in
different blocks of Cg, .

Proof. Let By (resp. By, Bo) be the block of Cg, . (resp. Cg,, Cg,) containing G, .e
(resp. Gye, G.e). By Lemma 7.4, the map ¢, . |5, (7c, .., |B,) " is a bijection
from B, to By sending G e to G,e. Let B} and B, be the blocks of C;, containing
G.g~' and G,g'~" respectively. We have the conjugations cg, 4|p; : By — B
sending G,¢~" to G e and g, y-1|p, : B — B} sending Ge to G,¢'~'. Then the
map

CGZ79/71 |B2 © 7TGy,z,C:z |BO © (TrGy,Z7Gy |-BO)_1 © CGZ79|B1

is a bijection from Bj to B} sending G, to G,¢'". O
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This provides a way of proving discreteness of a strongly antisymmetric P-scheme
using discreteness of its restrictions to stabilizers. For example, if C is strongly
antisymmetric and the conditions in Lemma 7.5 hold for all pairs (y, z) € Gz x Gz,
then C is discrete on GG,. In fact, we only need to verify the conditions for a subset

of pairs that form a connected graph:

Lemma 7.6 (self-reduction lemma). Let G be a finite group acting on a finite set
S, and let v € S. Let P be a subgroup system over G such that G, € P, and let
C = {Cy : H € P} be a strongly antisymmetric P-scheme. Suppose R is a subset
of S x S satisfying the following conditions:

1. Forall (y,z) € R, it holds that (1) G,,G, G, . € P and (2) C|g, and C|q,

are both discrete on G, .

2. Let Gg be the undirected graph on S such that {y, z} is an edge iff (y,z) € R
or (z,y) € R. Then Gz is contained in a connected component of Gr (in

particular, this condition is satisfied if Gg is connected).
Then C is discrete on G,

Proof. For y € S, denote by B, the block of Cg, containing Gye € G,\G. For
(y,2z) € S x S, write y ~ z if there exists a bijection 7 : B, — B, sending G e to
G .e such that 7 is a composition of maps of the form 7 5| or (7 s/|5) ™" (Where
H, H € P and B is block of C'y). Then ~ is an equivalence relation on S. By the
first condition and Lemma 7.4, we have y ~ z for all (y, z) € R. And by the second

condition, we have y ~ z for all (y, z) € Gz x Gu.

Consider any ¢,¢' € G andlety = 92,2 = 92 € Gz. Let 7 : B, — B.bea
bijection sending Gye to G.e as above. Let B and B’ be the blocks of C;, containing
G.9~ ! and G,g'~"' respectively. We have the conjugations cg, 4|5 : B — B,
sending G,¢~ ' to Gye and ¢, y-1|p, : B, — B’ sending G e to G,¢'~*. Then the
map

CG.g-1B. ©T 0 Ca,4lB

is a bijection from B to B’ sending G,g~! to G,g'~'.

In particular, if G,g~! #
G.g'', then B # B’ by strong antisymmetry of C. As g,¢' € G are arbitrary, we

know C is discrete on (7. ]
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7.3 The actions of symmetric groups on k-subsets or partitions

Let S be a finite set of cardinality n, and let G = Sym(S). For k € [n], the natural
action of GG on S induces a (transitive) action of G on the set of k-subsets (i.e.,
subsets of cardinality k) of S. Similarly, it induces an action of GG on (an orbit of)
the set of partitions P of S, givenby /P := {B : B € P}.

In these cases, we expect to have abound d(G) = O(log n) as we have in Section 7.1.
Let S’ be the underlying set on which G acts. The naive approach is to embed G
in Sym(S”) and apply Corollary 7.1. In general, however, the cardinality of S’
is much larger than n. For example, we have |S'| = (Z) for the action of G
on the set of k-subsets of S, and hence Corollary 7.1 only implies the bound
d(G) = O(log|S’|) = O(klogn). The same problem exists for the action of G on
an orbit of the set of partitions of .S, in which case |S’| is the number of partitions

of S into subsets with prescribed cardinalities.

In this section, we extend the result in Section 7.1 and show that in the above cases,
we have d(G) < dsym(n)+O(1) = O(logn). Infact, we prove more general criteria
for a subgroup system P over GG (or more generally, over a subgroup H C () to have
the property that all strongly antisymmetric P-schemes are discrete on all z € 5.3
It is possible to design a subgroup system P of complexity |S'|9(VnOUoen) that
satisfies these criteria. An algorithm of constructing the corresponding collection

of number fields will be given in Chapter 8.

The action of Sym(S) on the set of k-subsets of S. Suppose S is a finite set of
cardinality » and consider the action of G = Sym(.S) on the set S of k-subsets of
S. We say two elements z,y € S’ are adjacent if there exists g € G sending x to
y and g is a transposition (i.e. 2-cycle) on S. The following technical lemma is

needed:

Lemma 7.7. For all adjacent x,y € S and z € G,y adjacent to y, it holds that
|Gy yz| < n.

Proof. Choose h € G, that sends y to z. As x and y are adjacent, we know z = "z
and z = "y are also adjacent. Let u = x Ny (as the intersection of two k-subsets).
As z and y are adjacent, there exist distinct elements a, b € S such that z = uwU {a}

and y = uw U {b}. Then G, fixes u setwisely as well as a,b. If b ¢ z, we have

3To derive d(G) < dsym(n) + O(1), we only need the case H = G. The more general setting
H C G is needed for applications in Chapter 8.
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z =uU{c} for some ¢ € S since y and z are adjacent. In this case, as G, fixes the

subset u of z of cardinality k — 1 setwisely, we have |G, ,z| < |S| = n, as desired.

Next assume b € z. Since z and z are adjacent, we have z = (z — {V'}) U {b}
for some b’ € . As G,, fixes x setwisely as well as a,b € S, the elements
in G,z are of the form (z — {b"}) U {b} where 0" € z. In this case we have
|Gy < |z| =k < n. O

We state a criterion for a subgroup system P over a subgroup H C G to have the

property that all strongly antisymmetric 7P-schemes are discrete on all z € 5.

Theorem 7.2. Let G, n, and S’ be as above, and let H be a subgroup of G. Suppose

‘P is a subgroup system over H satisfying the following conditions:

1. H,,H, , € Pforallz,yc S

2. Hypyor € Pforall x,y,z € S"and T C H, 2 satisfying |H, 2| < n and
1 <|T) < dgym(n).

Then all strongly antisymmetric P-schemes are discrete on H, for all v € S'.

Proof. Let C = {Cy : H € P} be a strongly antisymmetric P-scheme. We
want to prove that C is discrete on H, for all x € S’. As G is generated by
transpositions on S, by Lemma 7.6, we just need to verify for all adjacent z,y € S’
that (1) H,,, H,, H,, € P, and (2) C|g, and C|y, are discrete on H, ,. Fix adjacent
x,y € S’. Note that (1) follows from the first condition in the theorem.

So it remains to prove that C| g, is discrete on H,, , (the claim for C|y, is symmetric).
This is trivial if z = y. So assume = # y. we claim that for all z,w € H,y C
Gy, there exists a sequence of elements wug,...,u; € G,y such that uy = z,
u; = w, and w;_1,u; are adjacent for ¢ € [t]. This follows from the fact that
G, = Sym(z) x Sym(S — x) is generated by transpositions on S. Let P’ := P|p,
and C' := C|y,. By Lemma 7.6 and the previous claim, it remains to show that for all
adjacent z, w € G,y, it holds that (a) (Hy),, (Hy)w, (Hz).w € P’, or equivalently
H,. Hyw Hy .o € P, and (b) C'|(g,). and C'|(x,), are discrete on (H,). . Fix
such z,w € G,y. Note that z and w are adjacent to x since y is adjacent to z. It
follows from Lemma 7.7 that |H, ,w| < |G, .w| < n. Then (a) follows from the

two conditions in the theorem.
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It remains to show that C'|(y, ), is discrete on (H,).,, (the claim for C'|(p,), is
symmetric). Let P” := P’|(y,).. By the second condition of the theorem and
the fact |H, .w| < n, we have Hy,.yor € P” for all T C H,.w satisfying
1 < |T| < dsym(n). This means that P” contains the system of stabilizers of
depth dsym(n) with respect to the action of H, ., on H, ,w. By Corollary 6.3 and
the fact |H, ,w| < n, we see all strongly antisymmetric P”-schemes are discrete
on (Hy.)w = (H,)... Finally, note that C'|(y,). is strongly antisymmetric by

Lemma 6.3, and hence discrete on (H,). ., as desired. O

Choosing H = G in Theorem 7.2, we obtain

Corollary 7.2. d(G) < dgym(n) + 2.

The action of Sym(S) on the set of partitions of S. Suppose S is a finite set of
cardinality n and consider the action of G = Sym(S) on an orbit S’ of the set of
partitions of S. We prove an analogue of Theorem 7.2 for this case. The following
notations are needed: again, we call two elements z,y € S’ adjacent if there exists
g € G sending x to y and ¢ is a transposition on S. For z,y, z € S’, write y ~, z if
there exists g € GG, sending y to z such that either (1) g is a transposition on S fixing
all the blocks of x setwisely, or (2) x —y # = — z, and g exchanges two blocks of x

while fixing the other blocks of x pointwisely.

We also need the following technical lemma:

Lemma 7.8. For all adjacent x,y € S" and z € G,y satisfying y ~. z, it holds
that |Gy 2| < 4n.

Proof. We may assume = # y. As x and y are adjacent, there exists a transposition
(a b) of S sending = to y where a € By, b € By and By, B, are distinct blocks of x.

So we have

y=(z = {By, Bo}) U{(B1 — {a}) U{b}, (B2 — {b}) U{a}}. (7.1

Fix h € G, sending y to z such that either (1) & is a transposition on S fixing all
the blocks of x setwisely, or (2) x — z # x — y and h exchanges two blocks of x
while fixing the other blocks of x pointwisely. We claim that in either case, h fixes
at least one of B; and B, pointwisely. This is obvious in Case (1). And in Case (2),
if h fixes neither B, nor B, pointwisely, it exchanges B; and Bs. But then we have

x —y=x— z={By, By}, contradicting the assumption.
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So assume h fixes B pointwisely (the other case is symmetric). Consider arbitrary

w =9z € G,,z where g € G,,. We have

w — 9@ )y _ ghla b)(gh) ™, _ (@ ¥),

where ' = 9"a and b/ = 9"b. So w is determined by the pair (a/, ')

There are at most n choices of b’ € S. Now consider the number of choices of
a’. Note that a’ = 9"a = 9a since h fixes B; pointwisely. As {a} € y|p,, we see
{d'} € 9y|op, = ylop,. As g fixes z and y, it fixes x — y = { By, Ba} setwisely. So
9B, € {By, By}. It follows that {a'} is in y| 5, or y|p,. By (7.1), we see {a’} equals
{a}, {b}, By — {a} or By — {b}. So the number of choices of @’ is at most four.
Therefore |G, 2| < 4n. O

We have following criterion for a subgroup system P over a subgroup H C G
to have the property that all strongly antisymmetric P-schemes are discrete on all
xeds.

Theorem 7.3. Let G, n, and S’ be as above, and let H be a subgroup of G. Suppose

P is a subgroup system over H satisfying the following conditions:

1. H,,H,, € Pforallz,y € 5"

2. Hypyor € Pforallz,y,z € S"and T C H, 2 satisfying |H, ,z| < 4n and
1 <|T| < dsym(4n).

Then all strongly antisymmetric P-schemes are discrete on H, for all x € S'.

Proof. Let C = {Cy : H € P} be a strongly antisymmetric P-scheme. We
want to prove that C is discrete on H, for all x € S’. As G is generated by
transpositions on S, by Lemma 7.6, we just need to verify for all adjacent z,y € S’
that (1) H,,, H,, H,, € P, and (2) C|g, and C|y, are discrete on H, ,. Fix adjacent
x,y € S’. Note that (1) follows from the first condition in the theorem. So it
remains to prove that C|p, is discrete on H,, (the claim for C|, is symmetric).

This obviously holds if x = y. So assume = # y.

We claim that for all z,w € H,y C G,y, there exists a sequence of elements
Ug, - - -, uy € Gy such that ug = z, u; = w and w;_1 ~, u; for i € [t]. To see this,
note that we can choose distinct elements wu, . . ., u; such that ug = z, u; = w, and
fori € [t], u;_1 is sent to u; by some g; € G, such that g; is in either of the following

two cases:
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1. g; is a transposition on S fixing the blocks of x setwisely, or

2. g; exchanges two blocks of z while fixing the other blocks of x pointwisely.

This is because G, is generated by such permutations g;. Furthermore, if g; is in
the latter case, we may assume x — u;_1 # * — u;. To see this, note that u; | and
u; are adjacent to z since y is adjacent to x. So there exist transpositions (a b)
and (a’ b') on S sending x to u,;_; and w; respectively. Choose By, By, B}, B} € «
such that a € By, b € By, a’ € Byand V' € B). Then z — u;_y = {By, B>} and
x—u; = {BY, B}}. Suppose x — u;_1 = x — u;. Then by exchanging a’ with ¢’ and

B with By if necessary, we may assume a,a’ € By and b, b’ € By. So we have

uisy = = {By, B} U{(B1 — {a}) U{b}, (B2 — {b}) U{a}}

and

u; = —{By, B} U{(B1 — {d'}) U{'}, (B, — {V'}) U{a'}}.
If a = a. Then u; = ¢ *)y;_; and we may replace g; by (b ') € G, which is in the
first case above. Similarly, if b = 0/, we may replace g; by (a @) € G,. Finally, if
a # a' and b # ', we insert u;, = (* “)y;_, into the sequence between w,;_; and u;,

so that u; = (b b/)ug. It follows that we may always assume u; _ ~, u; forall i € [t].

Let P’ := P|y, and C' := C|y,. By Lemma 7.6 and the previous paragraph, it
suffices to show, for all z, w € G,y satisfying z ~, w, that (a) H, ., H; 1, Hy 2.0 €
P’,and (b) C'|(n,), and C’|(p,),, are discrete on (H,). ,,. Fix such z, w € G,y. Note
that 2z and w are adjacent to x since y is adjacent to x. It follows from Lemma 7.8
that |H, ,w| C |G, w| < 4n. Then (a) follows from the two conditions in the

theorem.

It remains to show that C'|(p,), is discrete on (H,).,, (the claim for C'|(g,), is
symmetric). Let P” := P’|(y,).. By the second condition of the theorem and
the fact |[H, . w| < 4n, we have Hy, .yur € P” for all T C H,.w satisfying
1 <|T'| < dsgym(4n). This means that P” contains the system of stabilizers of depth
dsym(4n) with respect to the action of H, , on H, ,w. By Corollary 6.3 and the
fact |H, ,w| < 4n, we see all strongly antisymmetric P”-schemes are discrete on
(H,):.w. Finally note that C'|(f,), is strongly antisymmetric by Lemma 6.3, and

hence is discrete on (H.,), ., as desired. O

Note dgym(4n) < dsym(n) + O(1) by Lemma 7.2 and Theorem 2.1. Choosing
H = GG in Theorem 7.3, we obtain
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Corollary 7.3. d(G) < dsym(4n) + 2 < dgym(n) + O(1).

7.4 The natural actions of linear groups

In this section, we show that dgr,(n, q), dri(n, q), dpar(n, q), dpri(n, ) are equal
up to an additive constant. In addition, we prove an upper bound for dgy,(n, q),
slightly improving the trivial bounds.

Equivalence between various linear groups. We have the following theorem.

Theorem 7.4. For fi, fo € {dcL,drL, dpgL, dpri}, there exists a constant ¢ € N
such that f1(n,q) < fa(n,q) + c holds for all n € Nt and prime powers q. And if

f2 = da1, choosing ¢ = 6 suffices.

We break Theorem 7.4 into six inequalities, corresponding to the the arrows in the
following diagram.
GL(V) «—— TL(V)

!

PGL(V) < PI'L(V)

Fix n € NT, a prime power ¢ and a vector space V' of dimension n over F, from
now on. By Lemma 6.3 and the facts GL,,(¢) C I'L,,(¢) and PGL,(¢) C PT'L,(q),

we have

Lemma 7.9. d¢y(n,q) < dri(n,q) and dpgr(n, q) < dpri(n,q).

In the other direction, we have

Lemma 7.10. dr,(n, q) < dgL(n, q) + 2.

Proof. Let G = TL(V), S =V — {0}, and m = dgL(n,q) +2 > 3. Let P be
the system of stabilizers of depth m over GG with respect to the natural action of G
on S. Let C be a strongly antisymmetric P-scheme. Fix x € S. We want to show
that C is discrete on .. Let o be an element in F not contained in any proper
subfield of F,. By Lemma 2.3, it suffices to show that C is discrete on G5 .. Let
G act diagonally on S x S and let O be the G-orbit of (z, ar). By Lemma 7.6, it
suffices to prove, for all u,v € O, that (1) G,,G,, Gy, € P and (2) C|¢, and C|g,

are discrete on G, .
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Fix u,v € O. Note we have u = (y, fy) and v = (z,~vz) for some y, z € S and
B,v € Fy. And j3, are not contained in any proper subfield of F,. Let g € G,.
Then g sends By to 7,(3)y = By where 7, is the automorphism of F, determined
by g. So 7, fixes 3, i.e., 3 is in the fixed field of the cyclic group generated by 7,.
As (3 is not in any proper subfield of F,, we conclude that 7, is the identity. So
G, C GL(V). Wehave G, = Gy gy, Gy = G,z and Gy = Gy gy 2z = Gy gy 2
As m > 3, these subgroups are all in P.

It remains to prove that C|, is discrete on GG, (the claim for C|¢, is symmetric).
Let P’ be the system of stabilizers of depth m —2 over GG, with respect to the action of
G,onS. As G, C GL(V), we have d(G,,) < daL(n,q) = m — 2 by Corollary 6.3.
So all strongly antisymmetric P’-schemes are discrete on (G,,). = G,,,. Also note
P’ C Plg, since G, = G, p,. It follows that all strongly antisymmetric P|, -
schemes are discrete on GG, .. As C|g, is strongly antisymmetric by Lemma 6.2, it

is discrete on G, ,,, as desired. ]

Similarly, we have

Lemma 7.11. dpr(n, q) < dpar(n, q) + 4.

Proof. Let G = PTL(V), S = PV, and m = dgr(n,q) +4 > 5. Let P be the
system of stabilizers of depth m over G with respect to the natural action of G on S.
Let C be a strongly antisymmetric P-scheme. By Lemma 7.6, it suffices to prove,
for all (w,w’) € S, that C|g,, is discrete on Gy, . Fix (w,w’) € S?®. Again by
Lemma 7.6, it suffices to prove, for all (z,2') € (G,w')®, that C|g,,, is discrete
on Gy p o (note Gy 5, Gop pr, Gy oy € P since m > 3).

Fix (z,2") € (G,w')?. Choose representatives 0, %, %' € V — {0} of w, z and 2’
respectively. Note that w, T and 2’ are pairwise linearly independent over F, since
w, z, x" are distinct. Let  be an element in ¢ not contained in any proper subfield
of F,. Define §y = @ + ax # 0 and let y be the element in S represented by ¥.
Consider the diagonal action of G, , on S and let O be the orbit of (z’,y) under
this action. We have (Gy2)(2',y) = Guza'y € Pla, since m > 4. By Lemma 2.3,
it suffices to prove that C|¢,, , is discrete on (G 1)@ y). Let G' = Gy, 5. Applying
Lemma 7.6 to the action of G’ on O, we see that it suffices to prove for all u,v € O
that (1) &', G}, G, , € Ple and (2) Clgy, and C|;, are discrete on G, ..

Fix u = (2},11) = 9" («',y) and v = (2, y2) = (2, y) in O, where g1, g € G'.
Lift g to gy € TL(V). As g1 € G,, we have 9% = ci for unique ¢ € F). Define
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#, = 97 and §j; = 9§ so that they are representatives of 2/, and y; respectively.
Consider arbitrary g € G, = Gy ¢4 4,- We claim g € PGL(V'). To see this, lift g
to g € TL(V). Note that §; = 7 (@ + aF) = 90 + a; 917 where a;, = 75 (o) and
T, i8 the automorphism of F determined by g;. Here 9149 and 9 7 are collinear with
w and 7 respectively since g; € G, . And 9w, 9' T are linearly independent over IF,
since w and Z are linearly independent. As g € G, 5.2/, ,» We see that g scales I14p,
97 and §; = 910 + oy 9'7. Therefore 7;(c;) = oy, where 75 is the automorphism
of Fy determined by g. So o is in the fixed field of the cyclic group generated
by 7;. But ay = 75 () is not in any proper subfield of F,. It follows that 7; is
the identity. So we have § € GL(V') and hence g € PGL(V'). We conclude that
G, = PGL(V) w01 4,» and similarly G, = PGL(V')w 44,.y,- Moreover, observe
that g above scales w and Z by the same factor since g fixes y;. So it also scales any
vector in the span of w and = over IF,. We know %, is in this span and by the same
argument, so is fjo. So g fixes yo. This shows G, , = PGL(V )w 24/ 4,2, We then
have G, G, G, ,, € P|cr since m > 5.

It remains to prove that C| ¢, is discrete on 77, , (the claim for C|¢/, is symmetric). Let
P’ be the system of stabilizers of depth m —4 over G, with respect to the action of G/,
on S. As G, C PGL(V), we have d(G!)) < dpgr(n,q) = m — 4 by Corollary 6.3.
So all strongly antisymmetric P’-schemes are discrete on (G, )., = G, . Also note
P' C Pla, since G, = Gy 201 4, It follows that all strongly antisymmetric P|¢, -
schemes are discrete on G, . As C|g, is strongly antisymmetric by Lemma 6.2, it

is discrete on G’ | as desired. O]

u,v?

It remains to show the equivalence between GL(1') and PGL(V). To achieve this,
we need a lemma about pointwise stabilizers of the natural action of PGL(V') on
PV. Let T be a subset of PV. Foreach x € T, choose a representative & € V' —{0}.
Call a subset of T" dependent if the corresponding set of representatives are linearly
dependent over IF,. Clearly, this definition does not depend on the choices of the
representatives. Define the relation ~7 on 7' such that x ~p y iff there exists a
minimal dependent subset of 7' containing both = and y. It is easy to show that
this is an equivalence relation.# So it defines a partition of 7" into the equivalence

classes.>

4To prove transitivity of ~, consider ., 7, z € T such that z ~7 y and y ~7 2. Then 2 and y
(resp. y and z) are in a dependent subset T} (resp. T>) of T'. Then T U T5 is a dependent set. We

obtain a minimal dependent set containing x and z by removing elements in 73 U T5 — {x, z}.
>In the language of matroid theory, the dependent sets define a matroid on T, and the equivalent

classes are known as the connected components of this matroid.
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Let 7 denote the quotient map GL(V') — PGL(V'). We have

Lemma 7.12. Suppose T' is a subset of PV and Ty, ..., T, C T are the equivalent
classes with respect to ~r. For i € [k], let V; be the subspace of V' spanned by (the
representatives of) the elements in T;. Then g € GL(V) is sent to an element of

PGL(V)r under 7 iff g restricts to a scalar linear transformation on each V;.

Proof. Suppose g € GL(V) restricts to a scalar linear transformation on each V;.
Then obviously 7(g) fixes each T; pointwisely. So 7(g) € PGL(V)r. Conversely,
suppose 7(g) € PGL(V)r. Then for every x € T and its representative & €
V' — {0}, there exists a unique scalar ¢, € F* such that 97 = c,. We need to show
that for z, y in the same equivalence class 7T;, it holds that ¢, = ¢,. By definition,
there exists a minimal dependent subset of 7' containing both x and y. So we can
write
F=) b, ¢ €F forallvel,
vel

where [ is a finite set of linearly independent vectors v € V;, each v represents an
element v € T;, and y € I. As Z and all v € [ are scaled by g, they are scaled by

the same factor. So ¢, = ¢, as desired. O]

In one direction, we have

Lemma 7.13. dGL(n, q) < dpGL(TL, q).

