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Abstract11

In this paper, we show that random Gabidulin codes of block length n and rate R achieve the12

(average-radius) list decoding capacity of radius 1 − R − ε in the rank metric with an order-optimal13

column-to-row ratio of O(ε). This extends the recent work of Guo, Xing, Yuan, and Zhang (FOCS14

2024), improving their column-to-row ratio from O( ε
n

) to O(ε). For completeness, we also establish15

a matching lower bound on the column-to-row ratio for capacity-achieving Gabidulin codes in the16

rank metric.17

Our proof techniques build on the work of Guo and Zhang (FOCS 2023), who showed that18

randomly punctured Reed–Solomon codes over fields of quadratic size attain the generalized Singleton19

bound of Shangguan and Tamo (STOC 2020) in the Hamming metric. The proof of our lower bound20

follows the method of Alrabiah, Guruswami, and Li (SODA 2024) for codes in the Hamming metric.21
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1 Introduction30

Introduced by Delsarte [5], rank-metric codes have since developed into a field of study with31

applications and connections spanning network coding [16, 26, 17, 25], space-time coding32

[21, 20], cryptography [10, 9, 18, 19], and pseudorandomness [7, 6, 15, 14, 11].33

A rank-metric code is a collection of matrices in Fm×n
q with m ≥ n, where the distance34

between two matrices A and B is defined to be their rank distance rank(A−B). A rank-metric35

code C ⊆ Fm×n
q of rate R := log2 |C|

log2(qmn) and relative minimum (rank) distance δ must satisfy36

that R + δ ≤ 1, which is called the Singleton bound. A rank-metric code attaining the37

Singleton bound is called a maximum rank distance (MRD) code. Gabidulin codes are an38

important class of MRD codes, which can be seen as the linearized version of Reed–Solomon39

codes. This analogy allows us to design efficient encoding and unique decoding algorithms40

for Gabidulin codes. However, when it comes to the list decoding regime, it is known that41

some Gabidulin codes are not list decodable beyond the unique decoding radius [22, 23].42
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43:2 Gabidulin Codes Achieve Capacity with an Optimal Column-To-Row Ratio

Thus, it is impossible to design a list decoding algorithm for all Gabidulin codes. Moreover,43

it was not even clear if any Gabidulin codes were list decodable beyond the unique decoding44

radius until very recently. Guo, Xing, Yuan and Zhang [12] recently proved that random45

Gabidulin codes are not only list decodable beyond the unique decoding radius but also46

attain the optimal generalized Singleton bound (see Lemma 1) with high probability. This47

settles an open problem of whether there exist list decodable Gabidulin codes.48

However, the construction in [12] requires m, the number of rows of matrices, to be at49

least quadratic in n, so the column-to-row ratio n
m = O( 1

n ) tends to zero as n grows. This is50

analogous to a result of Brakensiek, Gopi, and Makam on Reed–Solomon codes [4], which51

states that any Reed–Solomon code exactly attaining the generalized Singleton bound must52

have an exponential field size. Suppose the list decoding radius is slightly off the generalized53

Singleton bound (with a gap of ε). In that case, Guo and Zhang [13] proved that the field54

size of Reed–Solomon codes can be brought down to quadratic which was further brought55

down to linear in the follow-up work of Alrabiah, Guruswami, and Li [2].56

Thus, this raises an open problem for rank-metric codes, already asked in [12]: Can we57

obtain a similar result for Gabidulin codes as well?58

▶ Open Problem 1. Do there exist Gabidulin codes of constant column-to-row ratio that are59

list decodable in the rank metric?60

In this paper, we provide a positive answer to this open problem. We show that if the61

list decoding radius is slightly off the generalized Singleton bound (with a gap of ε), then a62

random Gabidulin code C ⊆ Fm×n
q with m = O( n

ε ) is list decodable up to this bound with63

high probability. Moreover, we complement our positive result by proving an upper bound64

m = Ω(n
ε ) for any list decodable Gabidulin codes approaching the generalized Singleton65

bound with a gap of ε. One can find the details in the following subsection.66

1.1 Main Results67

In this paper, we mainly focus on the rank distance, which is defined to be the rank of the68

difference between two matrices A, B ∈ Fm×n
q i.e., d(A, B) := rank(A − B). In what follows,69

d(·, ·) refers to the rank distance. For ρ ∈ [0, 1], a code C ⊆ Σn over an alphabet Σ is said to70