Proof. Assume n > 1 as otherwise dgr,(n, ¢) = dpcL(n,q) = 1. Fix m € NT and
let P (resp. P’) be the system of stabilizers of depth m over GL(V) (resp. PGL(V))
with respect to the natural action of GL(V) on V' — {0} (resp. PGL(V) on PV)).
Fix x € PV and let & be a representative of Z in V' — {0}. Suppose C is a strongly
antisymmetric P-scheme that is not discrete on GL(V')z. We prove that there exists

a strongly antisymmetric P’-scheme that is not discrete on PGL(V),.

Define P” = {r~'(H) : H € P’} which is a subgroup system over GL(V'). We
claim P” C P, (see Definition 6.5). Consider H = PGL(V)r € P’, where
T C PV satisfies 1 < |T| < m. LetTy,...,T, C T be the equivalence classes
with respect to ~p. For i € [k], let V; be the subspace of V' spanned by (the
representatives of) the elements in 7;. And let W be the subspace of V' spanned by
(the representatives of) those in T, i.e., W = S_F  V;. Let H' := GL(V)y. Note
that ' = GL(V')p for any basis B of W over F,, and dimg, W < |T| = m. So
H' € P. We claim H' = up(r~*(H)) and 7' (H) C Ngro)(H').
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By Lemma 7.12, the group 7' (H) consists of g € GL(V/) that restricts to a scalar
linear transformation on each V;. So 7~ !(H) fixes W setwisely. Therefore we have
H' C n=Y(H) C Ngrv)(H'). Suppose H” is another subgroup in P contained in
7~ '(H). It has the form GL(V )y where W is a subspace of V. If W € W', there
exists a representative § € V' — {0} of some y € T such that § ¢ W’. Then there
exists g € GL(V) that fixes W’ pointwisely but sends 7 to a vector ¢ such that 7 and
¢’ are not collinear. Such an element g is in H” but not in 7~ (H), contradicting
the assumption H” C 7~ '(H). So W C W’ and hence H” C H'. Therefore H' is
the unique maximal subgroup in P contained in 7~ (H), i.e., H' = up(7 ' (H)).
By definition, we have 771 (H) € Pg. So P" C P,.

Note that GL(V); = up(7~}(PGL(V),)). By Lemma 6.10, the existence of C
implies that there exists a strongly antisymmetric P.-scheme that is not discrete
on 7 H(PGL(V),). As P" C P, there also exists a strongly antisymmetric P”-
scheme that is not discrete on 7~ *(PGL(V'),.). Finally, by Lemma 6.4, there exists a
strongly antisymmetric P’-scheme that is not discrete on PGL(V),, as desired. [

In the other direction, we have

Lemma 7.14. dpGL(n, q) < dGL(n, q) + 2.

Proof. Fix m € N7 and let P (resp. P’) be the system of stabilizers of depth
m + 2 (resp. m) over PGL(V') (resp. GL(V')) with respect to the natural action
of PGL(V) on PV (resp. GL(V) on V' — {0}). Suppose there exists a strongly
antisymmetric P-scheme C that is not discrete on PGL(V'),, for some x € PV, i.e.,
dpcr(n, q) > m+2. We prove that there exists a strongly antisymmetric P’-scheme
that is not discrete on GL(V),, for some y € V' — {0}, i.e., dgr(n, q) > m.

By Lemma 6.2 and Lemma 7.6, there exists u,v € PV such that the P|par(v),-
collection C |PGL(V)u is a strongly antisymmetric P|pGL(V)u—scheme and is not dis-
crete on PGL(V),,. Let @ be a representative of u in V' — {0}. The map 7 :
GL(V) — PGL(V) restricts to a map 7|gr(v), : GL(V )z — PGL(V),. The latter
map is surjective (and in fact bijective) since every element in PGL(V"),, can be lifted
to an element in GL(V);. Define P := {(7|arov),) '(H) : H € PlpcLvy, )
which is a subgroup system over GL(V');. By Lemma 6.4, there exists a strongly

antisymmetric P”-scheme C’ that is not discrete on (7|grv),) (PGL(V)y,0).

Let P be the system of stabilizers of depth m over GL(V); with respect to the
action of GL(V)z; on V' — {0} restricted from that of GL(V)). We claim that
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C P”. Consider arbitrary H € P. It has the form H = GL(V){ayur, where
< |T| < m. Let W be the subspace of V' spanned by @ and the elements in
T. Extend {@} to an F,-basis B = {4, xy,...,2,} of W. Then &k < m. Let
w=1u+x+ - +x, €V —{0}. Let B’ = BU {w} and let B’ be the subset of
PV consisting of the elements represented by those in B’. Then |B’| < m + 2 and
u € B'. So PGL(V) 3 € Plparv),. As B is abasis of I, the set B’ is a minimal
dependent subset and hence is the only equivalence class with respect to ~5/.. So
71 (PGL(V) /) consists of the elements in GL(1) that restricts to scalar linear
transformations on W. Then (7|arv),) * (PGL(V)5/) consists of the elements in
GL(V) that fixes W pointwisely, i.e., (7|crv),) " (PGL(V)5) = GL(V)ayur =
H. By definition, we have H € P”. So PCP

B
1

Recall that C’ is a strongly antisymmetric P”-scheme that is not discrete on the
subgroup (7|crv), ) (PGL(V)y.). Let o be arepresentative of vin V —{0}. Then
GL(V)as = (GL(V)a)s € P € P”. Note GL(V )45 C (TlaLvya) HPGL(V )y0).
By Lemma 2.3, we know C’ is not discrete on GL(V)z 5. As P C P’ there exists a
strongly antisymmetric PP-scheme that is not discrete on GL(V)z5 = (GL(V)a)s.
By Corollary 6.2, there exists a strongly antisymmetric 7’-scheme that is not discrete
on GL(V)3, as desired. O

Theorem 7.4 now follows from Lemma 7.9, Lemma 7.10, Lemma 7.11, Lemma 7.13,

and Lemma 7.14.

Upper bounds for dgp,(n,q). It is easy to see that we have two upper bounds for

dar(n, q):

1. dav(n,q) < (L) log(¢" — 1)+ 0O(1) = (M) n + O(1). This follows

log 12 log 12
from Corollary 7.1.

2. dgr(n,q) < n. This follows from Lemma 2.5 and the fact that the natural

action of GL,,(¢) has a base of size n.

The first bound is asymptotically better if ¢ € {2,3}. Otherwise the second one is
better. Now we prove another upper bound that slightly improves both of the two

bounds above.

Theorem 7.5. dgp,(n,q) < <1qu+1(01$2)/4) n+ O(1).
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Proof. Let G = GL,(q) and S = I} — {0}. Fix a positive integer m < n. Let P

be the system of stabilizers of depth m with respect to the natural action of G on S.
Suppose there exists a strongly antisymmetric P-scheme C = {Cy : H € P} thatis

not discrete on GG, for some x € S. We prove that m < (M%) n+ O(1).

By Lemma 7.3, there exists a subset T = {z1, .. xm} C S of cardinality m
such that C¢,. has a block B of cardinality at least 2< #)m*=0(m) We claim that
the elements z; in 7" may be assumed to be linearly independent: if they are not,
replace 7" by a set 7" of cardinality m such that (1) the elements in 7" are linearly
independent, and (2) the subspace spanned by 7" contains the one spanned by 7.
Then replace B with a block B’ of C¢,, such that 7, ¢, (B") = B. We have
|B'| > | B|. This proves the claim.

Note that Ng(Gr) is the setwise stabilizer of subspace spanned by 7. Therefore
No(Gr)/Gr = GL,,(q). By antisymmetry, the group Ng(Gr)/Gr acts semireg-
ularly on the set of blocks of C¢,,.. So we have

—_

m—

Gr\G| 2 |Ne(Gr)/Grl - |B] = 20557)m*
=0
On the other hand, note that G is the stabilizer of u = (zy,...,2,,) € Sm)
under the diagonal action of G on S™. By the orbit-stabilizer theorem, we have

|G\G| = , which is the number of m-tuples of linearly independent vectors
in V — {0}. Therefore |G7\G| = [T/, (¢" — ¢'). So we have

m—1 m—1
2(10g12 2 O(m H H q _ q
=0 1=0
Solving the inequality yields the desired bound. O

As g > 2, we have log ¢ + (log 12)/4 < (log 12)/2. So Theorem 7.5 is indeed an

improvement of the bound dgr,(n, q) < (folgglg > n + O(1) above.
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Chapter 8

GROUPS WITH RESTRICTED NONCYCLIC COMPOSITION
FACTORS

In this chapter, we consider the problem of factoring a polynomial f(X) € F [X]
using a lifted polynomial f where the Galois group of f has restricted noncyclic

composition factors.

Simple groups, composition factors, and CFSG. To formally state our result,
we first review some definitions and facts in group theory. A simple group is a
nontrivial group whose only normal subgroups are the trivial group and the group

itself. A composition series of a group G is a finite chain of subgroups
le}=HCH, C---CH, =G

such that for every i € [k|, H; ; is a maximal normal subgroup of H;, so that
H;/H;_; is simple. Such a series always exists when G is finite. The groups
H;/H; 4 are called the composition factors of G. It is a consequence of the Jordan-
Holder theorem that the set of the composition factors of GG does not depend on the

choice of composition series (see, e.g., [Lan02]).

Now suppose G is a finite group. The composition factors of G are finite simple

groups, which are classified by the classification of finite simple groups (CFSG):

Theorem 8.1 (classification of finite simple groups). A finite simple group is iso-
morphic to one of the following groups: a cyclic group of prime order, an alternating
group Alt(n) (n > 5), a classical group, an exceptional group of Lie type, or one

of the 26 sporadic simple groups.

See, e.g., [GLS94]. We do not describe these families of finite simple groups,
except mentioning that a finite simple group is a classical group if it has one of the

following forms (see, e.g., [KL90]):
PSL,(¢q), PSU,(q), PSp,(q) (neven), PQE(q) (neven), Q,(q) (n odd).

We denote by k(G) the maximum degree of the alternating groups that appear as

noncyclic composition factors of GG, and let £(G) = 1 if such alternating groups do
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not exist. Similarly, denote by () the maximum order of the classical groups that
appear as noncyclic composition factors of G, and let #(G) = 1 if such classical

groups do not exist.

Mainresult. Let[F,, Ajand K be as in Chapter 5. The main result of this chapter
is a GRH-based deterministic algorithm that factorizes f(X) € F,[X] using a lifted
polynomial f(X) € Ag[X], such that the running time of the algorithm is controlled
by k(G) and 7(G), where G = Gal(f/K,) is the Galois group of f over K.

Theorem 8.2. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X]of degreen € N* and a lifted polynomial f(X) € Ao[X]
of f with the Galois group G := Gal(f/K,) over Ky, computes the complete

factorization of f over B in time polynomial in n, log q, k(G)"°5*(@) and r(G).

For k € NT, denote by T';, the family of finite groups whose noncyclic composition
factors are all isomorphic to subgroups of Sym(k). It is known that a classical
group H is isomorphic to a subgroup of Sym(k) only if |H| = k°0°¢k) [Coo78].

Therefore we have

Theorem 8.3. Under GRH, there exists a deterministic algorithm that, given a
polynomial f(X) € F,[X]of degreen € N* and a lifted polynomial f(X) € Ag[X]
of f, computes the complete factorization of f over I in time polynomial in n, log q
and k'°5%, where k is the smallest positive integer satisfying Gal(f/Ky) € Ty. In

particular, the algorithm runs in polynomial time if k = 20(V1en),

Table 8.1: Known deterministic polynomial-time factoring algorithms for 'y,

k Reference
4 [Evd9o2]
o(1) [Evd92] + [BCP82]
20(Vlogn) Our result
n Goal

By Theorem 8.3, we have a deterministic polynomial-time algorithm that given
f(X), completely factorizes f(X) under GRH , provided that Gal(f/K,) € T, for
some k = 20(VIogn) (note that achieving & = n would fully resolve the problem of

deterministic polynomial factoring under GRH). Previously, such an algorithm was
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known only for bounded k: for k£ < 4 this follows directly from the deterministic
polynomial-time factoring algorithm for solvable Galois groups [Evd92] (see The-
orem 4.3 and Theorem 5.13). For k = O(1), it follows from the proof in [Evd92]
together with the bound in [BCP82] for the orders of primitive permutation groups.

See Table 8.1 for a summary.

Overview of the proof. We prove Theorem 8.2 using the generalized PP-scheme
algorithm in Chapter 5. If the input polynomial f is assumed to satisfy Condition 3.1,
we may also use the simpler algorithm in Chapter 3. These algorithms reduce the
problem of factoring f to the one of constructing a collection of (relative) number
fields such that the associated subgroup system P has the property that all strongly
antisymmetric P-schemes are discrete on a certain subgroup (see Theorem 3.9 and
Theorem 5.9).

We further reduce the latter problem to the case that the Galois group Gal(f/Kj) is
a primitive permutation group on the set of roots of f , using Theorem 4.2 and some
facts from group theory. Next we consider the following special kind of subgroup

systems.

Definition 8.1. Let G be a finite permutation group on a finite set S. For N € N,
define the subgroup system Pg n over G by

0A£UCS, zeS U CGyx
PG,N3:{GUUU’3 #Uc v }

S|, |Gy < N

We prove a sufficient condition for a subgroup system Pg x over a primitive permu-

tation group to have the desired property:

Theorem 8.4. Let G be a primitive permutation group on a finite set S. For suffi-
ciently large N = poly (k(G)%sm*G) (@), |S]) > |S|, all strongly antisymmetric

Pa, n-schemes are discrete on G, € P n forall x € S.

It is easy to see that the complexity ¢(Pg ) of Pg v is polynomial in N. We modify
the algorithm in Lemma 4.10 to construct a collection of (relative) number fields in
time polynomial in n, log ¢ and ¢(P¢ n) such that the associated subgroup system

is precisely Pg . Theorem 8.2 then follows from Theorem 8.4.

Finally, to prove Theorem 8.4, we apply the O’Nan-Scott theorem [LPS88] in per-

mutation group theory, which states that a finite primitive permutation group is in
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exactly one of the following five categories: almost simple type, affine type, diago-
nal type, product type, and twisted wreath type. We prove Theorem 8.4 by verifying
it in these five cases separately.

Outline of the chapter. In Section 8.1, we derive Theorem 8.2 from Theorem 8.4
using an algorithm that constructs the collection of (relative) number fields corre-
sponding to Pg . The rest of the chapter focuses on the proof of Theorem 8.4:
Section 8.2 describes the O’Nan-Scott theorem [LPS88] and the five categories of
primitive permutation groups. In Sections 8.3-8.6, we prove Theorem 8.4 for primi-
tive permutation groups of almost simple type, affine type, diagonal type and product
type respectively. We also address twisted wreath type at the end of Section 8.6
by reducing to the case of product type using an argument in [Pra90]. Finally, we

discuss possible directions for future research in Section 8.7.

8.1 Proof of the main theorem

We start by describing an algorithm SubgroupSystem that computes a (K, g)-
subfield system F given a number field K, an integer N € NT, and a polynomial
g9(X) € Ko[X] irreducible over Ky, such that the subgroup system associated with
F is exactly Pg v, where G = Gal(g/Kj).

The pseudocode is given in Algorithm 16. First compute the greatest integer
d € {0,...,deg(g)} subject to deg(g)? < N. Run the algorithm Stabilizers
in Lemma 4.10 on the input (Kj, d, g) to obtain a (K, g)-subfield system F’, and
let 7/ = F'. Next enumerate X € F' and the irreducible factors g, of g over
K. For each (K, go), let d’ be the greatest integer in {0, ...,deg(go)} subject to
deg(go)? < N, run the algorithm Stabilizers on the input (K, d’, go) to obtain a
(K, go)-subfield system F”, and add the fields in F” to F.!

The following lemma states that the subgroup system associated with F is precisely

PQN.

Lemma 8.1. Given a number field K, an integer N € N*, and a polynomial
9(X) € Ko[X] irreducible over K,, the algorithm SubgroupSystem computes
a (Ko, g)-subfield system F, such that the subgroup system associated with F is
precisely Pg n over G == Gal(g/Ky), where G is regarded as a permutation group

"We add a field to JF only if it is non-isomorphic to all fields in F over Ky, so that the fields in

F are always mutually non-isomorphic over K.
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Algorithm 16 SubgroupSystem
Input: number field Ky, N € N*, and g(X) € K,[X] irreducible over K|
Output: (K, g)-subfield system F

1: d <+ max{i € N:0 <7 <deg(g),deg(g)’ < N}

2: run Stabilizers on (K, d, g) to compute a (K, g)-subfield system F’

33 F+ F

4: for K € F' do

5: factorize g over K

6: for irreducible factor gy of g over K do

7: d + max{i € N:0 < i <deg(go),deg(go)' < N}

8: run Stabilizers on (K, d', gy) to compute a (K, go)-subfield system
F

9: for K’ € F" do

10: compute a relative number field K’ over K, such that K’ 2 K’

11: if /X is non-isomorphic to all fields in F over K, then

12: F < FU{K'}

13: return F

on the set of roots of g in the splitting field of g over Ky. Moreover, the algorithm

runs in time polynomial in ¢(Pg n) = N (M) and the size of the input.

Proof. Let S be the set of roots of g in the splitting field of g over K,. Let
d=max{i € N:0 < < deg(g),deg(g)® < N}. By definition, the subgroup
system Pg y consists of the pointwise stabilizers Gy, such that U is a nonempty
subset of S of cardinality at most d, and U’ is a subset of a Gy-orbit O C S satisfying
O]V < N.

Note that when we fix U’ = (), the groups Gy y» = Gy are precisely those in the
system of stabilizers of depth d with respect to the action of G on S. We construct

the corresponding fields by running the algorithm Stabilizers on (K, d, g).

Next consider the groups G where U’ # (. We enumerate K = L“U and
the irreducible factor gy of g over K. By Galois theory, the set of roots of gy is a
Gu-orbit O C S. Letd = max{i € N: 0 < i < deg(go),deg(go)’ < N}. We run
the algorithm Stabilizers on (K, d’, go) to construct the fields corresponding to
the subgroups (Gy )y = Guuur, where U' C O and 1 < |U’| < d'. Moreover, all

the groups GGy and the Gy-orbits in .S are enumerated. It follows that the subgroup



206

system associated with F is precisely Pg .

Finally, the fact ¢(Pg y) = N°W and the claim about the running time follow from
Lemma 4.2 and Lemma 4.10. [

We also need the following lemma, which states that restricting to a subgroup does

not increase the quantities k(G)°¢*(%) and 7(G') by much.

Lemma 8.2. Let G be a permutation group on a finite set S, and let G' be a
subquotient of G. Then k(G")'*2* &) and r(G") are polynomial in k(G)'#* &), r(Q)
and |S)|.

Proof. Let H' be a noncyclic composition factor G'. Then H' is isomorphic to a
subquotient of a noncyclic composition factor H of G, i.e., there exists a subgroup
H" of H and a normal subgroup N of H” such that H' = H”/N. Fix such H, H"
and N. We want to prove (1) if ' is an alternating group Alt(k’), then k'1°8* is
polynomial in k(G)1°8*(@) () and | S|, and (2) if H' is a classical group, then | H'|
is polynomial in k(G)"°8 %), r(G) and |S|.

By CFSG, the group H is either an alternating group or a group of Lie type (i.e.
a classical group or an exceptional group of Lie type). First assume H is an
alternating group of degree k < k(G). If H’ is also an alternating group, its degree
k' is obviously bounded by k. So k'18* < k(G)"°*(%) Now consider the case that
H' is a classical group of the form PSL,,(¢q), PSU,(q), PSp,,(q), PQE(q), or Q2,,(q)
over a finite field F, for some n € N*. We have |H'| = ¢®"*). Denote by (T
the minimal degree of a faithful permutation representation of a finite group 7'. It
was proven in [KP0O] that if T is a quotient group of T° with no nontrivial abelian
normal subgroup, then u(T) < p(T). As H' = H" /N is simple and noncyclic, we
have
p(H') = p(H"/N) < p(H") < u(H) < k.

On the other hand, it was shown in [Co078] that ;(H') = ¢®™ (see also [KL90,
Table 5.2.A]). So we have n = O(log k/ log q) and

|H'| = q9(n2) — [OUosk/logq) _ ;(()OUeBk(G))

Next assume H is a group of Lie type over a finite field IF;, and has Lie rank ¢.2 Then
|H| = ¢°@) [KL90, Table 5.1.A]. It is also known that H has a faithful projective

2Each finite simple group of Lie type has an associated Lie rank. See, e.g., [KL90, Section 5.1].
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linear representation H — PGL4(F,) of degree d = O((), where I, is the algebraic
closure of FF, (see [KL90, Proposition 5.4.13]). As H is finite, this also holds for
some finite field F in place of F,. Identify H” C H with a subgroup of PGL4(F).
Then H' = H"/N is a subquotient of PGL4(F"), and hence also a subquotient of
GL4(F). Choose the largest s € N* such that H' has a subquotient isomorphic to
Alt(s). Then Alt(s) is isomorphic to a subquotient of GL4(#"). On the other hand,
it is known that Alt(s) has a finite preimage in GL4(F’) only if s = O(d) [DM96,
Theorem 5.7A]. So we have s = O(d) = O(¢).

Suppose H is a classical group. If H' = Alt(s), we have s = (Ologt) —

|H|M) = r(G)°M. And if H' is a classical group, we have the obvious bound
[H'| < [H| < r(G).

Finally, suppose H is an exceptional group of Lie type. Then s = O(¢) = O(1). In
the case H' = Alt(s), we have s°¢° = O(1). So assume H' is a classical group of
the form PSL,,(¢'), PSU,(¢'), PSp,,(¢'), PQE(¢') or Q,,(¢') over a finite field IF,, for
some n € NT. Itis easy to see that H' has a subquotient isomorphic to an alternating
group of degree 2(n) (see, e.g., [LS03, Proposition 16.4.4]). So s = §2(n), which
implies n = O(1). Then pu(H') = ¢'© = ¢’©*) = |H’|°("). On the other hand,
we see above that u(H') < u(H) since H' is a subquotient of H and is a noncyclic
simple group. For the same reason, we have pu(H) < u(G) < |S|. It follows that
[H'| = |S|°0. O

Now we are ready to prove Theorem 8.2 under the assumption of Theorem 8.4.

Proof of Theorem 8.2. The first step is to reduce to the case that f is irreducible
over Ky, as in Chapter 5: Let p = char(FF,). Using Lemma 5.1, we compute an
integer D satisfying D = 1 (mod p) and a factorization of D - f into irreducible
factors f1, ..., fr € Ao[X] over K. Then we have f(X) = [T\, ¥o(f:)(X). The
Galois groups Gal(f;(X)/K,) are quotient groups of G = Gal(f/K;). So the set
of the composition factors of each f; is a subset of that of G. By replacing f (X)
with f;(X) and f(X) with ¢(f;) € F,[X] for each i € [k], we reduce to the case

that f is irreducible over K.

Choose sufficiently large N = poly (k(G)"°8*() r(Q), deg(f)) > deg(f). Assume
for a moment that the value of N is known to the algorithm. First consider the
case that (G acts primitively on the set of roots of f. We compute a (K, f )-
subfield system JF using the algorithm SubgroupSystem above. By Lemma 8.1,
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the associated subgroup system P over G equals P n. Then by Theorem 8.4 and
the fact dgym(k(G)) = O(log k(G)) (see Corollary 7.1), all strongly antisymmetric
P-schemes are discrete on G, € P for all roots z of f.

Now consider the general case, where the action of G may be imprimitive. We
run the algorithm GeneralAction in Theorem 4.2 to compute F, as well as a
tower of relative number fields Ko € K; C --- C K1 C K, over Ky and
9:(X) € K;_1[X] fori € [k], such that

1. K; is isomorphic to K; 1[X]/(g:(X)) over K; 1, and

2. the Galois group G; := Gal(L;/K;_1) acts primitively on the set of roots of
g; in L;, where L; is the Galois closure of K;/K; ;.

We implement the algorithm PrimitiveAction required in Theorem 4.2 using
the algorithm SubgroupSystem. The latter has an extra parameter /N, which is
chosen as above. For i € [k], let F; be the (K;_1, g;)-subfield system computed
by SubgroupSystem on the input (K; 1, N, g;), and let P; be the associated sub-
group system over ;. Note that the groups G; are subquotients of G. Then
by Theorem 8.4, Lemma 8.1, and Lemma 8.2, for all : € [k], all strongly anti-
symmetric P;-schemes are discrete on (G;), for all roots x of g;, provided that
N = poly(k(G)e*S) r(G), deg(f)) is sufficiently large. In this case, by Theo-
rem 4.2, all strongly antisymmetric 7P-schemes are discrete on G, € P for all roots

z of f, where P is the subgroup system associated with F.