be (ρ, ℓ)-list decodable if for any y ∈ Fn
q , it holds that71

|{x ∈ C : d(x, y) ≤ ρn}| ≤ ℓ,72

where d(x, y) denotes the distance between x and y. Here, ρ is called the list decoding radius,73

and ℓ is called the list size. The stronger notion of (ρ, ℓ)-average-radius list decodability is74

defined in the same way, except that we replace the maximum of the distances d(ci, y) by75

the average of these distances. The formal definition is given as follows.76

▶ Definition 2 (Average-radius list decodability). A code C ⊆ Σn is (ρ, ℓ) average-radius list77

decodable if for any y ∈ Σn and ℓ + 1 distinct codewords c0, c1, . . . , cℓ ∈ C, it holds that78

1
ℓ + 1

ℓ∑
i=0

d(y, ci) > ρn.79

In [24], Shangguan and Tamo proved the generalized Singleton bound for list decoding,80

generalizing the classical Singleton bound for unique decoding. For linear codes, this81

generalized Singleton bound states that if C ⊆ Fn
q is an [n, k]-linear code that is (ρ, ℓ)-list82

decodable in the Hamming metric, then it holds that ρ ≤ ℓ
ℓ+1

(
1 − k

n

)
. In [12], they noted83

that this generalized Singleton bound also holds for rank-metric codes.84
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▶ Lemma 1 (Generalized Singleton bound for rank-metric codes [12, Lemma 2.1]). Let C ⊆ Fn
qm85

be an [n, k]Fqm -linear code that is (ρ, ℓ)-list decodable in the rank metric. Then it holds that86

ρ ≤ ℓ

ℓ + 1

(
1 − k

n

)
.87

They further showed that this bound is tight for rank-metric codes by proving that random88

Gabidulin codes attain it with high probability. (This is a nontrivial task; in fact, even89

proving that random linear rank-metric codes attain the generalized Singleton bound is far90

from obvious.) However, the column-to-row ratio of these codes is quite small, which makes91

them less appealing for practical applications.92

▶ Theorem 3 ([12, Lemma 1.3]). Let (α1, . . . , αn) be uniformly distributed over the set93

of all vectors in Fn
qm whose coordinates are linearly independent over Fq. Suppose m ≥94

cnkℓ + logq(1/δ), where c is a large enough absolute constant. Then it holds with probability95

at least 1 − δ that the Gabidulin code Gn,k(α1, . . . , αn)1 over Fqm is
(

L
L+1 (1 − k/n) , L

)
-list96

decodable for all L ∈ [ℓ] in the rank metric.97

In this paper, we prove that there exist Gabidulin codes with constant column-to-row ratio98

Ω(ε) that are list decodable up to the radius ℓ
ℓ+1 (1 − k

n − ε).99

▶ Theorem 4. Let ε > 0 and n, k be positive integers with k ≤ n. Let m and ℓ be positive100

integers such that m ≥ cℓ(ℓ+1)n
ε , where c is a sufficiently large absolute constant. Then with101

probability at least 1 − q−O(n) > 0, a random Gabidulin code of rate R = k/n and block length102

n over Fn
qm is

(
ℓ

ℓ+1 (1 − R − ε), ℓ
)

average-radius list decodable.103

Complementing this result, we also show that the column-to-row ratio is at most O(ε) for104

any rank-metric code that is average-radius list decodable up to the generalized Singleton105

bound. Thus, our results are essentially tight.106

▶ Theorem 5. Let ℓ ≥ 2. For any R ∈ [0, 1], any rank-metric code C ⊆ Fn
qm of rate R that107

is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-average-radius list decodable must have m = Ω

(
Rn
ε

)
.108

1.2 Proof Overview109

Our proof is inspired by [13]. To explain our proof, we first briefly review the techniques in [13].110

In [13], they proposed the notion of a reduced intersection matrix, whose kernel corresponds111

to the list of codewords. Let C be an [n, k] linear code and G be its generator matrix, which112

is a k × n matrix. Given ℓ + 1 distinct codewords c1, . . . , cℓ+1 with ci = xiG = (ci1, . . . , cin)113

that are close to a vector y = (y1, . . . , yn), where the coordinates cij and yj are in the114

alphabet F, we define the intersection index set Ij := {h ∈ [n] : yh = cjh}. For a subset115