Finally, we run the generalized P-scheme algorithm in Chapter 5 using the (K, f)-
subfield system F computed above, so that f is completely factorized by Theo-
rem 3.9. If f satisfies Condition 3.1, we may also use the simpler algorithm in

Chapter 3 and apply Theorem 3.9 instead.

The above algorithm assumes that the value of a sufficiently large integer N is
known. We may avoid this assumption by running the algorithm multiple times,
where N is initially a constant and is doubled each time, until f is completely

factorized. It only causes an extra factor of O(log V) in the running time. O]

8.2 The O’Nan-Scott theorem for finite primitive permutation groups
The O’Nan-Scott theorem for finite primitive permutation groups [LPS88] is one
of the most influential theorems in permutation group theory. In this section, we

describe this theorem and the related definitions.
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We start with the notion of the socle of a finite group:

Definition 8.2 (socle). The socle of a finite group G, denoted by soc(G), is the

subgroup generated by the minimal (nontrivial) normal subgroups of G.

Next we define the five categories of finite primitive permutation groups appeared
in the O’Nan-Scott theorem.

Almost simple type. Let 7" be a noncyclic finite simple group, so that its center
Z(T)is trivial. We identify 7" with the inner automorphism group Inn(7") C Aut(7))
via the isomorphism sending g € T to the conjugation h +— ghg~' (this map is

indeed an isomorphism since its kernel equals Z(7T") and hence is trivial).

We say a finite group is almost simple if it is isomorphic to a group G satisfying
T C G C Aut(T) for some noncyclic finite simple group 7. It is known that in this
case T' = soc(G) holds.

A finite permutation group of almost simple type is simply a finite primitive permu-

tation group that is also almost simple as an abstract group:

Definition 8.3 (almost simple type). A finite permutation group is said to be of

almost simple type if it is primitive and almost simple.

Affine type. Finite permutation groups of affine type are primitive groups arising

as subgroups of general affine groups that contain all the translations:

Definition 8.4 (affine type). A finite permutation group is said to be of affine type if
it is primitive and permutation isomorphic to a subgroup G of a general affine group
AGL(V) acting naturally on a finite-dimensional vector space V over a prime field
F,, and G contains the subgroup of translations Vi={z—az+u:uecV}C
AGL(V).

For example, Lemma 6.19 states that finite primitive solvable permutation groups

are of affine type.

Diagonal type. Let 7" be a noncyclic finite simple group and let £ > 2 be an
integer. Consider the subgroup A of Aut(7)*, defined by

A= {(ar,...,a;) € Aut(T)* : a;Inn(T) = a;Inn(T) for all 4, j € [k]}.
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The group Sym(k) acts on A by permuting the k coordinates, sending (ay, . .., ax) €

Ato (az-1(1),-..,0z-1()). So we can form the semidirect product
W := A x Sym(k).
Also define the subgroups M, D C W by
M:=In(T)*CACW

and
D :={(a,...,a)7 :a € Aut(T),m € Sym(k)} C W.

Then W acts on the right coset space D\ W by inverse right translation. Permutation

groups of diagonal type arise as subgroups of W:

Definition 8.5 (diagonal type). A finite permutation group is said to be of diagonal
type if it is primitive and is permutation isomorphic to a group G satisfying M C

G C W acting on D\W by inverse right translation, where D, M, W are as above.

Example 8.1 (holomorph of a noncyclic finite simple group). Let 7" be a noncyclic
finite simple group. We may form the semidirect product Hol(T") := T x Aut(T)
with respect to the natural action of Aut(7") on T". The group Hol(7') is called the
holomorph of T. By identifying T (as a set) with the left coset space Hol(T") /Aut(T)
via the bijection 7" — Hol(T")/Aut(T’) sending g € T to gAut(T’), we see that the
action of Hol(7") on Hol(7")/Aut(T") by left translation is equivalent to its action
on the set T defined by "1/ = b9 for h, i/ € T, g € Aut(T). By the following

lemma, this is an example of finite primitive permutation groups of diagonal type.

Lemma 8.3. Hol(T') is a finite primitive permutation group of diagonal type on T3

Proof. The action of Hol(7T") on T is obviously transitive. It is faithful since
Hol(T). = Aut(T) acts faithfully on 7. To prove that Hol(7") is primitive, we
want to show that Aut(7") is maximal in Hol(7"). Consider any group G satisfying
Aut(T) € G C Hol(T). Thekernel of G under the quotient map Hol(7") — Aut(T)
is a normal subgroup of 7', and hence is either {e} or 7. So GG equals either Aut(7T')
or Hol(T"). Therefore Hol(T") acts primitively on 7.

3Lemma 8.3 holds more generally for any group G satisfying 7' x Inn(T') € G C Hol(T).
In an alternative formulation of the O’Nan-Scott theorem, such a group G is said to have type HS
(holomorph of a simple group). See, e.g., [PLN97]. We do not use this notation in the thesis.
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Now define the groups D, M, W, A as above with respect to T" and k = 2. For
g € T, denote by 7, € Inn(7") the conjugation by ¢g which sends z € T to
grg~'. Define the map p : Hol(T) — A via p(gh) = (1,h,h) for g € T,
h € Aut(T). It is straightforward to check that p is a well defined injective group
homomorphism and M C p(Hol(T")). The action of A on D\W by inverse right
translation thus induces an action of Hol(7") on D\W, which is transitive since
M C p(Hol(T')). The stabilizer of De € D\W with respect to this action is
p~ 1 (DN A) = Aut(T) C Hol(T), which is exactly the stabilizer of e € T with
respect to the action of Hol(7") on 7. By Lemma 2.1, the action of Hol(T") on T’
and that on D\W are equivalent. The lemma follows by definition. [

Product type. Let H be a primitive permutation group on a finite set [' of almost

simple type or diagonal type. Let k > 2 be an integer. Define the wreath product
W := HSym(k) = H* x Sym(k),

where Sym (k) permutes the k factors of H*. The group W has a natural primitive
wreath product action on T'* where H* acts coordinatewise and Sym (k) permutes

the coordinates. Also define
M :=soc(H)* CW.
Permutation groups of product type arise as subgroups of IV:

Definition 8.6 (product type). A finite permutation group is said to be of product type
if it is primitive and is permutation isomorphic to a group G satisfying M C G C W

acting on T'* via the primitive wreath product action, where M, W, T, k are as above.

Twisted wreath type. Let 7' be a noncyclic finite simple group. Let P be a
transitive permutation group on [k] where k£ > 2. Denote by Map(P, T) the set of
the maps from P to T". Suppose ¢ : P, — Aut(T) is a group homomorphism from
the stabilizer P, of 1 € [k] to Aut(T"). Define

B:={f €Map(P,T): f(pg") =""(f(p)) forallp € P,q € P},

which is a group under coordinatewise multiplication. The group P acts on B via

(*f)(px) = f(z), or equivalently

Pf)(x) = f(p~tz)  forallp,xz € P, f e B.
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It is easy to check that this is a well defined action.# So we can form the semidirect
product G := B x P with respect to this action. The group G is also called the
twisted wreath product with respect to the data (T, P, ¢), denoted by T twr, P
[Neu63; DM96].

Finite permutation groups of twisted wreath type are defined as follows.

Definition 8.7 (twisted wreath type). A finite permutation group is said to be of
twisted wreath type if it is primitive and is permutation isomorphic to a group
G = T twry, P acting on the left coset space G | P via left translation, where T, P,

and ¢ are as above.

The O’Nan-Scott theorem. Now we are ready to state the O’Nan-Scott theorem

for finite primitive permutation groups [LPS88].

Theorem 8.5 (O’Nan-Scott theorem). A finite primitive permutation group is of
exactly one of the following types: almost simple type, affine type, diagonal type,
product type, and twisted wreath type.

Schreier conjecture. We conclude this section by mentioning the fact that the
outer automorphism group of every finite simple group is solvable. This is known
as the Schreier conjecture, and is now known to be true as a result of CFSG. See,
e.g., [DM96].

Theorem 8.6. The outer automorphism group Out(T) of every finite simple group

T is solvable.

8.3 Almost simple type

In this section, we prove Theorem 8.4 for finite primitive permutation groups of
almost simple type. Our proof is based on the work on the minimal base sizes of
such permutation groups, including the work on Pyber’s base size conjecture, and

the constant bounds for non-standard actions.

Pyber’s base size conjecture. Recall that a base of a permutation group GG on
a finite set S is a subset 7' C S satisfying G = {e}, and the minimal base size

b(G) is the minimum cardinality of a base of G. By the orbit-stabilizer theorem, we

“For example, the map P f is indeed in B for p € P and f € B since (°f)(p'q™!) =
Fo ™) =) = U (E)P) forall p' € Pand g € Pr.
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have the lower bound b(G) > log |G|/ log |S|. Pyber’s base size conjecture [Pyb93]
asserts that this is asymptotically tight if G is primitive:

Conjecture 8.1 (Pyber’s base size conjecture). Let GG be a finite primitive permuta-
tion group on a finite set S. Then b(G) = O(log |G|/ log |S|).

There has been extensive work on Pyber’s conjecture [Ser96; GM98; GSS98; LS02;
Ben05; Faw13; LS14; BS15]. Recently, Duyan, Halasi, and Mar6ti announced a
proof of this conjecture [DHM16].

We only need the special case of the conjecture for almost simple type, which is
verified in [Ben035].

Theorem 8.7 ( [Ben05]). Let G be a finite primitive permutation group of almost
simple type on a finite set S. Then b(G) = ©(log |G|/ log |S|).

Bounds for non-standard actions. We also need a result on non-standard actions
of primitive permutation groups of almost simple type. Recall that an action of a
symmetric group Sym(n) is standard if it is equivalent to the action on the set of
k-subsets of [n] for some k& € [n], or the action on an orbit of the set of partitions of
[n], induced from the natural action of Sym(n) on [n] (see Chapter 7). And we say an
action of Alt(n) on a finite set S is standard if it is restricted from a standard action
of Sym(n) on S. Analogously, one can define standard actions of a classical group
which, roughly speaking, are actions that permute subspaces (or pairs of subspaces
of complementary dimension) of the natural module. See [LS99; BurO7] for the
rigorous definition. Finally, an action of a primitive permutation group of almost

simple type is non-standard if it is not a standard action.

It was conjectured in [Cam92; CK93] that the minimal base sizes of non-standard
actions are bounded by an absolute constant ¢ € N. This conjecture was proved
by Liebeck and Shalev [LS99].5 We state the following weaker form of this result,
where we do not distinguish standard and non-standard actions of classical groups.

This weaker form is sufficient for our goal.

Theorem 8.8. Let G be a finite primitive permutation group G of almost simple
type, and let T' = soc(G). Then one of the following holds:

5In addition, a chain of papers [Bur07; BLS09; BOW10; BGS11] shows that the minimum
possible value of the constant c is 7.
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1. G is permutation isomorphic to a symmetric group or an alternating group

with a standard action.
2. T is a classical simple group.

3. b(G) < ¢, where ¢ € N is some absolute constant.
See [L.S99, Theorem 1.3] for the original statement.

Proof of Theorem 8.4 for almost simple type. Now we are ready to prove The-
orem 8.4 for a primitive permutation group G of almost simple type. In fact, we

prove it in the following general form which applies to any subgroup H C G.

Lemma 8.4. Let G be a primitive permutation group of almost simple type on a
finite set S, and let H be a subgroup of G on S. Then for sufficiently large N =
poly (k(G) @), (@), |S]) = |
discrete on H, € Py n forall x € S.

, all strongly antisymmetric Py n-schemes are

Proof. Let T = soc(G) and P = Py . Consider the three cases in Theorem 8.8.
First assume G is permutation isomorphic to a symmetric group Sym(k) or an
alternating group Alt(k) with a standard action. Note k < k(G). Wehave H,,,, € P
for all 2,y € S provided N > |S|%. We also have Hy, yoy € P forall z,y,z € S
and U C H,,z satisfying |H, 2| < kand 1 < |U| < dgym(k), provided that
N = k(G)Mdsym(k(@)) is sufficiently large. The lemma holds by Theorem 7.2 in

this case.

Next assume 7 is a classical simple group. Then |T'| < r(G). It is also known by
CFSG that |Out(T")| = O(log|T|) (see [Con+85]) and hence |G| < |Aut(T)| =
IT|°M0 = r(G)°M, By Lemma 2.5 and Theorem 8.7, we have

d(H) < b(H) < b(G) = O(log |G/ og |S])

and hence |S|%¢) = |G|PM) = 7(G)°W). Tt follows that for sufficiently large
N = r(G)®*Y), the subgroup system P contains the system of stabilizers of depth
d(H). So the lemma also holds in this case.

Finally, in the last case of Theorem 8.8, we have d(H) < b(H) < b(G) < ¢, and
the lemma holds for N > |S|°. O

Choosing H = (G in Lemma 8.4, we have
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Corollary 8.1. Theorem 8.4 holds for finite primitive permutation groups of almost
simple type.

8.4 Affine type
In this section, we prove Theorem 8.4 for finite primitive permutation groups of

affine type. The following definitions are needed.

Definition 8.8 (irreducible / primitive linear group). A group H C GL(V) is said to
be an irreducible linear group on V' if H does not fixes any subspace W C 'V other
than {0} and V. And H C GL(V) is said to be a primitive linear group on V' if it is
an irreducible linear group, and V' cannot be written as a direct sum V' = @le Vi

such that k > 1 and H permutes the direct summands V;.

The following fact is well known (see, e.g., [Sup76, Section 1.4]).

Lemma 8.5. Let G be a finite primitive permutation group G of affine type on a
vector space V over a prime field F,,. Then the stabilizer Gy C GL(V") of the origin

0 € V is an irreducible linear group on V.

We prove Theorem 8.4 for affine type by studying the stabilizer of the origin. In
the following, we first discuss the case that this stabilizer is a primitive linear group

(over IF},), and then the case of (possibly imprimitive) irreducible linear groups.

Primitive linear groups. Our analysis is based on the work [LS02; LS14] on

bases of primitive linear groups. We start with the following definitions.

Definition 8.9 (fully deleted permutation module [KL90]). Fix a finite field ¥, and
k € N*. Define

E(k,q) :={(a,...,a): aEIF}CIF
M(k,q) = {(al,.. ak)EFq:al—l—---—i-ak:O},
U(k,q) := M(k,q)/(M(k,q) " E(k, q)).

Let Sym(k) act on IF’; by permuting the k coordinates, which induces an action on
U(k,q). We call U(k, q) the fully deleted permutation module for Sym(k) over IF,,.

Definition 8.10 (tensor product of linear groups). Let V1, ...,V be vector spaces
over afinite field F,,. Let Gy, . .., Gy, be finite groups where G; C GL(V;) fori € [k].
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Define an action of G| X - -+ X Gy, on the tensor product U := V] ® --- ® V}, (over
F,) by letting

(g1, g’“)a1®---®ak:gla1®---®g’“ak

and extending to all tensors multilinearly. This gives a linear representation p :
Gy X -+ x Gy = GL(U). Write g ® -+ @ gx for p(g1,-..,9r) € GL(U). And
write G1 ® - -+ ® Gy, for p(Gy X - -+ x Gy) C GL(U), called the tensor product of
Gi,...,Gj (over Fy).

We need the following structure theorem in [LS14] on primitive linear groups. See

[LS14, Theorem 1] for a more detailed statement.

Theorem 8.9 ([LS14]). Let p be a prime number, V a finite-dimensional vector
space over Fy,, and G a primitive linear group on'V. Choose the largest power q of p
such that V' can be identified with a vector space V (q) over F, and G C T'L(V (q)).
Let H := G N GL(V(q)) act on V(q). Then there exists an absolute constant
C € N such that either b(H) < C, or V(q) can be identified with a tensor product

over I, t
V(g) = QR U(ki,q) @ Wo @ R W,
i=1 j=1

where k; > 5%and U (k;, q) is the fully deleted permutation module for Sym(k;) over
IF, for i € [s], and W} is vector space of dimension d; € N over F, for 0 < j <.

Moreover, in the latter case, the group H is a subgroup of
s t
i=1 j=1

acting on V (q) that satisfies the following conditions:

1. Fori € [s], the group Sym(k;) acts faithfully on U (k;, q) (see Definition 8.9).7
2. Dy C GL(Wy) acts on Wy and b(D,) < C.

3. For j € [t], the group D; acting on W is the normalizer in GL(W;) of one
of the quasisimple classical groups SLq,(q;), SUyq, (qjl»/Q), Spa, (4j):Q4,(q;) S

5The condition k; > 51is implicitin [LS14]. If k; < 5, we may always remove the factor U (k;, q)
by replacing Wy with U (k;, ¢) ® Wy (see [LS02, Lemma 3.3]).

"We regard Sym(k) as a subgroup of GL(U(k,q)) via the faithful linear representation
Sym(k) — GL(U(k, q)).
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GLg,(qj).¢ Here [y, is a subfield of F,, and we identify GLy,(q;) with a
subgroup GL(W}) C GL(W;) for some vector space W; C W over F,; by
fixing an ¥, -basis of W that is also an F-basis of W

4. H contains the group @);_, Alt(k;) @ {e} ® ®§.:1 D§°°), where D™ denotes

J
the last term in the derived series of D;.

The following lemma implies that the group D; in Definition 8.9 for each j € [t] is
a subgroup of I GLy; (¢;). For its proof, see [KL90, Proposition 4.5.1].

Lemma 8.6. Suppose F,, C F,, and G C GLy(q) is one of the quasisimple
classical groups SLd(qO),SUd(qé/2),Spd(q0),Qd(qo) C GL4(q0) € GL4(q). Then
Nery(g)(G) C FyGLa(qo)-

For convenience, we also make the following definition.

Definition 8.11 (primary tensor). Use the notations in Theorem 8.9 and assume
b(G) > C. So W is identified with the tensor product

s t
QU (ki q) @ Wo @ Q) W;
i=1 Jj=1

over I, by Theorem 8.9. We say an element v € V — {0} is a primary tensor if « is
a pure tensor, i.e., T = U] ® -+ @ Uy @ Wy ® w1 R - -+ ® wy, where u; € U(k;,q)
fori € [s] and w; € W; for 0 < j <, and in addition,

1. fori € [s], u; € U(ki,q) is represented by an element in M (k;,q) C IF’(; (see
Definition 8.9) that has exactly two nonzero coordinates, and
2. for j € [t], w; € W; has the form w; = cw); where c € F* and w) € W] (see

Definition 8.9).

In addition, for two primary tensors x,y € V — {0}, we write x ~ y if x and y
can be written as tensor products of vectors satisfying the above conditions and they

differ at no more than one vector u; or w;. In other words, we can write

T=U Q@ - QUus Wy X -+ Wy

8 For the definitions of these classical groups, see, e.g., [KL90; Asc00]. A group G is quasisimple
if it equals its commutator subgroup and its inner automorphism group is simple, or equivalently, if

it is a perfect central extension of a simple group [Asc00].



218

and either

Y= ® - @U_1 QU QU1 @ Qus @UWy @ -+ Qwy
for some i € [s] and u}; € U(k;,q), or

Y= ® QU QW ® -+ QWj_1 @W; @ Wi & - @ w

for some 0 < j < tandw; € Wj, so that the vectors u; (resp. u;) and w; (resp. w;)

satisfy the above defining conditions of primary tensors.

Note that in Definition 8.11, a vector space M (k;, q) is spanned by vectors with
exactly two nonzero coordinates, and IV; is spanned by vectors in W; over F,. So
any € V can be written as a finite sum of primary tensors. Also note that for any
two primary tensors x,y € V' — {0}, there exists a finite sequence of primary tensors

xg, ..., x5 € V — {0} such that xy = z, vy, = y, and x;_; ~ x; for all ¢ € [k].

Now we are ready to prove the following analogue of Theorem 8.4 for subgroups of

primitive linear groups over [F,,.

Lemma 8.7. Let G be a primitive linear group on a vector space V over [F,, as
in Theorem 8.9, and let G' be a subgroup of G on V. Then for sufficiently large
N = poly(r(G),|V]) > [V
on Gl € Py forallz € V.

, all strongly antisymmetric Pgr n-schemes are discrete

Proof. Use the notations in Theorem 8.9. Fix o € F that does not lie in any proper
subfield of IF,,. First assume b(H) < C. Let B C V be a base of H of cardinality
at most C'. Pick a nonzero element z € B. Then B N {«az} is a base of G since
G.o: CGNGL(V(q)) = H. Sod(G) < b(G) < C+1. Thenfor N > |V|F1 all
strongly antisymmetric P¢r y-schemes are discrete on G!, € Pgr y forall x € V,

as desired.

So assume b(H) > C. Then we have V(q) = Q;_; U(ki,q) @ Wy ® ®§:1 W;
and H C ®;_, Sym(k;) ® Dy ® ®;_, D; as in Theorem 8.9. Let P = P v and
let C be a strongly antisymmetric P-scheme. Let N > |[V|*so that G, ., € P
for all z,y,z,w € V. Fix z € V. We want to prove that C is discrete on G/,. By

1
T,ox”

Lemma 2.3, it suffices to prove that C is discrete on G

Consider the diagonal action of G’ on V' x V, and let O be the G'-orbit of (z, ax).
The elements in O are of the form (y, By), where y € V and 3 € F is a conjugate
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of o, i.e., B = 9aforsome g € Gal(F,/F,). Also note that for any distincty, z € V,
the difference z —y can be written as a finite sum of primary tensors. By Lemma 7.6,

it suffices to prove, for all distinct y, z € V whose difference z — y is a primary

!

. X . . _ !
tensor and conjugates 3, € F of o, that C|G;ﬁy isdiscreteon Gy 5, . .. = G 5, ..

Fix such y, z, 5, .

! / !/ _ / ! _ / _ !/
Let HH = G'NH. Then G 5 = H and G, 5, . = H, , = H, , . Sowe want
to prove that C|yy; is discrete on H, ,_,. Note that every element in the H,-orbit of

z —y is aprimary tensor. As noted after Definition 8.11, for any two primary tensors
u,v € V—{0}, there exists a finite sequence of primary tensors z1, . . ., x € V—{0}
such that zy = u, 2, = v, and x;_; ~ x; for all ¢ € [k]. Again by Lemma 7.6,
it suffices to prove, for all primary tensors u,v € V — {0} satisfying u ~ v, that

vy Hyww = Gy gy € P)- Fix such
u,v. Suppose u = u; ® + -+ ® us @ Wy ® - -+ ® wy; where u; € U(k;, q) for i € [s]
and w; € W, for 0 < j < ¢ satisfy the conditions in Definition 8.11.

. . / / _
Clm, is discrete on H, , , (note H, , =

First consider the case that v has the form
U:Ul®"'®Ur71®uga®ur+1®“'®Us®w0®"'®wta

where r € [s] and u, € U(k,,q) is represented by a vector u,. € M(k,,q) with
exactly two nonzero coordinates. Let n := [H, ,v[. We prove a bound on n.
Consider an element g € H,, ,. By Theorem 8.9, we may write g = g1 ® - - ® g, ®
ho® - - ® hy where g; € Sym(k;) fori € [s]and h; € D; for 0 < j <t. As g fixes
u, we know g, € Sym(k,) sends u, to cu, for some ¢ € IF;. As k, > 5 and u, has
exactly two nonzero coordinates, either g, fixes u, and ¢ = 1, or g, swaps the two

nonzero coordinates of u, and ¢ = —1. From Yu = w, it is easy to see that
W= @ @U_1 U, @Ui1 QU @ Wy D -+ ® wy).

So ¢ and Y u). determine 9v. The number of possible values of ¥"u/. is bounded by
Sym (ky)uy| < |[Sym(k,)u,| < k7. It follows that n = |H, v| < 2k?. Also note
that |V| > |U(k,,q)| > ¢" 2 and hence k, = O(log|V|). Let N > ndsym(®) =
V|90, Then P| m,, contains the system of stabilizers of depth dsy (n) with respect

. / / . . / .
to the action of H, , on H, ,v. So C|H;,u is discrete on H, , . as desired.