J ⊆ [n], let GJ (resp. yJ) be the submatrix (resp. subvector) of G (resp. y) formed by116

the columns (resp. components) with indices in J . Then, we have yIi − xiGIi = 0. If117

a ∈ Ii ∩ Ij , then (xi − xj)Ga = 0. This means that for each element in Ii ∩ Ij , we can118

establish a linear equation. Since these ℓ + 1 codewords are very close to y, it is expected119

that we can obtain many equations of the form (xi − xj)Ga = 0. By removing the linear120

dependence of these equations, we obtain a reduced intersection matrix RG,I[ℓ] such that121

(x2 − x1, . . . , xℓ+1 − x1)RG,I[ℓ] = 0, where I[ℓ] is a shorthand for the tuple (I1, . . . , In). On122

1 See the definition of Gabidulin codes in Definition 13.
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the other hand, if RG,I[ℓ] has full rank, then we cannot find ℓ + 1 distinct codewords that123

are close to a vector y and thus C is list decodable. Thus, the essence of their paper is to124

investigate the full rankness of RG,I[ℓ] .125

In this paper, we investigate the list decodability of rank-metric codes, where distance126

is measured using the rank metric rather than the Hamming metric. Thus, we cannot127

construct the reduced intersection matrix RG,I[ℓ] row by row as in [13]. Instead, we present128

another construction of a reduced intersection matrix, which captures the property of the129

rank distance. Let us first represent the codeword of our rank-metric code as a vector130

c ∈ Fn where F is the extension field of Fq. This is done by fixing an Fq-linear isomorphism131

F ∼= F[F:Fq ]
q . The rank distance between two codewords d(c1, c2) is the maximum number of132

Fq-linear independent components in c1 − c2. One can find the precise definition in Section 2.133

Similar to Hamming codes, a linear rank-metric code has a generator matrix G and each134

codeword can be encoded as c = xG. Given two vectors y1, y2 ∈ Fn with rank distance d,135

we can find a (n − d) × n matrix A over Fq of full rank such that A(y1 − y2)⊤ = 0. The136

major difference between the rank metric and the Hamming metric is that for each vector137

v that lies in the vector space spanned by the rows in A, we always have v(y1 − y2)⊤ = 0.138

Thus, we cannot include all v in our equations. Instead, we include A as a whole.139

With this observation in mind, we present our new reduced intersection matrix. Assume140

distinct codewords c1, . . . , cℓ+1 with ci = xiG are close to a vector y = (y1, . . . , yn). Assume141

that d(y, xiG) = ai and there exists an ai × n matrix Ai of full rank over Fq such that142

Ai(y − xiG)⊤ = 0. By replacing y with y − x1G and xi = xi − x1, we have A1y⊤ = 0143

and Ai(y − xiG)⊤ = 0. Let V = (V1, . . . , Vℓ+1) where Vi is the vector space spanned by the144

rows in Ai.2 Then, we construct a reduced intersection matrix RG,V to represent all these145

relations as RG,V(y, x2, . . . , xℓ+1)⊤ = 0 which can be found in (9). If RG,V has full rank,146

which means that we cannot find such ℓ + 1 distinct codewords, then our rank-metric code is147

list decodable. Thus, it suffices to study the rank of RG,V . If our decoding radius is slightly148

off the generalized Singleton bound (with a gap of ε), then RG,V is not square. This makes149

the full rank condition easier to meet.150

We restrict G to a subspace V by defining GV to be the column space of GA where the151

columns of A span V . This can be seen as a generalization of puncturing in the Hamming152

metric. By introducing a subspace V , we obtain a submatrix RV
G,V of RG,V by restricting G to153

V . Using results from [12], we show that if G is a symbolic Gabidulin code (see Definition 15),154

then the submatrix RV
G,V is invertible and has the same rank as RG,V when the dimension155

of V is not too small, i.e., dim(V ) ≥ n − λk
ℓ , where λ > 0 is a small parameter depending156

on ε. This means if each variable of this symbolic Gabidulin code is chosen uniformly at157

random, with high probability, RV
G,V has full rank. To show that a Gabidulin code is list158

decodable, we need to enumerate all possible t-tuples (V1, . . . , Vt) for t = 1, . . . , ℓ + 1 and159

take a union bound over all these tuples. Thus, we need to show that RG,V is of full rank160

with high probability 1 − exp(Ω(−n2)) for each V. To do this, we borrow the idea of [13] to161

bound the failure probability.162

Let us briefly review the idea of our algorithm. Let e1, . . . , en be a standard basis of163