Next consider the case that v has the form

V= Q- QUs QWy Qwy R -+ @ wy



220

for some wj € W,. Let B C W, be a base of D, of cardinality at most C, which
exists by Theorem 8.9. For any subset 7" of W), define

T:={w® Qu0i@u® - Qu:acT}CV.

Consider g = 1 ® - ® gs @ ho ® -+~ ® hy € (H, )5 where g; € Sym(k;) for
i€ [s]and h; € D;for 0 < j <t. As g fixes every element in B, we see hg € Dy
scales every element in B by the same factor ¢ € F*. Then ¢ 'hy € (Do) = {e}
and hence hy = c. Therefore h, scales every element in W, by the factor c.
So g € (H, . )y, It follows that (H, ,)z = (H, )y, Also note that H, ,
fixes W, setwisely. So (H},)y, is normal in H, . Let N > |V|°*3 so that
(Hy.)wy = Hypyyus € P- By antisymmetry of Clp; , we know Clp,  is
discrete on (H, ,)y,. By Lemma 2.3, it is also discrete on H, , , 2 (H, ,)y,» as

yu,v

desired.
Finally, consider the case that v has the form
U:U1®---®us®wo®---®wr,1®w;®wr+1®...®wt

for some 0 < r < ¢ and w; € W, such that w, = cow,’ for some ¢, € F and
w; € W/. We claim that | H ,v| < gi". To see this, consider g = g1 ® - - ® g, ®
ho®---®hy € H,, where g; € Sym(k;) fori € [s] and h; € D; for 0 < j < ¢.
By Lemma 8.6, we have h, € F GL(W!). As g fixes u, we have ""w, = c,w, for
some ¢; € F7 . Then it is easy to see that

gv:Cfl(ul®---®us®wo®---®wr_1®hTw;®wr+1®---®wt)
-1
—U Q- QURUW R QW T W R W R+ D Wy

As h, € FYGL(W]), we may write h, = cyh,. for some c; € F; and h;. € GL(W]).
Note that b = ¢;'h, € GL(W!) C GL(W,) sends w, to ¢, c;w,. Then c¢;'c; €
F . Therefore ¢i 'h, = c;'cohl. € GL(W)). It follows that

[H, o] < GLW)w,| = |GLW)wy| < W] = ¢

as claimed. Let V' C V be the vector space over IF; spanned by the elements in H, ,v.
Let B C H, ,v be an F -basis of V'. Then |B| = dimg, V' < dimg, W, = d,.
Note ¢ = [D,[°0) = r(H)°W = r(@)°0. Let N > ¢ > |H] 0|*, so that
P| my,, contains the system of stabilizers of depth d, with respect to the action of
H, ,on H, v. Then (H, )y = (H,,)s € P. Note that H, , fixes V' setwisely,
and hence (H, )y is normal in H, . By antisymmetry of C|p;  , we know C|x;
is discrete on (H, ,)y.. By Lemma 2.3, it is also discrete on H, , , 2 (H, ,)v, as

y,u yu,v —

desired. ]
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Irreducible linear groups. Next we extend Lemma 8.7 to irreducible linear groups
over F,. For a group G C GL(V') and a subspace W C V, the setwise stabilizer
G wy acts on W, which gives a linear representation 7y : Gy — GL(W). Write
G|w for its image mw (Gwy) € GL(W).

We need the following lemma, whose proof can be found in, e.g., [Sup76, Sec-
tion IV.15].

Lemma 8.8. Let G be an irreducible linear group on a finite-dimensional vector
space V' # {0}. Then there exists a nonzero subspace W C 'V such that G|y is a
primitive linear group on W, and G permutes the subspaces in the set {W : g € G}.

We have the following generalization of Lemma 8.7.

Lemma 8.9. Let G be an irreducible linear group on a vector space V over IF,,, and
let G’ be a subgroup of G on'V. Then for sufficiently large N = poly(r(G),|V|) >
|V
reV.

, all strongly antisymmetric Pcy n-schemes are discrete on G, € Per v for all

Proof. Assume V' # {0} as otherwise the claim is trivial. By Lemma 8.8, we
may choose a nonzero subspace W C V such that G|y is a primitive linear group
on W, and G permutes the subspaces in the set Sy = {W : g € G}. Note
|Sw| = log|V|/log |W| = O(log |V|). We claim r(G|w) = poly(r(G),|V]). To
see this, consider a classical group H that is a composition factor of G'y-y. The
group G permutes the subspaces in Sy, which gives a permutation representation
p : G — Sym(Sw). Then H is either a composition factor of p(Gywy) or that
of Ker(p) N Gywy = Ker(p). In the former case, the group H is a subquotient of
Sym(Sy ). And Lemma 8.2 implies that | /| = r(H ) is polynomial in | Sy ['8 19w | =
[V]9M), In the latter case, we have |H| < 7(G) since Ker(p) < G. So in either case,
we have 7(G|w) < r(Gpwy) = poly(r(G), [V]).

Let P = Pary. Let N > |V so that G, . € P forall z,,z € V. Suppose
C ={Cy : H € P} is a strongly antisymmetric P-scheme. We want to show that
all strongly antisymmetric P-schemes are discrete on G/, for all z € V. Note that
for any x,y € V, we may choose a sequence of elements 2, ..., 2z, € S such that
20 = x, 2y = y, and for all i € [t], the vector z; — z;_1 is in YTV for some g € G. By
Lemma 7.6, it suffices to prove, for all z,y € V and g € G satisfying x — y € /W,

that C|¢, is discrete on G/, . Fix suchz,y € V and g € G.
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Let z = y — x. Note that &, | = (', .. Every element in (&', z is in a subspace 9w
for some ¢’ € G. Consider distinct u, v € G’ z that are in the same subspace IW.
Pick h,h' € G, such that u ="z and v = "'z. We claim that G/, b=, G, "' €
G, \G, are in different blocks of C¢r |G, By Lemma 7.5, it suffices to show that

/
RTR M

Clg, , and C|g,  are discrete on G We only prove it for C|¢;  as the claim for

Clq . is symmetric.

Note that &, ,, is a subgroup of ¢ sincew € YW and G permutes the subspaces

in the set Sy,. Define

{“'wy

P = {(GLoulyy)s: BCIW,(G,,)8 € P},

which is a subgroup system over G;,u]gfw.

that all strongly antisymmetric 7’-schemes are discrete on (G, |y, )v- Let N’ :=

By Lemma 6.4, it suffices to show

|N/|V|?]. Then P’ contains the subgroup system P¢: |, s with respect to the
ulgl

g
faithful action of G/, |, on 9TW. Note that Goulo
and the latter is a primitive linear group since G|y is a primitive linear group.
Also note G|, = G|w and hence 7(G|,,,,) = r(Glw) = poly(r(G), |V]). Ap-

plying Lemma 8.7 to G,

is a subgroup of G|,

7u|g/W -ye |g/W, we see that all strongly antisymmetric

. / .
Par, algt nr-schemes are discrete on (G, , [,y )v» and hence all strongly antisym-

metric P’-schemes are discrete on (G, [, )v, as desired. This proves the claim
that G', h~" and G, \h'~" are in different blocks of C¢;  |c given that u = "2 and
v = "7 are distinct elements in the same subspace IW.

/
xT

Consider an arbitrary block {G', ,g; ', ..., G, 9, '} of Ccy, ,|cr, of cardinality s €
N*. By the claim just proved, the elements 9" z, . . ., 9z are in distinct subspaces in
the set Sy. So s < |[Sw| = O(log|V]). Therefore we have m(s) = O(logs) =
O(loglog |V'|) by Theorem 7.1 (see Definition 7.3 for the definition of m/(-)). Choose
the largest m € N satisfying |Gz|™ < N. By definition, the subgroup system
Pl contains the system of stabilizers of depth m over G’, (with respect to the
action of G/, on G’ z). Lemma 2.7 and Theorem 6.1 then imply the existence of
a strongly antisymmetric m-scheme I1 = {Py,..., P,,} on G’z such that P, has
a block of cardinality s. Note |G’ 2| < |Sw]| - |W/|. And we have |Sy |™(*) =
(log |V|)CUesloglVD) — |1/|90) and |[W|™) = |W|C0elSwD) = |/|90) Then for
sufficiently large N = |V/[*(1), we have

|Gz < (1Sw] - W)™ < N,

and hence m > m(s). Theorem 7.1 then forces s = 1. So C|¢; is discrete on
¢ =,

z,y’

as desired. OJ
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Now we are ready to prove Theorem 8.4 for finite primitive permutation groups of

affine type.

Lemma 8.10. Theorem 8.4 holds for finite primitive permutation groups of affine
type.

Proof. Let GG be a finite primitive permutation groups of affine type on a vector
space V' over a prime field F,. Then the stabilizer G, C GL(V) of the origin
0 C V is an irreducible linear group by Lemma 8.5. Let V¥ C G be the group of
translations. Then G 22 V¥ x Gy and hence r(Gy) < 7(G).

Let C be a strongly antisymmetric P n-scheme. By Lemma 7.6, it suffices to prove
for all z,y € V that C|¢, is discrete on G, . Fix such z,y € V. By invariance of
C and the fact that G acts transitively on V', we may assume x = 0. So we want
to show that C|¢, is discrete on G ,,. This follows from Lemma 8.9 applied to the

irreducible linear group G on V' and the subgroup system Pg x|, over Gy. [

8.5 Diagonal type
In this section, we verify Theorem 8.4 for a finite primitive permutation group G
of diagonal type. By Definition 8.5, we may assume G is a permutation group
satisfying M C G C W and acting on a set S := D\W by inverse right translation,
where

A={(ay,...,ax) € Aut(T)" : a;Inn(T) = a;Inn(T) for all 4, j € [k]},

W = A x Sym(k),

M =TInn(T)FC ACW,

D ={(a,...,a)m :a € Aut(T),m € Sym(k)} CW
for a noncyclic finite simple group 7" and an integer £ > 2. The cardinality of .S is

(WI/|D] = [T

Let xy denote the element De € S, so that G,, = D N G. It is a consequence of
CFSG that every finite simple group is generated by at most two elements ([AG84]).
So we can choose r, s € Inn(T") — {e} that generate Inn(7") = T'. For g € Inn(T),
define a, := (g,€,...,e) € M C G. We have the following lemma.

Lemma 8.11. For U = {xq, “ g, “x0, 2o}, it holds that Wy = Sym(k);.

Proof. Note that

Wy =DnN arDaT_1 N asDas_1 N arsDa;;
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from which it is straightforward to see Sym(k); C Wy .

For the other direction, consider g = (a,...,a)m € D C Wy, where a € Aut(T')
and 7 € Sym(k). We have

atga, =a(a,... a)ta, = a, (a,...,a) a7 € D (8.1)

since a, 'Wya, C D.

First assume k& > 2. Suppose 7 sends 1 to ¢ € [k]. Note that all coordinates of a,
(resp. ™a,) are identity except that the first (resp. ith) coordinate is r # e. As k > 2
and a;'(a,...,a)"a,m € D, we musthave i = 1 and r~'ar = a. So 7 € Sym(k);.
The same argument using the fact a;'Wya, € D implies s 'as = a. Then a
commutes with (r, s) = Inn(7"). Note that the isomorphism 7" = Inn(7") sending
h € T to the inner automorphism x — hazh™! is an equivalence between the action
of Aut(7") on T and that on Inn(7") by conjugation. So a fixes T" pointwisely, which
implies a = e. Then we have g = m € Sym(k), as desired.

Next assume k& = 2. If 7 = ¢, we have a_'ga, = (r~'ar,a) € D by (8.1).

Yar = a, and the same argument using the fact a;'Wya, C D implies

So r~
s'as = a. Again we conclude that @ commutes with (r,s) = Inn(T), which
implies a = e € Sym(k);. Now consider the case 7 # e, i.e., 7 = (1 2) € Sym(2).

Note that the proof for the previous case m = e shows Wiy N A = {e}. Therefore

The lemma is trivial if |[Wy| = 1. So assume |Wy| = 2. Then Wy = {e, g}, where
g = (a,a)7 is as above. By (8.1), we have (r~ta,ar)r € D. So ara™ = r~%.
The same argument using the facts a;'Wya, € D and a,Wya,; € D implies

asa™! = s7! and arsa™' = (rs)™! = s7!r7l. On the other hand, we have

1 1

arsa™' = (ara=)(asa™') = r~1s7!. So r commutes with s. Then T' = (r, s) is

abelian, contradicting the assumption that 7" is a noncyclic finite simple group. [

We prove Theorem 8.4 for a finite primitive permutation group GG of diagonal type

in the following general form that applies to any subgroup H C G.

Lemma 8.12. Let G be a finite primitive permutation group of diagonal type on
S = D\W as above, and let H be a subgroup of G on S. Then for sufficiently
large N = poly(|S|) > |S
on H, € Py forallz € S.

, all strongly antisymmetric Py n-schemes are discrete
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Proof. Let P = Py n. By choosing N > |S|?, we may assume H,, € P for
all z,y € S. Let C = {Cy : H' € P} be a strongly antisymmetric 7P-scheme.
Define Z to be the set of elements g € M = Inn(7T)* such that g has exactly one
coordinate different from the identity. Note that g € Z iff ¢! € Z, and the elements
in Z generate M. Also note that M acts transitively on S. Then by Lemma 7.6,
it suffices to show that for all x € S and g € Z, the P-scheme C|y, is discrete on
H,o, € Plp,. Fixx € Sand g € Z. As M acts transitively on S, there exists
h € M sending z to . Let y := "(92) = """ z,. By invariance of C, it suffices
to show that C|p,  is discrete on H,, , € P|n,, .

Let ¢ := hgh~!, so that y = 9 z,. Note ¢’ € Z. Suppose the ith coordinate of ¢’ is
different from the identity. Choose U = {xg, “"z, o, “*x} as in Lemma 8.11,
and let U’ := MO0, As (14) C D fixes xo, we have xy € U’. By Lemma 8.11, we

have
Hy = Sym(k); " H = Sym(k); N Hy,. (8.2)

Note ¢’ € Ng(Sym(k);), and hence
Sym(k); = g'Sym(k)ig ™" € g'Dg"™" = g Wayg' ™' = W,

So Hy» C H,,,. We have Hy: € P provided that N > |S|IVl = |S|°0). By
Lemma 2.3, it suffices to prove that C| Ha, is discrete on Hy. By Lemma 7.6, it
suffices to show, for all A, h’ € H,,, that (1) HhU’uhlU/ € PlHIo and (2) C’HhU, is
oo e FiX hoh' € Hy,. We have H, € P|m,, provided that

N Z ’S‘th/Uh’U/| _ |S‘O(1).

discrete on H, oot o

So it remains to prove that C| Hi,, is discrete on H,, . Write h = br and
h' = b'm’ where b,/ € A and 7, 7" € Sym(k). As h € H,, C D, the k coordinates
of b are equal. So b commutes with Sym(k). By (8.2), we have

Huy = h(Sym(k); N Hyy)h ™" = Sym(k)=; N Hy,.
Similarly, we have H,/ , = Sym(k).,, N Hy, and

H, = Sym(k),ri 5 OV Hy,.

Ut

Letn := [Hny, : H, . We have

LU’Uh,U’]

n < [Sym(k)=; : Sym(k)., ] < k.

Also note k = log|S|/log|T| + 1 = O(log|S|). Consider the action of Hx,

on H \Hny, by inverse right translation. Each one-point stabilizer with

hU,Uh’U/
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respect to this action is a pointwise stabilizer of a set S’ C S of cardinality at

most |U’| = O(1). Choose sufficiently large N > nlU'ldsym(n) = pOlogk) — | g|O(1)

so that P| m,,, contains the system of stabilizers of depth dsym(n) with respect to

this action. Then all strongly antisymmetric P|g, -schemes, including C|y, ,are
U/ 'U/

discrete on H, hg ! e S desired. O

Choosing H = (G in Lemma 8.12, we have

Corollary 8.2. Theorem 8.4 holds for finite primitive permutation groups of diagonal
type.

8.6 Product type and twisted wreath type
In this section, we verify Theorem 8.4 for finite primitive permutation groups of

product type and those of twisted wreath type.

Product type. Suppose G is a finite primitive permutation group of product type.
By Definition 8.6, there exist an integer £ > 2 and a primitive permutation group
H on a finite set I" that is of almost simple type or diagonal type such that GG
is a subgroup of W := H } Sym(k) = H* x Sym(k) acting on S := I'*, and
M := soc(H)* C W is a subgroup of G.

We prove Theorem 8.4 for a finite primitive permutation group G of product type

in the following general form that applies to any subgroup G’ C G.

Lemma 8.13. Let GG be a finite primitive permutation group of product type on
S as above. Let G' be a subgroup of G on S. Then for sufficiently large N =
poly (K(G)m - 1(G),|S)) = |S
are discrete on G', € Per y forall x € S.

, all strongly antisymmetric Pcr n-schemes

Proof. Let P = Pgr . Choose N > |S|* so that G, , € P forall z,y,z € S.
Suppose C = {Cy : H € P} is a strongly antisymmetric P-scheme. Fix = € S.
We prove that C is discrete on G/,. Note that for any y, z € S, we may choose a
sequence of elements o, ...,y; € S such that yo = vy, y; = z, and for all i € [t],
the elements y;_q,vy; € S = I'* differ at exactly one coordinate. By Lemma 7.6,
it suffices to prove, for all y, z € S differing at exactly one coordinate, that C ]Gé is
discrete on (v, . Fix such y, 2 € S. Also note that all elements in G+ z differ from

y at exactly one coordinate. In particular, we have |G 2| < k|T'.
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Consider u, v € Gz differing from y at the same coordinate whose index is denoted
by i € [k]. Pick g,¢' € G} such that u = 92 and v = 9'2. We claim that
G,.97"G, ¢ € G, \G, are in different blocks of Ccr [c; € Pla,. By
Lemma 6.3 and Lemma 7.5, it suffices to verify that C |G§,,u and C|G;7U are discrete
on Gy, -

that C|g, , is a strongly antisymmetric P|¢;  -scheme by Lemma 6.3. We show that

We only prove it for C \G; , since the claim for C ‘G{, , is symmetric. Note

in fact all strongly antisymmetric P|;  -schemes are discrete on G, .. As G,
fixes y and u which differ at the ith coordinate, the image of G}, , under the quotient

map H ! Sym(k) — Sym(k) is contained in Sym(k);. Define
P:={(g1,. . .g)n€G,, :9i=¢e} CG,,.
Then P is a normal subgroup of G} .. Suppose v = (vy,..., ) € S = I'*. Define
S i=A(v1, .01,V V1, ) €S D0 € TH

The action of G, on S restricts to an action on 5" which factors through G :=
G,/ P. And the action of G on S’ is permutation isomorphic to H' on I, where
H' C H is defined by

H :={g9eH:(q,....90)7€G,,, g =9}

Let N' = | N/|S|?]. Note Pgy v+ € Ple, - By Lemma 6.4, we just need to prove
that all strongly antisymmetric P ys-schemes are discrete on G,. Equivalently,
we want to prove all strongly antisymmetric Pp ns-schemes (defined with respect
to the action of H' on I') are discrete on H, . Note H' C H where H is a
primitive permutation group of almost simple type or diagonal type on I'. If H
is of almost simple type, we have k(H) = k(soc(H)) < k(G) by Theorem 8.6
and similarly 7(H) = r(soc(H)) < r(G). Tt follows from Lemma 8.4 that all
strongly antisymmetric Py n/-schemes are discrete on H,, for sufficiently large
N = poly(k(G)®BmF&) 1(@),|S]). If H is of diagonal type, then we apply
Lemma 8.4 instead to conclude that all strongly antisymmetric Py y/-schemes are

/
Y,u,v°

discrete on H,, for sufficiently large N = poly(|I'|). So C|g; , is discrete on G

Therefore G, ,g~" and G, _¢'~" are in different blocks of C; _|cr , as claimed.

!
Yy

N*. By the claim just proved, the elements 'z, ..., %z differ from y at distinct
coordinates. So s < k. Then m(s) = O(logs) = O(logk) by Theorem 7.1 (see
Definition 7.3 for the definition of m(-)). Choose the largest m € N satisfying

Consider an arbitrary block {G’, .g;',..., G, g "} of Ca |ay of cardinality s €
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|G,2|™ < N. By definition, the subgroup system P|g; contains the system of
stabilizers of depth m over G}, (with respect to the action of G|, on (& z). Lemma 2.7
and Theorem 6.1 then imply the existence of a strongly antisymmetric m-scheme
Il ={P,..., Py} on G,z such that P, has a block of cardinality s. Note |G/ 2| <
k||, |S| = IT|%, and k = log|S|/log|T| < log|S|. Then for sufficiently large
N = |S|%M), we have

Gl = (KT < N

and hence m > m(s). Theorem 7.1 then forces s = 1. So C|¢ is discrete on G}, _,

as desired. n

Choosing G’ = GG in Lemma 8.13, we have

Corollary 8.3. Theorem 8.4 holds for finite primitive permutation groups of product
type.

Twisted wreath type. Suppose G is a finite primitive permutation group of twisted
wreath type. By Definition 8.7, we may assume G = B x P acting on S := G/ P

by left translation, where

e T'is a noncyclic finite simple group,

P C Sym(k) is a transitive permutation group on [k] for some integer k > 2,

 is a group homomorphism from P; to Aut(7T),

Bisthe group {f € Map(P,T) : f(pq~?') = “"(q)(f(p)) forallp € P,q € P}

under coordinatewise multiplication, and

e Pactson Bvia (f)(z) = f(p~'z) forp,z € P, f € B.

It turns out that G’ can be embedded in a finite primitive permutation group of
product type on S. This is explained in [Pra90, Section 3.6]. We provide a detailed
proof of this fact.

Lemma 8.14. Let GG be a finite primitive permutation group of twisted wreath type
on S = G/P as above. Then G is permutation isomorphic to a subgroup of a finite

primitive permutation group Hol(T) ! P of product type on S.



229

Proof. 1dentifying S = G/P with the set B via the bijection B — G/P sending
g € BtogP € G/P, we mayregard G = B x P as a permutation group on the set B
where B C G acts on B by left translation and P C G actsby (P f)(x) = f(p~'z) for
p,x € P, f € B. Pickgy,...,gx € Psuchthat%1 =i € [k]. Then g, ..., g form
a complete set of representatives of P/P;. We further regard G as a permutation

group on T* by identifying the set B with T* via the bijection B — T* sending
feBtw(f(q),...,f(gr) €Tk

The holomorph Hol(T") of 7' is a primitive permutation group of diagonal type on
T where the action is defined by "9k’ = h9h/ for b, € T and g € Aut(T) (see
Example 8.1 and Lemma 8.3). Denote by G’ the wreath product Hol(T") ! P acting
faithfully on the set 7" by the primitive wreath product action, i.e., Hol(T)* acts on
T* coordinatewisely and P C Sym(k) permutes the k coordinates. We claim that
G is permutation isomorphic to a subgroup of G’ on T*. To see this, note that a
permutation f € B C G of T* is the same as the permutation (f(g1), ..., f(gx)) €
T* <A Hol(T)* < G'. Now consider 7 € P C G and we show that it is also a
permutation in G'. For i € [k], the permutations 7' g; and 9.1, of [k] both send 1
to ”711', and hence 77 1¢, P, = gﬂ—liPl. So we can choose hy, ..., hi € P; such that
g = g,r71ihi_1 holds for all i € [k]. We claim that 7 € P C @, as a permutation

of T*, equals (¢(hy), ..., p(hy))m € G'. This is because for f € B, we have

- (f(ﬂ—_lgl)a ceey f(ﬂ-_lgk))
=("Hg1);-- - ("))
="(f(g1) -, [(gr))-

Here 7 in the last equation acts as an element of GG, whereas (¢(h1), ..., @(hg))m
is an element of G’. It follows that G = B x P is permutation isomorphic to a
subgroup of G’ on T*. As G acts primitively on 7%, so does G’. By definition, the
group G’ is a finite primitive permutation group of product type on T*. The lemma
follows. [

For the groups G = T'twr, P and G' = Hol(T') ¢ P in Lemma 8.14, we have
k(G) = k(G') and r(G) = r(G’) by Theorem 8.6. Then by Lemma 8.13 and
Lemma 8.14, we have
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Corollary 8.4. Theorem 8.4 holds for finite primitive permutation groups of twisted
wreath type.

8.7 Future research

In this section, we suggest some possible directions for future research.

Dependence on classical groups. As we have shown, the running time of the
factoring algorithm in this chapter is controlled by the alternating groups and the
classical groups among the composition factors of the Galois group. Nevertheless,
the exact relation between the running time and the classical groups is not fully
investigated. The bound we use for classical simple groups is simply the group
order 7(G), and a natural problem is to improve this bound. In the case of the
natural action of a general linear group G := GL,(q) on S := Fy — {0}, it yields
the bound 7(G) = |PSLy,(q)| = ¢°™"). Note that Corollary 3.2 or Corollary 5.2
gives the same bound |S|%(Cln(@) = |Sldar(ma) — (O0*) if we use the trivial
O(n) bound for dgr,(n, q) (see Section 7.4). This observation suggests that proving
dar(n, q) = o(n) is possibly the first step towards a faster factoring algorithm for

classical groups.

Factoring algorithms and P-schemes for various permutation groups. The
main results of this chapter demonstrate that the problem of deterministic polynomial
factoring may be much easier when the Galois group has a relatively simple structure.
In particular, the results are obtained for Galois groups with restricted composition
factors. Itis an interesting problem to see if similar results can be obtained for other

families of permutation groups under possibly different restrictions.

A related problem is proving the schemes conjectures (Conjecture 6.3) for more
general families of permutation groups. As we observed in Section 6.3, proving
these conjectures for various permutation groups are intermediate steps towards

proving the original schemes conjecture in [IKS09].

Connections with association schemes. Another approach is to exploit the con-
nections between our notion of P-schemes and association schemes. For example,
by drawing connections between m-schemes [IKS09] and association schemes, the
work [Aro+14] gave a factoring algorithm that finds a nontrivial factor of a re-
ducible polynomial f(X) € F,[X] of prime degree n in time poly(log g, n"1°¢¢)
under GRH, provided that n — 1 has an r-smooth divisor s satisfying s > \/n_/é +1.
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We have shown that P-schemes generalize m-schemes, in the sense that an m-
schemes is essentially a P-scheme with P chosen to be the system of stabilizers
of depth m over a multiply transitive group (see Theorem 2.1). Thus it is a cu-
rious question if the theory of association schemes can find more applications in

deterministic polynomial factoring within our framework of P-schemes.
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Appendix A

A UNIFYING DEFINITION OF P-SCHEMES

We present an alternative ring-theoretic definition of P-schemes, such that the three
defining properties (compatibility, invariance, regularity) are given in a unifying

way.

Ring Ind“K. Let G be a finite group and K be an arbitrary field of characteristic
zero. Define Ind® K to be the set of all the functions ¢ : G — K. We make it into
a commutative ring by defining addition and multiplication entry-wisely. Let G act
onitby (Y¢)(gh) = ¢(h), or equivalently

(“p)(h) = ¢(g~"h)
for g,h € G and ¢ € Ind°K.

For a subgroup H C @, the subring (IndGK )i of H-invariant elements consists
of functions ¢ : G — K taking a constant value on each right coset in H\G. So
(Ind“ K)™ is identified with the commutative ring consisting of all the functions

from H\G to K where addition and multiplication are defined entry-wisely.

We define inclusions, conjugations and trace maps between (Ind“ K)* for various

subgroups H C G:

e (inclusion) for H C H' C G, the ring (Ind® K)"" is a subring of (Ind® K)".
Define the map iy s : (Ind® K)#" < (Ind” K')" to be the natural inclusion.

e (conjugation) for g € G and H' = gHg™", define cj;, : (Ind“ K" —
(Ind® K)H to be the map sending ¢ to ¢~ .

e (trace map) for H C H’, define Try v - (Ind“K)? — (Ind° K)"’ to be the
map sending ¢ 10 -y 0.

Note that trace maps are indeed well defined: as ¢ € (Ind“K)" is fixed by H, the

function Y¢ depends only on the left coset g H, and the image Try 5/ (¢) does lie in

(Ind“ K)™', since for h € H' we have
h

"Trgw@)= | Y. ‘o|= > Mo= Y 9p=Tryy(o)

gHeH'/|H gHeH'/H gHeH'/H
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The third equality holds since if g ranges over a complete set of representatives for
H'/H, so does hg.

Subring Rp associated with a partition P. For a subgroup H# C G and a
partition P of H\G, define Rp as the subring of (Ind“ K')" consisting of functions
¢ : H\G — K taking a constant value on each block B of P.

The connection between these subrings and P-schemes is described by the following

theorem.

Theorem A.1. For a P-collectionC = {Cy : H € P},

e Cis compatible iﬁ”iH,H/(RCH/) C Re,, holds forall H, H' € Pwith H C H',

e C is invariant iff c¢; (Rc,,) € Rc,, holds for all H,H' € P, g € G with
H' = gHg™!, and

e Cisregular iff Try g/ (Re,) € Re,, holds for all H, H' € P with H C H'.
Proof. Make every ring (IndGK ) as well as R¢,, into a K-algebra by defining

scalar multiplication of K entry-wisely. Note that maps iy p, ¢y , and Try g are
K-linear. For H € G and B € Cp, define the function 05 : H\G — K by

1 xe€ B,
0 ¢ B.

53(1)) =

Then R¢,, is spanned by the functions dp over K where B € Cpy. So by K-
linearity, we have iy m/(Rc,,,) € Re,, iff iga/(dp) € Rey, forall B € Cpy, and

similar claims hold for c}}y g and Try .

Suppose C is compatible. Fix H, H € P with H C H’, and we check iy /(0p) €
Re,, forall B € Cyyp,i.e., the function iy g (6 p) takes a constant value on each block
of Cy for all B € Cys. By definition, its value at Hh € H\G equals ég(H'h) =
dp(m (HR)), which equals one if my (Hh) € B and zero otherwise. The claim

follows by compatibility of C.

Conversely, assume C is not compatible, i.e., for some H, H' € P with H C H’,
B € Cy, B' € Cy and elements Hh, Hh' € B, we have H'h = 7y (Hh) € B’
but H'W = g (HE) ¢ B'. We show that iy p(dp) € Re,,. By definition, we
have (ig p(dp))(Hh) = dp/(H'h) = 1 but (ig g (dp))(HK) = 0/ (H'R') = 0.
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So the value of iy ;/(dp/) is not a constant on the block B. Therefore iy 1/ (dp) &
Rey,.

The proof for invariance is similar. Suppose C is invariant. Fix H, H' € P,g € G
with H' = gH g™, and we check ¢y 4(0B) € Rey, forall B € Cyy, i.e., the function
Cir ,(0B) takes a constant value on each block of C; for all B € Cp. By definition,
we have cj; (0p) = ¢ "' 63 with respect to the action of G on Ind® K~ defined at the
beginning, where 0 is regarded as an element of Ind“ K. Then for Hh € H\G,

we have
(Chr4(08)) (HR) = (" 6p)(h) = 65(gh) = d5(H'gh) = b (cuy(Hh))

which equals one if ¢y (Hh) € B and zero otherwise. The claim follows by

invariance of C.

Conversely, assume C is not invariant, i.e., for some for H, H' € P, g € G with
H' = gHg ', B € Cy, B' € Cy and elements Hh, Hh' € B, we have H'gh =
cug(Hh) € B'but H'gh! = cy(HN) ¢ B'. We show that cj; ,(dp') € Rey,-
By definition, we have (¢} ,(0p/))(Hh) = dp:(H'gh) = 1 but (¢ ,(65/))(HR') =
dp(H'gh') = 0. Sothe value of ¢}; ,(dp) is not a constant on the block B. Therefore
Ciry(0B') & Roy-

Now suppose C is regular. Fix H, H' € P with H C H’, and we check Try p(dp) €
RCH, forall B € Cy, i.e., the map Try ;/(0p) takes a constant value on each block
of Cy for all B € Cy. By definition, we have Try g/ (0p) = ZgHeH,/H 955 with
respect to the action of G on Ind“ K defined at the beginning, where ¢ 5 is regarded
as an element of Ind“ K. Then for H'h € H' \G, we have

(Temw (Sp))(H'R) = Y (6p)(h)= > (" dp)h)= Y dnlgh)
gHEH' /H Hge H\H' Hge H\H'
=|{Hg € H\H' : Hgh € B}|
=|{Hg € H\G : Hgh € B, 7y g(Hgh) = H'h}|
=|{Hg € H\G : Hg € B,mw(Hg) = H'h}|,

which counts the number of elements in B mapped to H'h by 7y . By regularity,

this value is a constant when H'h ranges over a block of C'y, as desired.

Conversely, assume C is not regular, i.e., for some H, H' € P with H C H’,
B € Cy, B € Cys, and H'h, H'h' € B’, the number of elements in B mapped

to H'h is different from the number of those mapped to H'h’. As shown in
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the previous paragraph, these two numbers are precisely (Try p/(05))(H'h) and
(Trp p(0p))(H'R) respectively. So the value of Try g/(dp) is not a constant on
the block B'. Therefore Try 1 (05) € Re,,, - l

By Theorem A.1, we have the following alternative definition for 7P-schemes, which

is equivalent to the original one (Definition 2.4).

Definition A.1 (P-scheme, alternative definition). A P-collectionC = {Cy : H €
P} is a P-scheme if it has the following properties:

e (compatibility) iy z/(Re,,) € Re,, holds for all H, H' € P with H C H'.
e (invariance) c}Lg(chHgfl) C Rey,, holds forall H € P and g € G.
e (regularity) Try i (Rc,, ) € Re,,, holds for all H, H' € P with H C H'.

Remark. The reader familiar with the notion of affine schemes [Mum99] may recog-
nize the right coset space H\ G as (the underlying set of) the affine scheme associated
with the commutative ring (Ind“ K)*. More generally, each a partition P of H\G
determines a quotient set of /\G which is (the underlying set of) the affine scheme
associated with the subring Rp. It is known that the language of affine schemes and
that of commutative rings are equivalent.! Theorem A.1 is a manifestation of this

equivalence.

Therefore in principle, statements and proofs about P-schemes may be carried
out either set-theoretically or ring-theoretically. We stick to the more elementary

set-theoretic language in this thesis.

'Formally, this is known as the fact that the category of affine schemes is anti-equivalent to the

category of commutative rings. See, e.g., [Mum99, Section II.2, Corollary 1].
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Appendix B
PROOFS OMITTED FROM CHAPTER III

This chapter contains proofs that are omitted from Chapter 3.

Lemma 3.5. The partitions P(I) and the idempotent decompositions I(P) are well
defined. And for any idempotent decomposition I of O, the idempotents § € I
correspond one-to-one to the blocks of P(1) via the map § — Bs .= {Hg € H\G :

-1

9 (ig,r(6)) =1 (mod Qo)} with the inverse map B — §p.

Proof. We first show that P(7) and I(P) are well defined. For P(I) we note that
g_l(z’KL((S)) depends only on the coset Hg, since ir 1,(6) € ix 1 (Ok) is fixed by
H. The relation g_l(z’K,L(d)) = g/_l(iK,L((S)) (mod Q) for all § € I is obviously

an equivalence relation on H\G, and hence defines a partition of H\G.

For I(P), we fix B C H\G and show that t := > _q ;.5 70q, does lie in the
image of i 1, so that 65 = i;(}L(t) is well defined. By Corollary 3.1, each coset
x = Hg corresponds to a maximal ideal 3, = (YQy N Ok)/pOk of Ok. By
Lemma 3.3, there exists a unique idempotent § of Oy satisfying 6 = 1 (mod *B,)
forz € B,and 06 = 0 (mod B,) for x ¢ B. It follows that for g € G, the residue
of i 1, (§) modulo Qy equals one if Hg € B and zero otherwise. The same holds
for ¢ by definition: for g € G, the residue of ¢ modulo /9 equals one if Hg € B
and zero otherwise. As all the maximal ideals of the semisimple ring O;, have the
form YQ, where ¢ € G, we have t = i k..(0), as desired. Furthermore, by choosing
B = H\Gandt=igr(l) = 1, we see that 3 %05, = 1. It follows that /(P)

is a well defined idempotent decomposition of O.

For the second claim, we first check that the sets By form a partition of H\G and
the map 0 — B;s is injective. To see this, note that if an element H g lies in both
Bs and By for distinct d, 6" € I, then 971(1,K’L(5>> = gfl(iK,L(é/)) =1 (mod Qo)
by definition. But then g (ix.(60")) = 1 (mod Qy), contradicting the fact that
00" = 0. So the sets By are disjoint and the map § — Bjs is injective. Furthermore,

each Hg € H\G lies in at least one set B; since

Zg_l(im((;)) = (iK,L (Z 5)) =1 (mod Qo). (B.1)

oel ol
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So the sets Bs form a partition of H\G.

It remains to show that the partition formed by the sets B is P(I). Assume two
elements Hg, Hg' are in the same set By, for some dy € I, then g_l(z’KL((SO)) =
9 ixp(5)) = 1 (mod D) by definition. By (B.1), we have ¢ (ix..(6)) =
gH(iK’L(é)) =0 (mod Q) for § € I — {&y}. So Hg, Hg' are in the same block
of P(I).

Conversely, assume two elements Hg, Hg' are in the same block of P(I). So
gfl(iKL(é)) = gH(iK,L(é)) (mod Q) for all § € I. And by (B.1), we have
-1 /—1

T (igr(0) =7 (ikr(d)) =1 (mod Qq) for some &y € I. Then Hg, Hg' €
Bs,. So the partition formed by the sets Bj is exactly P([). O

Lemma 3.6. The map I — P(I) is a one-to-one correspondence between the
idempotent decompositions of Oy and the partitions of H\G, with the inverse map
P I(P).

Proof. 1t suffices to show that the map B + dp is a one-to-one correspondence
between the subsets of H\G and the idempotents of Oy, with the inverse map
§ — Bs. Fix BC H\G and let § = 0p = iz, (deG:ngB 9690>. We verify that
Bs = B: for Hh € H\G, we have

o) = Y "0y,

geG:HgeB

Note that the residue of 9 d5, modulo Qg equals one if i = g, and zero otherwise.
So the residue of (ix.2(6)) modulo Qg equals one if Hh € B and zero otherwise.
It follows by definition that By = B.

It then suffices to show that the map 6 — Bj is injective. Consider two distinct
idempotents 6,6’ of Ok. As & # &, there exists a maximal ideal Q, of O, for
which i 1(6) # ix..(6') (mod ?9y) holds. Equivalently, we have ¢ (if.1(6)) 2

9 (ig.1(68") (mod Qq). Then exactly one of 9 (ir.(9)), 9 (ir.(9")) equals one
modulo . So H g is in one of Bs, By but not in the other. Therefore Bs # By. [

Lemma 3.9. There exists a polynomial-time algorithm ComputeResidue that takes

the following data as the input

o a number fields K, a prime number p, and o € O given as an element of K,
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o the outputs of ComputeQuotientRing (see Lemma 3.8) on the inputs (K, p),
i.e., the quotient ring Ok, a maximal p-orders O’ the inclusion O — K,

and the quotient map O — Ok,
and computes o + pOy € Ok.

Proof. Let d = [K : Q]. Suppose the structure constants of K and O’ are given
in the Q-basis B of K and the Z-basis B’ = {zi,...,x4} of O} respectively.
Then we may assume the structure constants of O is given in the F,-basis {z; +
POk, ..., x4+ pOg} of Ok. The goal is computing the constants cy, ..., cq € F,

determined by
d

a+pOx = cix;+ pOk). (B.2)

i=1
Note that B’ is also a Q-basis of K. The change-of-basis matrix M from B’ to B is
given by the inclusion O — K, whose entries are rational numbers of polynomial
size. So the entries of M~ are also rational numbers of polynomial size. We apply
M~! and write « in the basis B':

d
o= E riT;, r; € Q.
i=1

For i € [d], write r; in the form a;/b; where a;, b; are coprime integers and b; > 0.
Let m be the least common multiple of all the denominators b;. Then we have
mo = Zle mr;xz; with the coefficients mr; € Z. So ma € O C Ok. Passing to
the quotient ring O, we obtain
d
ma + pOg = Zc;(:lcZ + pOk), ¢; = mr; mod p € F,,
i=1
Suppose m = p*m’ where e € N, m’ € Z and p t m’. We claim e = 0. Assume to
the contrary that e > 0. For some iy € [d], we have p¢|b;, but p** 1 b;,. Then p { a;,
since a;,, b;, are coprime. So p { mr;,. Then ¢, # 0 and hence ma + pOg # 0.
Butas o+ pOg € Ok, we have ma + pOy € mOk = 0, which is a contradiction.
So e = 0and p fm. Let s be the multiplicative inverse of m mod p € F,. We

compute s and let ¢; = sc, for i € [d], which satisfy (B.2). O

Lemma 3.11. There exists a polynomial-time algorithm ComputeRingHom that

takes the following data as the input
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e number fields K, K', an embedding ¢ : K — K', and a prime number p,

e the outputs of ComputeQuotientRing (see Lemma 3.8) on the inputs (K, p)
and (K', p) respectively, !

and computes the ring homomorphism ¢ : O — O induced from ¢.

Proof. Let d = [K : Q]. Suppose the structure constants of O} is given in the
Z-bases {z1,..., x4} of O}. Then we may assume the structure constants of Ox
is given in the F,-bases {z1 + pO, ..., x4 + pO} of Ok.

For i € [d], we need to compute ¢(z; + pOf) € Ok. Note that ¢(z; + pOy) =
¢(z;) + pOg. First compute ¢(z;) € K’ using the inclusion O — K and the
embedding ¢ : K — K’ given in the input. Here ¢(x;) is actually in O since x; €
O'. C Ok. Use the algorithm ComputeResidue to compute ¢(z;) + pOg+ € Oy,

and we are done. ]

Lemma 3.16 ([IKS09; Iva+12]). There exists an algorithm FreeModuleTest that
given a semisimple F,-algebra A and a finitely generated A-module M, returns

a zero divisor a of A in polynomial time, such that a is zero only if M is a free
A-module.

Proof. We maintain a submodule N of M that is free over A. Initially N equals
{0} and we iteratively enlarge it. Each time we pick z € M — N and check if the
sum N + Az is a direct sum, i.e., if N N Ax = {0}. If so, we replace N with
N + Ax. Otherwise we find a nonzero element y € N N Az and a € A satisfying
y = ax, and return a. Note that in the latter case, the element « is indeed a zero
divisor: otherwise a would be invertible and hence x = a~1y is in N, contradicting

the assumption x ¢ N.

If N eventually becomes M, we conclude that M is free over A, in which case we

return zero. The algorithm clearly runs in polynomial time. [

Lemma 3.17. There exists an algorithm SplitByZeroDivisor that given

e a semisimple F,-algebra R, an idempotent decomposition I of R, and an

idempotent vy € 1,

IThat i, the quotient rings O ¢, O, the maximal p-orders O, O%, the inclusions Of, — K,
Ohe, — K', and the quotient maps O, — Ok, O, — Or.
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e the ring R := R/(1 — 7), the quotient map 7 : R — R, and a zero divisor
a+#0ofR,

replaces v € I with two nonzero idempotents 7,7, satisfying v = v1 + 72 in

polynomial time.

Proof. We pick an element a € R lifting a, i.e., 7(@) = a. Compute the ideal (@)
of R generated by a. As R is semisimple, we have (@) = (7') for some idempotent
~" of R. Compute 7’ by solving a system of linear equations using the fact that v/ is
the unique element in (@) satisfying 7'« = z for all z € (a). Finally we replace y

with 7/ and (1 — 7). It remains to show that v'y & {0,~}.

Note that 7(7') € R generates the ideal (a) of R, and hence 7(7’) is also a nonzero
zero divisor of R. But 7(y) =+ + (1 —9) = vy + (1 —7). Soy'y # 0. It
also follows that 7'y # ~ since otherwise we would have 7(7") =7y + (1 — ) =
v+ (1 —7) =1+ (1 — ), which is the unity of R and not a zero divisor. O

Lemma 3.18 ([R6n92]). Under GRH, there exists an algorithm Automorphism
that given a ring A isomorphic to a finite product of F, and a nontrivial ring

automorphism o of A, returns a zero divisor a # 0 of A in polynomial time.

To prove Lemma 3.18, we need the following lemma.

Lemma B.1 ([R6n92; Iva+12]). There exists an algorithm IteratedExp that, given
a semisimple F,-algebra A, a prime number { # p, and elements x,y in the
multiplicative group A* of order n, and n,, respectively such that n,, n, are powers

of { and n, > n,, returns a zero divisor of the form z* —y € A, k € N, in time

polynomial in log |A| and 0. In particular, zero is returned only if y is a power of x.

Proof. The algorithm is as follows: try to find ¥ € {0,...,¢ — 1} such that z* — y
is a zero divisor. If such an integer k is found, simply return ¥ — . Otherwise

raise x to its /th power and repeat.

To analyze the algorithm, note that there exists a maximal ideal m of A such that the
orderof z+m € (A/m)* is n,, and the order of y +m € (A/m)*, which we denote
by n;,, divides n,. Then 2"=/™ 4+ m and y + m are both primitive ny,-th roots of
unity in (A/m)* = F,. Then there exists k € {0,...,¢ — 1} such that z¥"=/" — y
is in m and hence is a zero divisor. Such a zero divisor is guaranteed to be found

. . / .
when z is raised to z"+/™ (or earlier). ]
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Proof of Lemma 3.18. For x,y € A linearly independent over I, at least one ele-
ment in the set {y — cx : ¢ € F,} is a nonzero zero divisor. If p < dimg, A, we
can find such an element in polynomial time by choosing x,y and enumerating c.
So assume p > dimp, A. In this case, the pseudocode of the algorithm is given in

Algorithm 17. Here id denotes the identity map on A.

Algorithm 17 Automorphism

Input: ring A isomorphic to a finite product of [F,,, automorphism o # id of A

Output: zero divisor a # 0 of A

I:n<+1

2: repeat

3: find z € A satisfying 0" (2) # =

4: if 0™(z) — z is a zero divisor of A then

5: return 0" (z) — z

6: until 0" = id

7: compute the least prime factor ¢ of n

8: o« o*

9: compute ¢, where d is the smallest positive integer satisfying /| p?—1

10: compute A ® [« and the inclusion i : A < A ® F,a sendingt € Atot® 1
11: compute the automorphism o ® 1 of A ® F« sendingt @ u € Atoo(t) @ u
12: pick an /th power non-residue v of F .

13: & A=/

14: compute a nonzero element r € A ® F 4 satisfying (0 ® 1)(z) = £z

15: if z is a not zero divisor of A ® Ide then

16: k <+ the largest factor of p¢ — 1 coprime to ¢

17: call TteratedExp with the input A ® F,4, ¢, ¥, and 2* to obtain a zero
divisor b of A ® Iy

18: T4 b

19: choose a € A — {0} such that i(a) is in the ideal (x) of A ® F

20: return a

The loop in Lines 2—-6 of the algorithm computes the powers 6" of o forn = 1,2, . ..
and tries to find z € A satisfying 0™ (z) # 2. The loop exits either when such an
element z is found, or when the condition o™ = id is satisfied. In the former case,
the algorithm returns the zero divisor 0™(z) — z # 0, and in the latter case, the

algorithm proceeds. Note that initially n = 1 and we have o # id by assumption.
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By assumption, we may identify A with a product [[!"; IF, where m = dimg, A.
For i € [m], let 9; be the element of A whose ith coordinate is one and the other
components are zero. So 0i,...,0,, are the primitive idempotents of A. The
automorphism o of A permutes these primitive idempotents, i.e., it is associated
with a permutation 7 of [m/] such that o/(d;) = dr(;) for i € [m]. By [F)-linearity of o
(which is automatic since F), is a prime field), we know o sends (z1,...,2,,) € A

to ((L’Tr—l(l), R ,{L'Trfl(m)).

Let H be the cyclic group generated by 7, and it acts on [m]. Assume the H-orbits
of [m] do not have the same cardinality. We claim that in this case a zero divisor
0"(z) — z # 0 is returned at Line 5 for some n < m. To see this, suppose O,
and O, are two H-orbits of distinct cardinalities n1, ny < m respectively. We may
assume n; < ng. Then ™ fixes all elements in O; but not all in Oy. So ¢™ # id.
If the loop returns a (nonzero) zero divisor at Line 5 in the nth iteration for some
n < nj then we are done. Otherwise, an element z satisfying 0" (z) — z # 0 is
found at Line 3 in the n4th iteration. Note that for any ¢ € Oy, the ith coordinate
of 0™ (z) — z is a zero, and hence 0™ (z) — z is annihilated by J;. It follows that

0™ (z) — z is a zero divisor and is returned at Line 5.

So assume all the H-orbits of [m] have the same cardinality and the algorithm
reaches Line 7. Then the order of o equals n. Line 8 replaces o with its (n//)th
power where / is the least prime factor of n. Then the order of o becomes the prime

number /. Note that ¢ < p sincen < m < p.

At Line 9, we compute the finite field IF,« where d is the smallest positive integer
satisfying £|p? — 1. Equivalently, the integer d is the (multiplicative) order of p in the
group (Z/¢Z)*. So we have d < |(Z/lZ)*| = ¢ — 1. Under GRH (or Hypothesis
(*) in the introduction), the field [F,,« can be computed in deterministic polynomial

time. It is the smallest extension of I, containing the primitive /th roots of unity.

At Line 10, we compute the [ q-algebra A ® [F,,« (where the tensor product is
taken over IF},) and the inclusion ¢ : A < [F,« sending ¢ € A to t ® 1. Suppose
{b1,...,by} is an Fp-basis of A and bb; = > ;" | c;jub, where ¢;j, € F,, then
A ® F,a can be defined as an Fjq-algebra in the Fq-basis {b; ® 1,...,b,, ® 1}
satisfying (b; ® 1)(b; ® 1) = > ;°, ciji(by @ 1). It follows from the universal
property of tensor products that this definition does not depend on the choice of the

basis. See, e.g., [AM69]. In particular, identify A with H:il IF, and then A ® F
is simply [ ", Fpa.
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AtLine 11, we compute [F «-linear automorphism 0 ® 1 of A®F,« sending t®@u € A
to o(t) ® u. It follows from the universal property of tensor products that such an
automorphism exists and is unique. At Line 12, we pick an /th power non-residue
of IF,«, which be done in deterministic polynomial time under GRH (or Hypothesis
(*) in the introduction). Then at Line 13, we compute { = v(pd_l)/ ¢, which is a

primitive /th root of unity.

At Line 14, we compute a nonzero element z € A®F 4 satisfying (c ®1)(z) = &x.
We claim that such an element z exists. To see this, note that as ¢ has order /¢, the
permutation 7 of [m| associated with o has an ¢-cycle (i; i3 --- iy). Then we can
choose z to be the element in A ® F,u = [}, F,« whose i;th coordinate is {7 for

J € [¢] and remaining coordinates are zero.

If the element x is a zero divisor of A®T 4, the preimage of the ideal (x) of AQ .
in A under the map i is strictly between {0} and A. In this case, we compute a
nonzero element a in it (or equivalently, an element « satisfying i(a) € (x)) at Line

19 and return it. Note that @ is guaranteed to be a zero divisor of A.

On the other hand, if z is not a zero divisor of A ® de, we replace it with a zero
divisor b # 0 in Lines 16-18: suppose p? — 1 = k{° where k is coprime to /. We
compute k at Line 16. As vy € F,q is an (th power non-residue, the order of *
is (¢ = (p? — 1)/k. As z is not a zero divisor, we have 2 € (A ® F,)* and its
order divides ¢°. Also note that o @ 1 fixes 7" (by F,u-linearity) and sends z* to
& ak #£ z*. So a* is not a power of 4*. By Lemma B.1, a zero divisor b # 0 of
A®]IF,q is obtained at Line 17 and we assign its value to 2. Then we obtain the zero
divisor a # 0 of A and return it at Line 19 as before. ]
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Appendix C
PROOFS OMITTED FROM CHAPTER V

This chapter contains proofs that are omitted from Chapter 5.

Lemma 5.1. There exists a polynomial-time algorithm that given p and a poly-
nomial f(X) € Ay[X] satisfying 1o(f) # 0, computes an integer D satisfying
D =1 (mod p) and a factorization of D - f into irreducible factors ﬁ over K.
Furthermore all of the factors f;(X) are in Ao[X].

Proof. Factorize f into irreducible factors ¢y, ..., gr over K, using polynomial
factoring algorithms for number fields [Len83; Lan85]. Note that coefficients of
each factor g; lie in Ky = Q[Y]/(h(Y")) but not necessarily in Ay = Z[Y]/(h(Y)).
Here a coefficient a € K| is represented by a unique polynomial r,(Y") € Q[Y] of

degree at most deg(h) — 1 such that @ = r,(Y) + (h(Y)). And o € A holds iff
the coefficients of r,(Y") are all integers.

For each factor ¢;, use r,, where o ranges over coefficients of g;, to compute
the smallest ¢; € Z and D; € NT coprime to p such that all the coefficients of
p®D;g; are in Ag. Compute an integer D € N7 such that D is a multiple of
Hle D; and D = 1 (mod p). Compute f; := p%D;g; for i = 2,... k and
fi = (" D/ T, D:)g1. Then the polynomials f;(X) are all in Ag[X].
It remains to show that the product of ﬁ equals D - f , which reduces to proving
S | e; = 0. Note that for all i € [k], the polynomial p* D;g;(X) is in Ag[X] but not
in pAy[X], since otherwise we may replace e; with ¢; — 1, contradicting the minimal-
ity of e;. The ideal pAo[X] is a prime ideal of A,[.X], since Ao[X]/pAo[X] = F,[X]
is an integral domain. Therefore

k k k

HpeiDigi(X> = (Hﬁ’) . <H Di) - F(X)

i=1 i=1 i

is not in pAg[X] either. So 3% e; < 0. Rewrite the equation above as

(Hp—m) ) (Hpeipigi(X)) = (H Di) -f(X).

As U(f) # 0, we have f(X) & pAo[X]. And the integers D; are coprime to p and
hence not in pAy[X] either. The equation above then implies Zle e; > 0. O
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Remark. An alternative way of proving Zle e; = 0 is to consider the localization
of Ay at the prime ideal pAy and apply Gauss Lemma (see [Lan02, Section IV.2]).
We leave the details to the reader.

Lemma 5.4. The partitions P(I) and the idempotent decompositions I(P) are well
defined. And for any idempotent decomposition I of Oy, the idempotents § € I

correspond one-to-one to the blocks of P(I) via the map
d +— Bs :={HgDgq, € H\G/D4q, : gil(iK,L(é)) =1 (mod Qo)}

with the inverse map B — Jp.

Proof. We first show that P(I) and I(P) are well defined. For P(/) we note
that gfl(iK,L(cS)) mod £, depends only on the double coset HgDg, since H
fixes i (8) € ik r(Ry) and Dg, fixes any element modulo £y. The relation
-1 g/—l

I (igp(0) =7 (ig.r(5)) (mod Qo) for all § € I is obviously an equivalence
relation on H\G/Dgq,, and hence defines a partition of H\G/Dgq,.

For I(P), we fix B C H\G/Dgq, and first show that

t:= Z 9550

9Dq EG/'DQO :HgDq,€B

is well defined and does not depend on the choices of the representatives g. Note
that for h € Dg,, the primitive idempotents g, and hégo correspond to the same
maximal ideal 9, = ", and hence are equal (see Lemma 3.3). So 8, is fixed by
Dy, . It follows that ¢ is well defined.

Next we prove t € ik 1 (Rk) so that g = i;&L(t) is well defined. By Lemma 5.3,
each double coset x = H gDq, corresponds to a maximal ideal

(“Q0 N Ok)/pOk

< NR
Rad(Op) K

P =

of Ri. Let d be the idempotent of Ry satisfying 6 = 1 (mod B,) for z € B,
and 0 = 0 (mod *B,) for + € B (see Lemma 3.3). It follows that iy ;(0) = 1
(mod ?Qo) if HgDq, € B and ix(6) = 0 (mod Q) if HgDgq, ¢ B. By
definition, we also have ¢t = 1 (mod “Qp) if HgDq, € Bandt =0 (mod ‘Qy)
if HDq, ¢ B. Sot = ik (0), as desired. Furthermore, by choosing B =
H\G/Dgq, and t = ig (1) = 1, we see that ZQEG/DQO 90q, = 1. It follows that

I(P) is a well defined idempotent decomposition of Ry.
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For the second claim, we first check that the sets B form a partition of H\G/Dq,
and the map 0 — B; is injective. To see this, note that if a double coset H ¢gDq,
lies in both B; and By for distinct §, 0" € I, then g_l(iK,L((S)) = g_l(z'KL((S’)) =1
(mod ) by definition. But then ! (ix.(60")) =1 (mod Qy), contradicting the
fact that 66’ = 0. So the sets Bs are disjoint and the map 0 — Bj is injective.
Furthermore, each HgDqg, € H\G/Dgq, lies in at least one set B, since

Zgil(iK,L(Cs)) = <iK,L (Z 5)) =1 (mod Qo). (C.1)

sel sel
So the sets Bs form a partition of H\G/Dgq,.

It remains to show that the partition formed by the sets B; is P(I). Assume

two elements HgDgq,, Hg'Dy, are in the same set Bs, for some d, € I, then

gfl(iKL(éO)) = glfl(iKL(éO)) = 1 (mod ) by definition. By (C.1), we have
1

I i r(8) =9 (igs(6)) =0 (mod Qo) ford € T—{8y}. So HgDgq,, Hg'Da,
are in the same block of P(I).

Conversely, assume two elements H gDq,, Hg'Dq, are in the same block of P(I).
So 9’1(1“(5)) = 9" (ix0(8)) (mod Qo) for all 5 € I. And by (C.1), we
/—1

have ¢ (@K 1(00) = 7 (igr(d)) = 1 (mod Q) for some &, € I. Then
HgDgq,, Hg'Dq, € Bs,. So the partition formed by the sets B is exactly P(I). [

Lemma 5.5. The map [ — P(I) is a one-to-one correspondence between the
idempotent decompositions of Ry and the partitions of H\G/Dq,, with the inverse
map P — I(P).

Proof. 1t suffices to show that the map B + dp is a one-to-one correspondence
between the subsets of H\G /Dy, and the idempotents of Ry, with the inverse map
d — Bs. Fix B C H\G/Dgq, and let 6 = 6. We verify that Bs = B. For h € G,
we have
"ix(9) = > "6,
9Dy €G/Day:HyDy, €B

Note that the residue of "¢ 05, modulo 9, equals one if hDq, = gDqy,, and zero
otherwise. So the residue of " (ix.(0)) modulo Qg equals one if HhDq, € B
and zero otherwise. It follows by definition that B; = B.

It then suffices to show that the map 6 — Bj is injective. Consider two distinct
idempotents 6,6’ of Ry. As & # &, there exists a maximal ideal ?Q, of R;, for
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which i 1 (8) Z ir 1 (8') (mod ?9y) holds. Equivalently, we have g_l(iKL(é)) =

1

9 (ig(0") (mod Qo). Then exactly one of gfl(iKﬁL((S)), gfl(iKﬁL((S’)) equals
one modulo ,. So H gDgq, is in one of B, Bs but not the other. Therefore
35 7& B(gl. [

Lemma 5.6. For any maximal ideal m of O /Rad(Ox), the group (o ;) generated

by ok ; acts transitively on the set of the maximal ideal of Ak ; containing m.

Proof. Let A = Og/Rad(Ok) and H = (0k ;). Equivalently, we want to prove
that H acts transitively on the set of the maximal ideals of A ;/mA ;, where the

action is induced from that on A ;.
We have a short exact sequence
0—-m—>A— A/m—0,
which by [AM69, Proposition 2.18] induces an exact sequence
m®p, Fi = Ag; = (A/m) @p, Fii — 0.
Also note that the image of m @, Fyi in A ; is mAg ;. Then we have
Agi/mAg,; = (A/m) @5, Fgi.

So we want to prove that H acts transitively on the set of the maximal ideals of
(A/m) OF, Fqi.

Suppose my, . .., m;, are maximal ideals of (A/m) ®p, F,: that form an H-orbit, and
01, ..., 0 are the corresponding primitive idempotents. Define ¢ := Zle 0; which

is a nonzero idempotent fixed by H. It suffices to prove ¢t = 1.
Note that we have the exact sequence
0= (A/mf - A/m5 A/m,
where 7 sends x € A to x? — x. It induces a sequence
0 — (A/m)" @p, Fp — (A/m) @5, Fyr = (A/m) @, Fy,

where 7’ sends z € (A/m) ®f, F,i to 0k ;(x) — x. This sequence is exact since [
is a flat F -module (see, e.g., [AM69, Proposition 2.19 and Exercise 2.4]). So we
have

(Afm) @x, Fy)" = (A/m)" @5, By =F, @5, F; 2 F,

and the only nonzero idempotent it contains is 1. It follows thatt = 1, asdesired. [
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Lemma 5.7. There exists a polynomial-time algorithm ComputeRings that given p

and a relative number field K over K, computes the following data

o a p-maximal order O} of K and the inclusion Oy — K,
o Ok and the quotient map O} — Ok,
o Ok /Rad(Ok) and the quotient map O — Ok /Rad(Ok),

o Ry and the inclusion Rx — Oy /Rad(Ok),

where O, O / Rad(@K), and Ry are encoded as algebras over F,, and O is

encoded as an algebra over 7.

Proof. First use Corollary 4.1 to compute an ordinary number field & isomorphic
to K and an isomorphism ¢ : K — K in some Q-basis of K. Apply Lemma 3.8
to K and p to compute Ok, O% as well as the maps O} — K and O} — Ok.
Compose O — K with ¢~ to obtain the map O}, — K.

Next we compute an F,-basis B = {x1,...,z,} of the radical Rad(Ox) C Ok
using Theorem 5.4. Extend B to an F,-basis B’ = {z1,..., 74, y1,...,y:} of Ok.
Compute ¢j; € F, fori,j € [t], k € [s] and d}; € F, for 7, j, k € [t] such that

YilY; = xk + Zdwyk fori,j € [t].
k=1

Then the structure constants of Ok /Rad(Ok) are given by df; in the F,-basis
{y1 + Rad(Ok), ..., y: + Rad(Ok)} of O /Rad(Of) since

(i + Rad(Ok))(y; + Rad(Ok)) Zd i + Rad(Ok)

holds for i, j € [t]. The map O — Ok /Rad(Ok) is given in the basis B’ which
sends each x; to zero and each y; to y; + Rad(@ K)-

Finally, we compute an IF,-basis of Ry in O /Rad(Of) by solving the system of IF .-
linear equations given by o = z. It also gives the inclusion Rx — O /Rad(Ok).

The structure constants of Ry can be computed from those of O /Rad(Of). O

Lemma 5.8. There exists a polynomial-time algorithm ComputeRingHoms that
given p, relative number fields K, K' over K, a field embedding ¢ : K — K’
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over Ky, and the outputs of ComputeRings (see Lemma 5.7) on the inputs (K, p)
and (K', p) respectively, computes the maps ¢ - O — O, ¢ - O /Rad(Ox) —
Ok /Rad(O:) and ¢ : R — Ry,

Proof. To compute the map ¢, we identify K and K’ with ordinary number fields
and apply Lemma 3.11: compute isomorphisms 7 : K — K and 7/ : K/ — K’
using Corollary 4.1 where K and K’ are ordinary number fields. Compute the
maps O} — K, O, — K' by composing O} — K, O}, — K’ with 7 and 7/
respectively. And compute the field embedding ¢’ = 7/ 0 ¢ o 77! from K to K'.
Now use Lemma 3.11 to obtain the map ¢.

The map ¢ : Ox/Rad(Og) — O /Rad(Ok ) induced from ¢ sends x +
Rad(O) € Ok /Rad(Ok) to ¢(z) + Rad(Ok:). We can efficiently compute ¢
from ¢ since the quotient maps Ox — O /Rad(Ok) and Oxr — O+ /Rad(Ok)

are given.

Finally, we restrict ¢ to ¢|r, : Rx — O/ /Rad(Og/) using the given inclusion
Ry — Ok /Rad(Ok). Then compute ¢ : Rx — Ry from q3|RK by lifting along
the given inclusion Ry — O /Rad(O). O

Lemma 5.17. Under GRH, there exists a subroutine ComputeAdvice that given
T = {Ix : K € F} as in Definition 5.7, either properly refines some idempotent
decomposition I € I, or computes es, fs for K € F, 0 € I and an T-advice.

Moreover, the subroutine runs in time polynomial in log p and the size of F.

Proof. See Algorithm 18 for the pseudocode of the subroutine. It enumerates
K € F, 0 € Ik and computes es, fs5, s5 (if e5 > 1) and t5 (if f5 > 1).

Fix K € F and 0 € Ix. We compute the ideal J of Oy, which is defined to be
the preimage of the ideal of O /Rad(Oy) generated by 1 — ¢ (under the natural
quotient map). Then J is the product of the maximal ideals m of O satisfying
§ =1 (mod m/Rad(Of)). Note that for any such m, we have

2 es __ es+1
Ok 2mOom D ---Dm% =m

and O /m = [F,s5. So we can compute e; as the smallest positive integer ¢ such
that J® = J!, and compute f; as the smallest positive integer i such that the
automorphism z — 29" fixes O/ J.
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Algorithm 18 ComputeAdvice

1: for K € F do

2 for o € I do

3 J {2z € Ok : v +Rad(Ok) € (1 —0)(Ox/Rad(Oxk))}
4 compute es as the smallest i € N* such that J* = J*!
5: compute f5 as the smallest i € Nt such that z — 29" fixes O /J
6 if es > 1 then

7 find s; € J — J?

8 U < the image of Anng, (s5° ") in O /Rad(Ok)
9: U<+ UNJdRk

10: compute 0y € U satisfying (1 — dp)U = {0}

11: if 000 & {0,0} then

12: I < I — {6}

13: I < Ix U{600, (1 —0¢)d}

14: return

15: if f5 > 1 then

16: find a primitive fsth root of unity § € F s,

17: find nonzero t5 € 0 Ak y, satisfying ok , (ts5) = Ets
18: U+ tsAk s, N Rk

19: find o € U satisfying (1 — do)U = {0}
20: if 000 & {0,0} then
21: I < I — {6}

22: I « I U{600, (1 —d9)0}

23: return

Suppose e5 > 1. Choose s; to be an element in .J?> — .J. So we have ss € m for all
the maximal ideals m of O satisfying 6 = 1 (mod m/Rad(Of)), and s5 ¢ m?

for some maximal ideal m of them.

Next compute the image of Anng, (s~ ") in Ox/Rad(Ok) and let U be its in-
tersection with 0 Ry, which is an ideal of Rx. Choose an element d, in U such
that (1 — 6o)U = 0. Then ¢y is the unique idempotent of R that generates U. If
900 & {0, 6}, we use &y to properly refine Ik and return.

~ ~ 1 ~ ~
As s5 € m —m?, we have s~ € m*~! — m® and hence Anng,_(s5

C
we have dy € U C m/Rad(Ok). But we also have § = 1 (mod m/Rad(Of
follows that g0 # 4.

s~ C m. So
)- 1
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On the other hand, assume s; € m'? for some maximal ideal m’ of O satisfying
§ = 1 (mod w'/Rad(Of)). We claim §§ # 0, in which case the subroutine
properly refines I and returns. To see this, note that 55" € w1 C m'e
since 2(e; — 1) > e;. Then Anng, (s5°~') € W' Let & be the idempotent of
Ok /Rad(Oy) that generates the image of Anng, (s5° ") in O /Rad(Ok). Then
& ¢ m'/Rad(Ok). Note that 5y = 68’ € m'/Rad(Ok). So b = dy # 0, as

desired.

Now suppose fs > 1. We pick a primitive fsth root of unity £ in [, s; which exists
since f5 divides |quf5 | = ¢/5 — 1.1 This step can be done efficiently assuming
GRH. Choose t; to be a nonzero element in d A f, satisfying ok f,(t5) = &ts. We
claim that such an element always exists. To see this, note that the quotient map
Ag g, = Ak 5, /(1—0) is injective when restricting to 0 Ak f,. So it suffices to show
that there exists a nonzero element ¢ € Ay ;, /(1 —0) satisfying o f,(t) +(1—0) =
&t + (1 — ). This follows from the argument used in the proof of Lemma 3.18.

Next compute the ideal U = tsAx ¢, N Rk of Ry, and choose an element d, in U
satisfying (1 — dp)U = 0. Then 0y is the unique idempotent of R that generates
U. If 600 ¢ {0,0}, we use dy to properly refine [ and return.

Assume there exists a maximal ideal mg of A , satisfying 6 = 1 (mod my) and
ts € my. Then t5Ak 5, € my and hence U C my. As § &€ my, we have dp6 # 5. We
claim 9,0 is nonzero, and hence the subroutine properly refines [ and returns. As
do € tsAk s, € 0AK ;. We have dp6 = g, which generates the ideal U of Rx. So
it suffices to prove U # {0}. Asts # 0, there exists a maximal ideal m of A ,
that does not contain t5. Let m’ = m N Ry, which is a maximal ideal of Ry . Let ¢’
be the primitive idempotent of Ry corresponding to m’, i.e., &' =1 (mod m’) and
0’ =0 (mod m”) for all the maximal ideals m” # m’ of Rx. We claim ¢’ € U, or
equivalently, ¢’ € tsAk s,. For i € Z, we have O';(ffé (ts) = £ 'ts ¢ m and hence
ts & 0 s,(m). By Lemma 5.6 and the choice of ¢’, the maximal ideals of A j;
not containing ¢’ are exactly those of the form a}(, (M), i € Z. It follows that

§ € tsAk g, as desired.

The claim about the running time is straightforward. [

Lemma 5.18. The P-collection C in Definition 5.8 is well defined.

Proof. First note that each element ss5 5 (resp. ;) is fixed by H and hence

"We use the fact that f; is coprime to p, which in turn relies on the assumption p > deg(f).
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g

1357H, Y 1357H (resp. g_lt(;,H, g'_lt(;,H) only depend on the cosets Hg and Hg'. Fix
H € P and K € F as in Definition 5.8. Fix B € Cy and g,¢ € G such that
HgDgq,, HgDq, € B. Let § be the unique idempotent in I such that 75 (5) = 5.
Then es = ¢(B) and f5s = f(B).

Suppose e(§) > 1. By Definition 5.7, we have s; y € m — m? for all the maximal
ideals m of O u satisfying 757(6) = 1 (mod m/Rad(Opx)). Consider the maximal
ideal

my g = (Qo N Opu)/pOru

of Opu. As 75 (8) = dp and HgDq, € B, we have
7g(6) =1 (mod my g /Rad(Opn)).

Therefore 55 € My g —m ;7. SO 55 +m 4 is a nonzero element in my g /m? ;.
Let m, be the maximal ideal YQ,/pOy, of Oy, and let k = e(Qy)/es. Using the

natural inclusion

k+1

my /w2 m’g“/mg ,

k+1
g

that 9m, = m,. Then g_ls(w +m

we see S5z + mh ! is a nonzero element in m}/mft. Let m, := Q0/pOy, so

k+1

1 is a nonzero element in m¥ /m**1. The same

k+1

o as well. As

glfl ks . k
argument shows that ¢ ss y + m{ is a nonzero element in m; /m
m¥ /m**1 is an one-dimensional vector space over Oy /m, = kq,, we see that there

exists a unique scalar ¢ € Ii)éo satisfying

1 k+1
I ssg+mitt=c- (¢

e =

/=1 k+1
S+ mg ).

Note mF+! = (Q,/pO;)c®0)/es+1  We see that the second condition in Defini-

e

tion 5.8 is well defined.

Now suppose f(d) > 1. By Definition 5.7, we have t5 y ¢ m for all the maximal

ideals m of Ay n 4, satisfying 75(9) = 1 (mod m). As 74 (6) = dp, HgDq, € B
Qo/pOr

Rad(Oy) C mg, we have

and

T(0) =1 (mod my).

So tsu & 9mg. Then 9_1t57H + my is a nonzero element in Aj, f,/my. The same
argument shows that gHt(g, H + mg is a nonzero element in Ay, f,/mg as well. It

follows that there exists a unique scalar ¢ € (Ay r, /mo)* satisfying

S s+ mg=c- (7 toy +mp). (C.2)



253

We also check that Definition 5.8 is independent of the choice of my: Let mj

Qo/pOL
Rad(Opr) "

mg = o, ; (mg) for some i € Z. Let o0 = o7, ;. Then (C.2) is equivalent to

be another maximal ideal of A ; containing By Lemma 5.6, we have

/

o o) + = () - (07 tyr) + ) (C.3)

where o(c) € (Ar,f,/m;)*. Also note that
g ! g ! 97 i igt
o tsm)=" (oltsu) =" ({tsm) =&Y tsm.
and similarly a(glflt(;’H) = ¢ 9'7126571{. Substituting them in (C.3) and canceling

&' + my, on both sides, we obtain
—1 r—1
I tsm+my=oc(c) (Y tom—+my).

Note that o(c) and ¢ have the same order. We see that choosing my, instead of m,

does not affect the definition.

Finally, it is easy to see that the conditions in Definition 5.8 are equivalence relations
on H\G. So they do define a partition Cy on H\G. O

Lemma 5.24. Under GRH, there exists a subroutine SurjectivityTest that up-
dates I in time polynomial in log p and the size of F so that the partitions Cy € C
are refined. Moreover, at least one partition Cy is properly refined unless for all
H € P, the map my : H\G — H\G/Dgq, sending Hg € H\G to HgDq, maps
each block of Cy surjectively to a block of Cy.

To prove Lemma 5.24, we first prove the following lemma, generalizing Lemma B.1:

Lemma C.1. There exists an algorithm SplitByExp that, given a semisimple F,-
algebra A, m € N*, and nonzero elements x,y € A satisfying the following

conditions

e 1 and y generate the same ideal of A

e Let n, (resp. n,) be the smallest positive integer such that x"* (resp. y") is

an idempotent. Then n, divides n, and all the prime factors of n, divide m

returns an element z = x* — y € A satisfying zA C x A in time polynomial in m
and log |A|, where k € N.
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Proof. We find k € N such that x* — y satisfies the requirement. Let [ = Ann ().
By replacing A, z, and y with A/I, z + I and y + [ respectively, we reduce to
the case z,y € A*, and the goal is to find k¥ € N such that = = z¥ — y is a zero
divisor. In addition, we find the smallest d € NT such that the ideal J generated
by {2" — x : 2 € A} is a proper ideal of A. By replacing A with A/J, we may
assume .JJ = {0}. Then A is a finite product of copies of F .

Enumerate the prime factors ¢ of m. For each ¢, compute ¢, € N and f, € N* such
that p? — 1 = ¢° f, and f, is coprime to /. Let ng¢ and n, , be the order of z7t and
yf‘Z respectively. Then n, 4, n, , are powers of £ and nyﬁg|nm74. Use the algorithm in
Lemma B.1 (applied to z7¢ and y/*) to compute &k, € N such that z*¢/¢ — /¢ is a zero
divisor. If z¥¢fe — ¢/t £ (), we use Lemma 3.17 to find an idempotent v ¢ {0,1}
of A and solve the problem recursively on the quotient ring A/(1 — «). So assume

xkefe = yfe, Then the order of 2% /y divides f, and hence is coprime to /.

Compute k; and e, for all the prime factors ¢ of m as above. Use the extended
Euclidean algorithm to find & € N satisfying k = k, (mod ¢°) for all . Then k is

the desired integer.

We claim 2% = y. To see this, note that for each ¢, we have z*/y = (2% /y) - 2!

for some ¢ € Z. As the orders of z*¢/y and 2" are both coprime to ¢, so is the
order of x* /y. Therefore the order of z*/y is coprime to m. But the orders of z*

and y are only divisible by prime factors of m. So 2% /y = 1, as desired. [

The pseudocode of the subroutine SurjectivityTest is given in Algorithm 19. It
enumerates ' € I and § € Ix. For each K and J, a set S of ideals of Ak y, is
computed. And for each I € S, we find §y € I N R satisfying (1 —dy)(/ N Rk) =
{0}, which is the unique idempotent of Ry that generates the ideal / N Ry of R.2
If 000 & {0,0}, we use 0 to refine I and return.

Fix K € F and § € Ix. The corresponding set S is computed as follows: first
assume f5 > 1. We compute the largest factor r of ¢/s — 1 coprime to f;, so that
all the prime factors of (¢/* — 1)/r divide f;. Compute an element v € IE‘qu(S of
order (¢/s — 1)/r, which can be done efficiently assuming GRH.3 By the second

Here Ry is regarded as a subring of A s, via the inclusions Rx — O /Rad(Of) and
Or /Rad(Ok) — Ak ;-

3For example, we can achieve this by computing an /th power non-residue -y, for each prime
factor ¢ of f5. By raising 7, to its 7th power, where 7y is the largest factor of ¢¢ — 1 coprime to ,
we may assume the order of vy, is (¢ — 1)/r,. Then let vy be the product of all ;.
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Algorithm 19 SurjectivityTest

1: for K € Fdo

2 for o € I do

3 S <+ 0

4 if f5 > 1 then

5: r < the largest factor of ¢/ — 1 coprime to f;

6 compute y € F; of order (g5 —1)/r

7 call SplitByExp on (A y,, fs5,07, ts) to obtain v € Ak y,
8 S SU{zAk}

9: if es > 1 then

10: J + the preimage of §(Of /Rad(Of)) in Ok

11: find 0’ € Anng, (J*) satisfying (1 — ¢')Anng, (J%) = {0}
12: lift &'ss € O to 5 € O

13: compute the image s of 5% /p in Ok /Rad(O)

14: r’ < the largest factor of ¢/* — 1 coprime to e;

15: compute 11 € F;, of order (¢/* —1)/1’

16: call SplitByExp on (Ax ,, es,04, 5™ ) to obtain y € A,
17: S+ SU{yAxy}

18: if f5 > 1 then

19: fori < Oto fs — 1do
20: S+ SU{yAky + 0}(7& (z)Ak. s, }
21: for I € Sdo
22: find 0y € I N R satisfying (1 — o) (I N Ri) = {0}
23: if 600 ¢ {0,0} then
24: Ix < Ix — {6}
25: I < I U{600, (1 —dp)0}
26: return

condition in Definition 5.7, the element §t}§ generates the ideal 6 Ag f, of Ax f,,
and so does 9. We call the subroutine SplitByExp in Lemma C.1 on the input
(Ak.f5, f5, 07, 0t5) to obtain x € A f,, and add the ideal Ak ¢, to S.

Next assume es > 1. Compute the preimage J of (1 —§)(Og /Rad(Of)) under the
quotient map O — O /Rad(Ok). Then J is the product of the maximal ideals
m of O satisfying § = 1 (mod m/Rad(Ok)). Find &’ € Anng, (J%) satisfying
(1 —¢")Anng, (J°) = {0}, so that &' is the unique idempotent of O generating
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Anng, (J%). Lift §'ss € Ok to § € O.

We claim 5% € pOy: this is equivalent to (0's;)® = ¢’sy” = 0. By the first
condition in Definition 5.7, we have s5° € m® for all the maximal ideals m of Ok
satisfying 6 = 1 (mod m/Rad(Ox)). And by the definition of .J, it holds that
" € mF for all the maximal ideals m of O satisfying § € m/Rad(Of) and k € N.
It follows that ¢’s5’ = 0 and hence 5% € pOy.

Compute the image s of 5 /p € Ok in Ox/Rad(Ok). This is done by first
computing 5% + O € O using Lemma 3.9 and then computing s using the
quotient map O — Ok /Rad(Ok). Next compute the largest factor ' of ¢/5 — 1
coprime to eg, so that all the prime factors of (¢/s — 1)/r’ divide es. Compute an
element p € IE*‘;}(S of order (¢/¢ — 1)/r’, which can be done efficiently assuming
GRH. By the first condition in Definition 5.7, the element 5"  generates the ideal
0Ak, s, of Ak s, and so does 6/.4 We call the subroutine SplitByExp on the input
(Af f;,€5,01, 8" ) to obtain y € Ag ., and add the ideal y A s, to S. In addition,
if fs > 1, we enumerate ¢ = 0,1,..., fs — 1 and for each ¢, we add the ideal of
Ag.g; generated by y and o, () to S, where = € Ak y; is computed in the case
fs > 1 above.

Now we prove Lemma 5.24.

Proof of Lemma 5.24. Assume for some H € P, B € Cy, and B € Cy, the map
my @ Hh — HhDg, maps B to a proper subset of B. Let K be the field in F
isomorphic to L over K. Let § be the idempotent in I satisfying 74 () = dp
(see Definition 5.4). We show that in the corresponding iteration of the loop in Lines
3-27, we compute a set S that contains an ideal / of Ak f, such that the unique
idempotent §y € Ry generating I N Ry satisfies o & {0, d}. Consequently, some

partition in C is properly refined.

Choose g, ¢’ € G such that HgDy, € B — ny(B) and Hg' € B. Let mg be an

Qo/pO1L
Rad(OL)

Gal(kq,/Ok,) is the Frobenius automorphism x — x7 over F,,.

arbitrary maximal ideal of Ay, f, containing . Fix o0 € Dy, whose image in

We necessarily have fs > 1 or es > 1. First assume f5s > 1. Let vy € F;fé be of
order (¢/s — 1)/r, where r is the largest factor of ¢/ — 1 coprime to f5. Consider
an element © € Apm j of the form © = (657)F — dptsy; = dp(¥" — t5 ) such

that xApu s, C 0pApu s, where k € N. Let ¢y be the unique idempotent of

‘We let AK,f(s = @K/Rad(@[() if fs =1.
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Rpn generating xApn ¢, N Rpu. The assumption zA;n ¢, C 0pApu ;s implies
5005 = 0 and &y # 0p. If & # 0, by identifying K with L via the isomorphism
Ty K — L, we see the ideal added to S at Line 8 is used in Lines 24-26 to
properly refine 5. So assume dp = 0, or equivalently zAym ¢, N Ryn = {0}.

Consider arbitrary h € G, and let 9, be the primitive idempotent of R;u corre-
sponding to the maximal ideal hQO N Ry u. Then a maximal ideal m of 17}, satisfies
9 =1 (mod m) iff m = "9y for some ' € Hh. This follows from Lemma 5.3
and the fact that Dq, fixes Qg setwisely. So a maximal ideal m’ of A, satisfies
9 =1 (mod w') iff m’ D "9, for some i’ € Hh. As wApn ;N Rpn = {0}, we
have 6,  vApu 4. So for some b’ € Hh and a maximal ideal m’ D hlﬁo of Ay ,,
we have x € m’ N Azx ;,, and hence Wl = e e O Q.. By Lemma 5.6,

1—1 i .
we have " m’ = op'f (mg) for some ig € Z. Therefore

o (" x) € my. (C4)

Suppose the element h above satisfies HhDg, € B. Then 0%{ fs (hﬂé B) = M =
1 (mod mg). As x = dp(y" — 5 ). (C.4) implies

-1 L

ior h™1 h i r i hL _
¢t (tsu) = (opg(tsm)) =0p, (0 (tsn)) =77 (mod mg),

where ¢ is the primitive fsth root of unity satisfying o f,(t5) = & - t5 as in Defini-
tion 5.7. Choosing h to be g and ¢’ respectively and using the fact r is coprime to

fs, we see that there exists an unique integer ¢ € {0, ..., fs — 1} satisfying

gir g‘l(tg,H) — g'_l(tgﬂ) (mod myg). (C.5)

As

irg Y r _ -1 7 r 1 -1 __ ot
e (tJ,H) =’ (O-L,f(;( 6H)) = UL,fé(g ( 5H>) =

and r is coprime to f5, we see that ¢ is the unique integer in {0, ..., fs — 1} such

Tt y)  (mod my),

that the order of the element c in (A, ;, /mg)* satisfying
Gig_lt&H + my=c- (g/—1t57H I mo)

is coprime to fs. So for all w € Zy,, the third condition in Definition 5.8 is

Uand H¢', and is not satisfied by Hgo~"w=! and Hg' for

satisfied by Hgo 'w™
i' €{0,...,fs — 1} — {i}. In particular, if es = 1, then Hgo " and Hg' are in the
same block B by Definition 5.8, contradicting the assumption H gDy, & WH(B).

So the subroutine properly refines [ if fs > 1 and e5 = 1.
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Next assume e; > 1. Consider the ideal yAg f, of A ;, added to S at Line 18, and
let oy be the idempotent of Ry generating yAg ¢, N Ri. Note yAg s, C 0Axk ;.
So 090 = 09 # o. If & # 0, we properly refine I using Jy in Lines 24-26. So
assume 0y = 0, or equivalently yAx r, N Rx = {0}. Using the isomorphism
T K — LY, we regard y as an element of A LH . f;- S0 the assumption becomes

yALH,f(; N RLH = {0}
Let c be the unique element in £ satisfying

9 ssg A+l =c- (9 ssu+1), (C.6)
where I = (y/p0y)°®0)/¢+1 (see Definition 5.8), and i is the unique integer in
{0,..., fs — 1} satisfying (C.5) above (if f5 = 1, we let o* be the identity). Then

the element § computed at Line 13 (regarded as an element of (J1) satisfies

797 g Qe = e (97 g 4 et

and hence
T () QR = e (0 (300) 4 ).

We have p € Q5% — QX% and it is fixed by G. So the element s computed at
Line 14 (regarded as an element of Oy /Rad(O})) satisfies

9 s L = % ¢ s+ m), (C.7)

Qo/pOL

where m = Rad(O7) "

Fix a generator w of Zy,. The proof of Lemma 5.23 shows that
wgigfls(s,H + I = C/(m'gfls&H i I) (C8)

for some primitive esth root of unity ¢’ € £ .

If fs = 1, we have Apn ;, = Opn /Rad(Opn), and its maximal ideals correspond
one-to-one to those of Ryu. SoyApn ¢, N Rpn = {0} implies y = 0. Note that y is
of the form i ,uf —s” where ¢ € N, 7’ is the largest factor of qf s —1 coprime to e5, and
(i is an element in IF(% of order (¢/* —1)/r’. We have ¢ 65,9 65 =1 (mod m)
since HgDg,, Hf'Dg, € B. As 9 'y =9 'y = 0, we have g_l(srl) = g/_l(srl)
(mod m). Combining it with (C.7), we see ¢ is an esth root of unity. On the other
hand, we know ¢ is a primitive esth root of unity, and so is ¢ since 7 is coprime
to e5. Therefore there exists j € {0,...,es — 1} such that (¢"')’¢” = 1. Then the
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order of ¢’/ c divides 7/, and hence is coprime to e;. On the other hand, by (C.6) and
(C.8), we have

wigig—!

ss+1=cc- (glilsa,H +1).

So by Definition 5.8 and the fact Hg' € B, we have Hgo™'w™ € B. But this is a

contradiction to the assumption H ¢Dq, & 7y (B).

Next consider the case fs > 1 (and es > 1). Let z,y € Apu s, be as above. We
claim that there exists ¢’ € {0, ..., fs — 1} such that

YApi g + 0, (1) Apn g, C 6pApa . (C.9)

To see this, choose a maximal ideal m; of A, u ; containing y but not g, which
exists since yApu ¢ C dpApu g Letmy =my N Ryu. AswApn ;N Rpn = {0},
there exists a maximal ideal my O m/ of A LH,f, containing z. By Lemma 5.6, there
. . v . v f
exists ¢/ € Z such that OLu g, (my) = my and hence OLu g, () € my. As O’L‘LJ%
fixes dpApu ¢, we may assume i’ € {0,..., fs — 1}. As m, contains both y and

Ui/ " (x), but not d, the claim follows.

Let I = yApn g, + agH f(s(l’)ALH’fa C 0pApu 4. Let dy be the idempotent of Ry
generating I N Ri. As I C dgApn g, we have 600 = 09 # 0. If 69 # 0, we see
it is used in Lines 24-26 to properly refine Ix. So assume ¢y = 0, or equivalently

INRg = {0}. Let ' = 0%, , (). Then there exists i1, iy € Z such that

LH7f6
i -1 i -1 i /—1 i /—1
0-[}7f6 (9 y)’ O-LI,f(; (9 Il)? O-LQ,fé (g y), 0-[/27]06 (g Ij) € mg.
Asy=dpp’ — s and 2’ = oby  (v* — 15 ), we have
il 971 r/ _ i2 9/71 T’l

ol (7 (7)) =0, (0 (s7))  (mod my) (C.10)
and

; -1 ; /-1

0L fs (g (ﬂsﬁ)) =07y, (g (tgH)) (mod my). (C.11)

As oy, g, (ts,n) = € - ts,n and G commutes with o, f,, (C.11) implies
-1 /—1

glin=iz)r g (th) = g (t5) (mod mg).

On the other hand, we know i is the unique integer in {0, ..., fs — 1} satisfying
(C.5). Soi; —is =i (mod fs5). Let s’ = 02]@6(3). Then by (C.10), Lemma 5.22
and the fact that G commutes with o, f,, we have

/—1

Ty =2 (87 (mod my).
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Qo/pOr,

On the other hand, as o, ¢, fixes m = Rad(O1)

setwisely, (C.7) implies

N b= o () (' )

It follows that af’ fs (c) is an egth root of unity. So c is also an esth root of unity, as
in the case e5; > 1, fs = 1. The same proof in the case es > 1, fs = 1 then shows
that there exists j € {0,...,es — 1} such that Hgo ‘w7 € B, which contradicts
the assumption H gDy, & my(B). O

Lemma 5.25. Under GRH, there exists a subroutine RingHomTest that updates
I in time polynomial in log p and the size of F so that the partitions Cy € C
are refined. Moreover, at least one partition Cy is properly refined unless C is

compatible and invariant.

We need the following notation: suppose K, K’ are extensions of K and ¢ : K’ —
K is an embedding of K’ in K over K. Recall that ¢ induces a homomorphism
of F-algebras ¢ : Ok /Rad(Ox/) — Ok /Rad(Og). Also suppose 1 is an
embedding of F: in F,; over F, where i, j € N*. Then ngS and 1 determine a
homomorphism of F-algebras Ax+; = Ak jsending a®b € Ak ; to g%(a)@z/z(b) €
Ak jfora € Ok /Rad(Ok/) and b € [F,:. We denote this map by (ﬁ ®r, V.

The pseudocode of the subroutine RingHomTest is given in Algorithm 20. It
enumerates (K, K') € F?, embeddings ¢ : K’ < K over Ky, and (6,8") € I x Iy
such that &(5’)5 = 0. For each (K, K’ ¢,0,¢'), a set S of ideals of Ay, is
computed. And foreach I € S, we find §y € I N R satisfying (1 — o) (I N Rg) =
{0}, which is the unique idempotent of R that generates the ideal I N Ry of R.
If 600 & {0,0}, we use 0 to refine [ and return.

Fix (K, K’ ¢,6,¢'). The corresponding set S is computed as follows: Note we
have fs|fs and es|es. First assume fs > 1. Compute the largest factor r of
¢/* — 1 coprime to f5. Then compute an element y € F;f5 of order (¢/s — 1) /r,
which can be done efficiently assuming GRH. Call the subroutine SplitByExp
in Lemma C.1 on (Agy,, fs5,07,0t;) to obtain + € Agy,. Also perform the
following computation if fs > 1: compute an embedding ) : qué, — F 5 over I,
deterministically in polynomial time using Lenstra’s algorithm [Len91]. Compute
t = (¢ ®r, ¥)(ty) € Ak,,. By Definition 5.7 and the fact P06 = 0, we
have 6t" Ak s, = 0Ak,s,. Call the subroutine SplitByExp on (Ag g, fs,07,0t")
to obtain ' € A ;. Then add the ideal 2’ Ak ; + 0% ; () Ak g5 to S for all

ie{0,1,...,fs—1}.



261

Algorithm 20 RingHomTest

1: for (K,K’) € F*do

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:

2
3
4
5:
6
7
8
9

for embedding ¢ : K’ — K over K, do
for (6,0") € I x Iy satisfying ¢(6')0 = 4 do
S0
if fs > 1 then

r < the largest factor of ¢/ — 1 coprime to f;
compute y € IF;% of order (¢/s — 1) /r
call SplitByExp on (Ag f,, fs5, 07, 0t5) to obtain x € Ak f,
if fs > 1 then
compute an embedding 1) : F s = For; over Fy
t+ (6 ®@r, ¥)(ts) € Axy,
call SplitByExp on (Ag f,, fs5,07,6t") to obtain 2’ € A ,
for: <+ Oto fs— 1do
S SU{2' Ak g; + 0% f,(2) Ak g5 }

if ess > 1 then

J « the preimage of (1 — 6)(Ox/Rad(Ok)) in O
compute 1 € Anng,_(J°¢) such that ug(sy ) — 5>/ € Jes/es 1
2 + u+ Rad(Og) € Ok /Rad(Ok)
' < the largest factor of ¢/> — 1 coprime to e;
compute 1o € F; of order (¢/* —1)/r’
call SplitByExp on (Ag s, es,0u, @ ) to obtain y € Ag j,
S SU {yAK,fa}
if f5 > 1 then

for:+ Oto fs—1do

S SU{yAks; + 0k g, (2) A s}

for ] € Sdo

find 6y € I N Ry satisfying (1 — do)(I N Rg) = {0}
if 00 & {0,¢} then

Ix + Ix — {0}

I < T U {600, (1 —0)d}

return
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If ess > 1, we perform the following computation: first compute the preimage J of
(1 —0)(Ok /Rad(Ok)) under the quotient map Ox — O /Rad(Of). Then J is
the product of the maximal ideals m of O satisfying § = 1 (mod m/Rad(Ok)).
Compute u € Anng,_(.J%) such that ug(ss) — 325/6‘5’ € Jes/es 1. We claim such
u exists: by the Chinese remainder theorem, it suffices to show, for each maximal

ideal m of O containing J, that
ug(sy) = 8;&/65/ (mod mes/¢s+1)

has a solution in Q. Fix such m. We have s; € m — m? by Lemma 5.17 and
hence 52‘5/65’ € m®/¢% —m®/%*1 Letm’ = ¢~!(m). By Lemma 5.17 and the fact
#(6")0 = &, we have sy € m’ — m’? and hence ¢(sy) € me/¢ — me/¢+1 The
claim follows by noting m®/¢" /m®/¢+1 is an one-dimensional vector space over

Op/m. Next compute
U:=u-+ Rad(@]{) € @K/Rad(@[()

Compute the largest factor 7’ of ¢/s — 1 coprime to e;, so that all the prime factors
of (¢s — 1) /r' divide e5s. And compute an element 1 € F;f5 of order (¢/s — 1) /7',
which can be done efficiently assuming GRH. Note that @ Ag ;, = 0Ag f,.5 Call
the subroutine SplitByExp on the input (Ax f,, e5, 01, 4" ) to obtainy € A f,, and
add the ideal yAg f, to S. In addition, if f5 > 1, we enumerate ¢ = 0,1,..., f5 —1,
and for each i we add the ideal of A s, generated by y and o7 ; () to S, where

x € Ak y, is computed in the case f5 > 1 above.

Now we prove Lemma 5.25.

Proof of Lemma 5.25. Assume the algorithm does not properly refine any I. We
prove that C is compatible and invariant. Fix H, H' € P and a map ¢* : H \G —
H'\G that is either a projection 7y g (with H C H') or a conjugation cy j, (with
H' = hHh™"). Consider g,¢g’ € G for which Hg, Hg' € H\G are in the same
block of C'y;. We want to show that ¢*(Hg), ¢*(Hg') € H'\G are in the same block
of C .

Let B be the block of Cy containing both HgDgn, and Hg'Dgy,. Let ¢* :
H\G/Dq, — H'\G/Dq, be the map 7,5, if ¢ = mp s, or ' if 6 = ey As
C is compatible and invariant, there exists B’ € Oy containing both ¢*(HgDg,)
and ¢*(H ¢g'Dq,). Let K (resp. K') be the field in F isomorphic to L7 (resp. L")

3 Again, we let Ak 5, = Ok /Rad(Ok) if fs = 1.
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over K. Let § (resp. ¢’) be the idempotent in I (resp. [x) satisfying 75 () = g
(resp. Tp/(0") = dpr). Let mg be an arbitrary maximal ideal of A s, containing
%. Fix an embedding ¢ : F s, — Fs; over F,. Let ¢ : L« LH be the
natural inclusion if ¢* = 7y v, or the map = +— oy if ¢* = cpp. Finally, let

s = &(85/,}]/) ifes; > 1, and let t = (QZB ®Fq 'Lﬁ)(t(;/’H/) if f(;/ > 1.

We claim that the following two conditions are satisfied:

1. If ess > 1, the order of the unique element c in x5 satisfying
Tls4 I =c- (91718 + 1)
is coprime to eg/, where I' = (Qy/pO)*R0)/esr+1,
2. If fy > 1, the order of the unique element c in (A, 5, /mg)* satisfying
Tt my=c- (9 t+my)

is coprime to fs.

To see this claim implies that ¢*(Hg) and ¢*(H¢') are in the same block of C'y,
pick g,g’ € G such that H'g = H'¢*(Hg) and H'g' = H'¢*(Hg'). Then c € kg

in the first condition is also the unique element satisfying ?’7135/, w+1I =c-
H/—1
(Y sy +1"). And ¢ € (AL s, /mp)™ in the second condition is also the unique

Qo/pOL
Rad(Or)

the preimage of mg under id ®r, ¢ : Ar s, — Agy;, and id is the identity map
on O, /Rad(Oy). It follows by Definition 5.8 that ¢*(Hg) and ¢*(Hg') are in the

same block assuming if these two conditions are satisfied.

. . F—1 —/—1 .
element satisfying 9ty +ml) = c- (9 ty g + m)), where m)) D is

The rest of the proof focuses on verifying the above two conditions. First as-
sume fy > 1. Suppose x = (6p7)F — gty and o’ = (0p7)" — dpt" sat-
isfy xApu g, 2'Apn y, © O0pApu g, where k k' € N. Then there exists i €

=

{0,..., fs — 1} such that
Ii = x,ALH,f(; + O-ZH,f(;(x)ALHJ& g 5BALH,f5'

This follows from the same argument in the proof of Lemma 5.24 that shows the
existence of 7/ € {0, ..., fs — 1} satisfying (C.9). We may also assume [; N Ryn =
{0}: otherwise, by identifying K with L using the isomorphism 7z, we see the
subroutine finds an idempotent &y of Ry at Line 23 satisfying do0 ¢ {0,9}, and
properly refines /.
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By Lemma 5.6 and the assumption I; N R;= = {0}, we know there exist iy, iy € Z
such that

i -t i1+igg? i =1 ioti g1
U£7f6(9 x'),aLlj(S ¢ x),aﬁfé(g x’),aﬁ}; (Y ) € my. (C.12)
By Definition 5.7, there exist primitive fsth roots of unity §,¢" € F s; satisfying
O'L,f(g(té,H) = f . t(g,H and O-L,f(;(t) = fl -t. Asx = 5B’Yk — 6Btg,H and 7/ =
Sy — 0pt", (C.12) implies

Tt ) = €I () (mod m) (C.13)

and
97N () = BT I Y (mod my). (C.14)

On the other hand, as HgDq,, HgDq, € B, we know from Definition 5.8 that
the order of the unique element ¢ € (A, /mg)* satisfying 9 tspy +mg = c -
(9'71t57H + myg) is coprime to f5. As r is coprime to fs5, we see from (C.13) that
io — 17 is divisible by fs. Then (C.14) becomes g_l(t”) = gl_l(tr) (mod mg). So the
order of the unique element ¢ € (Aj, f, /mo)* satisfying ¢ ¢t +my = c- (9t +my)
is coprime to fs, as desired.

Next assume ey > 1. Let u be the element computed at Line 18 and regard it as
an element of O /Rad(Or) by identifying K with L7 using the isomorphism
Ti. Suppose y = (Opu)’ — @ satisfies yApu ;, C 6pApn s, where £ € N. We
may assume yA,n ;, N Ryr = {0}, since otherwise the idempotent ¢, generating
yApn ;N Rpn satisfies 600 € {0, 0} and is used to properly refine /.

If s > 1 and f5 = 1, the ring Ay 4, is just Opu /Rad(Opn ), and we have y = 0

/—1

in this case. S0 ¢ 'y =9 'y = 0, which implies

gt gt Qo/pOy,
u") = " mod ————). C.15
@) =" (@) mod o) c.15)
Let ¢, ¢y € K3, be the residues of 9-'% and ¢ ' % modulo %gjz) respectively.

Then (cy/c1)” = 1. So the order of ¢y/c; divides 7/, which is coprime to es. By

Definition 5.8, the order of the unique element c € RSO satisfying
97135,H + [ =c- (_17/71867H + ])

is coprime to es (and hence to es), where I = (Qo/pOp)°®0)/¢+1, Then we have

g—l

es/est / es/es g es/es /
s 1= sl (TS (C.16)
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and the order of ¢®/¢¥ is coprime to es. By the definition of @, we may rewrite
(C.16) as
() + I = cpetlo (9T s+ 1),

As the order of ¢3/c; and that of ces/es are coprime to ey, the second condition

above is satisfied.

Finally, assume ey > 1 and fs > 1. Then there exists j € {0,..., fs — 1} such that
]]/ = yALH,f(S + O-ZH,fg(x)ALHafé g 5BALH,f(5’

where z = dpy* — 0t} ;; is as above. Again we may assume I N R;n = {0} since
otherwise [ is properly refined. Then there exist ¢, 72 € Z such that

=1 io+j

i1+ i y), oP T (g"lx) € mo.

: -1 -1

O-Zl,f(g (g y)7 O-L7f5 (g I)’ O-L,fg (g
Asz = dpF — Optsy and oy g (tsr) = € - ts m, again we conclude that 75 — iy is
divisible by fs. As the order of oy n , on dpApn 4, is f5, we may assume i; = is.

Asy = (0pp)’ — @', we have

i g1 - o g1 -
0L gy ( (u )) =05 ( (u )) (mod my).
As o1, f, fixes every maximal ideal of Or/Rad(O;) setwisely, and

o Qo/pOL

mgy N (@L/Rad(@L)) = Rad(@L)’

we see (C.15) still holds. The rest of the proof is the same as in the case ey > 1,
fs=1 O

Lemma 5.26. Let G be a finite group acting transitively on a set S. Let D be a
subgroup of G and let k be the number of D-orbits in S. Suppose k > 1. Let { € N*
be the least prime factor of k. Let P = P,, be the system of stabilizers of depth m
for some m > { (with respect to the action of G on S). Then for any x € S and any
P-scheme of double cosets C with respect to D that is homogeneous on G, there

exists no antisymmetric (C, D)-separated P-scheme.

Proof. Assume to the contrary that there exist x € S, a P-scheme of double
cosets C = {Cy : H € P} with respect to D that is homogeneous on G, and
an antisymmetric (C, D)-separated P-scheme C = {Cy : H € P}. As G acts

transitively on S, we know C is homogeneous on GG, for all x € S.
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Fix 7o € S and consider the bijection )\, : S — G,,\G sending x4 to G, g~ .
It is an equivalence between the action of G on S and that on G,,\G by inverse
right translation. Let By be a block of C‘Gzo and define T := A\ '(B;) € S. AsC
is homogeneous on G, and C is (C, D)-separated, we know 7" is a complete set of

representatives of the D-orbits in S, and hence |By| = |T'| = k.

The group G acts diagonally on S“). And Sym(¢) acts on S by permuting the
coordinates. As the two actions commute, we know Sym(¢) permutes the G-orbits
in S®. Fix z € T and let H, be the subgroup of Sym(¢) fixing Gz setwisely.
Using the bijection A\, : Gz — G,\G, the action of H, on Gz induces an action
on G,\G. In the proof of Lemma 2.18, we showed that the latter action induces a

semiregular action on the set of the blocks of Cy;..

Let U, := T N Gz. Suppose z = (21, ...,%). For g € G, the element 9z is in U,
iff A\yy (92:) € Ny (T)) = By for all ¢ € [¢]. Fix ¢ € [¢] and choose g; € G satisfying
9ixg = 2. Then ¢y, 4, : G4 \G — G, \G sends By to ablock B; € CN’GZZ_. Also note
that ¢, g, © Agy = Az, SO Ay (92;) € By is equivalent to A, (92;) € B;. As

)\Zz(gzl) = Gzigil = 7TG27GZZ' (ngil> = ﬂ-Gz,Gzi © )\Z<gz)7

we see that A (U.) consists of the elements z € G.\G satisfying 7¢. ¢. (v) € B;
for all i € [¢]. By compatibility of C, the set A (U.,) is a disjoint union of blocks of
CGZ. Moreover, by regularity of C, the cardinality of these blocks are all divisible
by |Bo| = k.

Note that the action of H, on Gz fixes the set U, setwisely. So the semiregular
action of H. on the set of the blocks of Ci. restricts to a semiregular action on
the subset of the blocks in A.(U,). By the previous paragraph, we know |U.,| is a
multiple of k| H.|.

The set 7 is a disjoint union of subsets of the form U, where z € 7). The group
Sym(¢) permutes these subsets. By the orbit-stabilizer theorem, each Sym (¢)-orbit
O is a disjoint union of |Sym(¢)|/|H.| subsets of the same cardinality |U,|, where
z is an arbitrary element in O. So

_ [Sym(0)]

0] = Uz
|H|

which is a multiple of k¢! by the previous paragraph. It follows that |T()| =
k(k—1)---(k—{¢+1)isamultiple of £¢!. But this is impossible since none of the
factors k — 1,...,k — ¢ + 1 are divisible by the prime number /. O
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LIST OF ALGORITHMS
Name Reference Page
ComputeQuotientRing Lemma 3.8 56
ComputeResidue Lemma 3.9 57
ComputeEmbeddings Lemma 3.10 58
ComputeRingHom Lemma 3.11 58
ExtractFactors Algorithm 1, Theorem 3.7 60
ComputePscheme Algorithm 2, Theorem 3.8 63
CompatibilityAndInvarianceTest Algorithm 3, Lemma 3.13 65
FreeModuleTest Lemma 3.16 67
SplitByZeroDivisor Lemma 3.17 67
RegularityTest Algorithm 4, Lemma 3.14 68
StrongAntisymmetryTest Algorithm 5, Lemma 3.15 70
PschemeAlgorithm Algorithm 6, Theorem 3.9 75
Automorphism Algorithm 17, Lemma 3.18 | 241
Table D.1: Algorithms and subroutines in the P-scheme algorithm
Name Reference Page
AdjoinRoot Lemma 4.8 86
SplittingField Algorithm 7, Lemma 4.9 87
Stabilizers Algorithm 8, Lemma 4.10 88
Tower Theorem 4.1 90
GeneralAction Algorithm 9, Theorem 4.2 92
SubgroupSystem Algorithm 16, Lemma 8.1 205

Table D.2: Algorithms for constructing number fields
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Name Reference Page
ComputeRelEmbeddings Lemma 4.7 86

ComputeRings Lemma 5.7 116
ComputeRingHoms Lemma 5.8 116
ExtractFactorsV2 Algorithm 10, Theorem 5.6 | 119
ComputeDoubleCosetPscheme! Algorithm 11, Theorem 5.7 | 123
CompatibilityAndInvarianceTestV2 | Lemma 5.12 124
RegularityTestV2 Lemma 5.13 125
StrongAntisymmetryTestV2 Lemma 5.14 125
RamificationIndexTest Algorithm 12, Lemma 5.15 | 126
InertiaDegreeTest Algorithm 13, Lemma 5.16 128
ComputeOrdinaryPscheme Algorithm 14, Theorem 5.8 | 137
GeneralizedPschemeAlgorithm Algorithm 15, Theorem 5.9 | 139
ComputeAdvice Algorithm 18, Lemma 5.17 | 250
SplitByExp Lemma C.1 253
SurjectivityTest Algorithm 19, Lemma 5.24 | 255
RingHomTest Algorithm 20, Lemma 5.25 | 261

Table D.3: Algorithms and subroutines in the generalized P-scheme algorithm

'The subroutine ComputeDoubleCosetPscheme is not actually used in the generalized P-

scheme algorithm, but only serves as a preliminary version of ComputeOrdinaryPscheme.
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LIST OF NOTATIONS

N*.  set of positive integers.

k], set{1,2,...,k}.

A — B. setdifference {z : x € Aand x ¢ B}.
|S].  cardinality of S.

log. logarithmic function with base 2.

[]S;. disjoint union of sets .S;.

O0s.  coarsest partition of a set S.

00g. finest partition of a set .S.

S®*),  set of k-tuples of distinct elements from S.
f o g. composition of functions f and g, from right to left.
char(K). characteristic of a field K.

ged(f, g). greatest common divisor of polynomials f and g.
é. identity element of a group.

gH. leftcoset {gh:h e H}.

Hg. rightcoset {hg:h € H}.

G/H. left coset space {gH : g € G}.

H\G. right coset space {Hg : g € G}.

HgK. double coset {hgh' : h € H, I/ € K}.
H\G/K. double coset space {HgK : g € G}.
|G : H]. index of a subgroup H in G.

(Hyq, ..., Hy). join of subgroups Hy, ..., Hy.

(g1, .-, gx). subgroup generated by g1, ..., gi.
H < G. H is anormal subgroup of G.

N¢(H). normalizer of H in G.

Z(@G). center of G.
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(ay ag - -+ a,). permutation sending a; to a;1 for 1 <i < n and a,, to a;.
Sym(S), Sym(n). symmetric group.
Alt(S), Alt(n). alternating group.
Aut(G). automorphism group of a group G.
Inn(G). inner automorphism group of a group G.
Out(G). outer automorphism group of a group G.
9x.  alias for the element ¢(g, z) where ¢ is a group action.
IT.  set{%z:xeT}.
Gz. G-orbit {9z : g € G} of an element .
G,. stabilizer of an element x.
Gr. pointwise stabilizer of a set 7.
G{T}. setwise stabilizer of a set 7.
,,,,, 2, pointwise stabilizer of {xy, ..., x;}.
SC.  set of fixed points of G in a set S.

A%, subgroup (resp. subring, subfield) of G-invariant elements of the abelian
group (resp. ring, field) A.

P system of stabilizers of depth m.

Ag.  the map from a G-orbit S containing x to G, \G sending 9z to G,g .
g projection from H\G to H'\G.

crg. conjugation from H\G to gHg '\G.

d(G), d'(G). See Definition 2.8.

b(G). minimal base size of a permutation group G.

projection from S*) to S**~) omitting the kth coordinate.

7k, projection from S®) to S*~1) omitting the coordinates with indices in 7.
permutation of S*) sending  to 9z.

II(C). m-scheme constructed from a P-scheme C (see Definition 2.12).
C(II). P-scheme constructed from an m-scheme II (see Definition 2.13).

lg.  block {(z,z) : € S} of an association scheme on S.
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». See Definition 2.15.

II(P). 3-collection constructed from a partition P (see Definition 2.16).

P(II). partition constructed from a 3-collection I (see Definition 2.16).

(x), R, Rx. ideal of a ring R generated by x.

Ok.

ring of integers of a number field K.

Aut(K/Kp). automorphism group of a field extension K/ K.

Gal(K/Ky). Galois group of a Galois extension K/ K.

Gal(f/Ky). Galois group of K/Ky where K is the splitting field of f over K.

lev]]-

P,

quotient ring O /pOk-.

inclusion Ox — Oy in Chapter 3, or R — Ry in Chapter 5.

. See Definition 3.2 and Definition 5.4.

. See Definition 3.2 and Definition 5.4.

See Definition 3.2 and Definition 5.4.

See Lemma 3.5 and Lemma 5.4.

a p-maximal order of K.

ring homomorphism O — Oy induced from an embedding ¢ : K — K.
poset of subfields corresponding to P via Galois correspondence.

fixed isomorphism K — L* (which is K-linear in Chapter 5).

isomorphism over a field K.

. complexity of a subgroup system P.

greatest absolute value of i(«) where 7 ranges over embeddings Q(«) — C.

subgroup system {U : H CU C Ng(H), H € P}.

h, oy Aoy K. See Chapter 5.

residue field of *P.

. ramification index of I3 over pOy,.

. inertia degree of 3 over pOy,.

decomposition group of B over K.



279
Zy.  inertia group of P over K.
Wy, wild inertia group of °P3 over K.
e(HgD). ramification index of a double coset H gD.
f(HgD). inertia degree of a double coset HgD.
Rad(A). radical of aring A.
Rad(g). radical of a polynomial g.
Ryg. ring {x € Ok /Rad(Ok) : 2P = 1:}
Th s+ Projection from H\G/D to H'\G/D.
¢4~ conjugation from H\G/D to gHg~'\G/D.
A ®r, B. tensor product of A and B over F,.
Ak . ring (O /Rad(Ok)) @x, F.
oK. automorphism of Ax ; sending a ® b to a? ® b.
Anng(S). annihilator of S in R.

~

¢.  ring homomorphism Ok /Rad(Of) — Ok /Rad(Ok) induced from ¢ :
K — K'.

?. ring homomorphism Ry — Rk induced from ¢ : K — K.
ess fs. See Section 5.7.

P|y. restriction of a subgroup system P to H.

C|g. restriction of a P-collection C to H.

II|.,....z.- See Definition 6.3.

Pea.  closure of a subgroup system P.

II||7r. restriction of an m-collection II to a subset 7.

AGL(V). general affine group on V.

G G'. wreath product of groups G and G'.
dsym(n). alias for d(G) where G = Sym(.S)

=n.
GL(V), GL,(q). general linear group.

I'L(V), 'L, (q). general semilinear group.

PGL(V), PGL,(q). projective linear group.



280
PI'L(V), PT'L,(q). projective semilinear group.
dcr(n, q), driL(n, q), dpar(n, q)s dprr(n, q). See Definition 7.2.
m(n), m’(n). See Definition 7.3.
Pa, n. See Definition 8.1.
soc(@). socle of a finite group G.
Hol(G). holomorph of a group G.
Map(S,T'). set of all maps from the set S to the set 7.
T twr, P. twisted wreath product with respect to the data (7', P, ¢).
U(k,q). fully deleted permutation module for Sym(k) over F,.
G ® - -+ ® Gg. tensor product of the linear groups G;.

g1 ® -+ ® gg. imageof (g1,...,0x) InG; ® -+ - ® G.
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A
action, 12
affine scheme, 122, 235
affine type, 209, 215
algebraic integer, 52
algebraic number, 52
almost simple group, 209
almost simple type, 209, 212
annihilator, 115
antisymmetry

of a P-scheme, 19

of a P-scheme of double cosets,

113

of an m-scheme, 23
association scheme, 30
automorphism group

of a field extension, 52

of a group, 11

B
base, 21

basis of a free module, 51
block, 10

C
(C, D)-separatedness, 131
center of a group, 11
CFSG, 201
Chinese remainder theorem, 50
classical group, 201
classification of finite simple groups,
see CFSG

closure, 99, 162
compatibility

of a P-collection, 18, 235
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of a P-collection of double
cosets, 112

of an m-collection, 22
complete

factorization, 1

idempotent decomposition, 51
completely reducible, 44
complexity of a subgroup system, 81
composition factor, 201
composition series, 201
conjugate

subfield, 52

subgroup, 11
conjugation, 17, 112
coprime ideals, 50

cyclotomic scheme, 39

D
decomposition group, 107
Dedekind domain, 53
depth, 15
diagonal action, 12
diagonal type, 210, 223
direct product

of P-collections, 175

of m-schemes, 176
discreteness

of a P-scheme, 19

of a P-scheme of double cosets,

113

of an m-scheme, 23
discriminant of a polynomial, 96
double coset, 11

doubly regular tournament, 39



E
equivalent actions, 16

exceptional group of Lie type, 201

F
faithful action, 12
finitely generated module, 51
fixed
subfield, 13
subring, 13
flat module, 114, 247
free module, 51
Frobenius automorphism, 107
fully deleted permutation module,
215
fundamental theorem of Galois
theory, 52

G
Galois closure, 52
Galois extension, 52
Galois group, 52
Galois theory, 52
general
affine group, 173
linear group, 181
semilinear group, 181
generalized P-scheme algorithm, 139
generalized Riemann hypothesis, see
GRH
G-invariant, 13
G-module, 13
G-orbit, see orbit
great common divisor, 11
GRH, 3
group action, see action
G-set, 12
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H

having a singleton, 143
holomorph, 210
homogeneity
of a P-scheme, 19
of a P-scheme of double cosets,
113

of an m-scheme, 23

I
Z-advice, 130
ideal, 49
idempotent, 45, 50
idempotent decomposition, 45, 51
imprimitive

m-scheme, 171

permutation group, 89
imprimitive wreath product action,

179

index of a subgroup, 11
induction of a P-scheme, 154
inertia degree

of a double coset, 109

of a prime ideal, 106
inertia group, 107
inner automorphism, 11
integral, 52
invariance

of a P-collection, 18, 235

of a P-collection of double

cosets, 112

of an m-collection, 22
inverse right translation, 16

of P-schemes, 148
irreducible lifted polynomial, 5, 102

irreducible linear group, 215



J

join, 11

join-closed, 166
Jordan-Holder theorem, 201

K
k-transitive, 12
(k 4 1/2)-transitive, 12

L

left coset, 11

left translation, 16

Lie rank, 206

lifted polynomial, 5, 102

linear group, 182

locally constant
inertia degrees, 109
ramification indices, 109

lying over, 53, 106

M

matching, 29
maximal ideal, 49
maximal subgroup, 11
m-collection, 22
minimal base size, 21
monic polynomial, 11

m-scheme, 22

N

natural action of linear groups, 182,
194

nilpotent, 109

nilradical, see radical of a ring

non-standard action, 213

normal subgroup, 11

normalization, 123

normalizer, 11
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number field, 52

(0]
O’Nan-Scott theorem, 212
Odd Order Theorem, 174
orbit, 12

P-scheme, 33

m-scheme, 33
orbit-stabilizer theorem, 17
orbital graph, 173
orthogonal idempotents, 45, 50

outer automorphism group, 12

P
Paley tournament, 39
partially ordered set, see poset
partition, 10
P-collection, 18
of double cosets, 112
permutation group, 12
permutation isomorphic actions, 16
permutation representation, 12
p-maximal order, 56
pointwise stabilizer, 12
poset, 15
power
non-residue, 3
residue, 3
primary tensor, 217
prime ideal, 49
primitive
m-scheme, 171
association scheme, 172
idempotent, 50
linear group, 215
permutation group, 89

primitive element, 52



primitive element theorem, 52, 84
primitive wreath product action, 211
product type, 211, 226
projection, 17, 112
projective
linear group, 182
semilinear group, 182
space, 182
proper
factorization, 1, 142
ideal, 49
idempotent decomposition, 51
refinement, 10
P-scheme, 18, 235
of double cosets, 112
P-scheme algorithm, 75

Pyber’s base size conjecture, 213

Q
quasisimple group, 216

R
radical
of a polynomial, 110
of aring, 109
ramification index
of a double coset, 109
of a prime ideal, 106
rank of a module, 51
refinement, 10
regular action, 12
regularity
of a P-collection, 18, 235
of a P-collection of double
cosets, 113
of a prime, 122

of an m-collection, 23
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relative number field, 79
residue field, 106
restriction
of a P-collection, 149
of a partition, 10
of a subgroup system, 148
of an m-collection to a subset,
168
right coset, 11

ring of integers, 52

S
scalar linear transformation, 182
schemes conjecture, 147, 159
for permutation groups, 147, 160
Schreier conjecture, 212
self-reduction of discreteness, 186
semilinear transformation, 181
semiregular action, 12
semisimple
algebra, 50
ring, 50
set of fixed points, 12
set of imprimitivity, 89
setwise stabilizer, 12
simple group, 201
size, 55
socle, 209
splitting field, 52
splitting of prime ideals, 53, 106
complete splitting, 53
sporadic simple group, 201
square-free, 44
square-free factorization, 44, 115
stabilizer, 12
standard action, 181, 189, 213

strong antisymmetry
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of a P-scheme, 20 transitive action, 12
of a P-scheme of double cosets, twisted wreath type, 212, 228
113
U

of an m-scheme, 23

structure constants. 3. 55 unique factorization domain, 1, 11

subfield system, 61, 80

\Y%
subgroup system, 15
. valency, 30
subquotient, 11
symmetry W

of a P-scheme, 19

of an m-scheme, 23

wild inertia group, 108
wreath product
of P-schemes, 178

T of m-schemes, 179

system of stabilizers, 15

tensor product of linear groups, 215 of groups, 177
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