Fn
q . We first fix a non-singular maximal square submatrix W of RG,V . The reason we164

need a square submatrix is that it is easy to calculate the determinant of W to bound the165

failure probability that W is non-singular. Initially, since G is the generator matrix of a166

symbolic Gabidulin code, W is a nonsingular matrix. If W remains non-singular with the167

2 In our analysis, we need to consider V[t] = (V1, . . . , Vt) for t = 1, . . . , ℓ + 1. Here, we only consider V[ℓ+1]
for simplicity.
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assignment X1 = α1, . . . , Xn = αn, we are done. Otherwise, we face the situation where168

M is non-singular under the partial assignment X1 = α1, . . . , Xj−1 = αj−1 but becomes169

singular under X1 = α1, . . . , Xj = αj . In this case, we call j a faulty index and remove the170

corresponding columns from the generator matrix G. Then, we come to the submatrix RV
G,V171

for some subspace V = span{ei : i ∈ [n]/{j}}. Note that we have already shown that RV
G,V172

has full rank if V has large dimension. Then, we find a new maximal square submatrix W of173

RV
G,V and continue the argument. We show that, with high probability, there are not too174

many faulty indices, which implies that we can finally find a maximal square submatrix W175

that has full rank under the assignment. This means RG,V has full rank, completing the176

proof.177

Complementing our positive result, we also show that a capacity-achieving list decodable178

rank-metric code must satisfy m = Ω(n/ε). Our proof generalizes the proof in [1] in the179

rank-metric case. In particular, we first fix a subspace V0 ⊆ Fn
qm of dimension b = 4εn and180

let V 0 be a complement of V0. Then, we construct a collection F of subspaces of dimension181

R − ε in V 0, where R is the rate of our rank-metric code. For any two subspaces V1, V2 ∈ F ,182

dim(V1 + V2) ≥ (R + ε)n. We manage to show that F has a large size. Using a probabilistic183

argument, we find a codeword M in the rank-metric code C such that for most subspaces184

V ∈ F , there is a corresponding codeword MV in C satisfying the condition that the kernel185

of M − MV contains V . Since the number of such subspaces is greater than ℓq4εn, by the186

pigeonhole principle, we can find ℓ distinct codewords MV1 , . . . MVℓ
such that the kernel of187

M − MVi
also contains V0. Then, we show that these ℓ + 1 codewords M, MV1 , . . . MVℓ

are188

contained in a ball of small radius in the rank metric. This implies an upper bound on the189

list decoding radius, thus completing the proof.190

▶ Remark. It is interesting to note that we require only the ideas from [13] to improve the191

column-to-row ratio to Ωℓ,ε(1), without relying on the more refined techniques from [2].192

This is likely due to the significantly larger alphabet size of rank-metric codes. While the193

techniques in [2] might further improve lower-order factors, such as the dependence on ℓ, we194

do not pursue this direction here in order to keep the presentation simple.195

2 Preliminaries196

In this paper, vectors are considered row vectors unless stated otherwise. Define [k] =197

{1, . . . , k}. Let Fq be a finite field with q elements and F/Fq be a (finite or infinite) extension198

of Fq.199

2.1 Vector Spaces200

Fn
q is a vector space of dimension n over Fq. We denote by x a row vector in Fn

q and x⊤
201

a column vector. Let e1, . . . , en be the standard basis of Fn
q . Given a matrix A ∈ Fm×n

q ,202

we denote by ⟨A⟩ the subspace spanned by the column vectors in A. For a t-tuple V[t] =203

(V1, . . . , Vt) and J ⊆ [t], define VJ = (Vi)i∈J .204

▶ Definition 6 (Dual space). Let V ⊆ Fn
q be a linear subspace. The dual space of Vi is205

denoted as V ⊥ = {v ∈ Fn
q : vx⊤ = 0, ∀x ∈ V }. It is clear that V ⊥ is well-defined, and206

dim(V ⊥) = n − dim(V ).207

2.1.0.1 Linear codes.208

Let F be a field. An [n, k]F linear code C (or [n, k]F code for short) is simply a subspace of209

Fn of dimension k. The dual code of an [n, k]F code C is the [n, n − k]F code C⊥ which is210

APPROX/RANDOM 2025
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the dual space of C.211

For an [n, k]F code C, a matrix G ∈ Fk×n is said to be a generator matrix of C if212

C = {uG : u ∈ Fk}, and a matrix H ∈ F(n−k)×n is said to be a parity-check matrix of C if213

C = {v ∈ Fn : Hv⊤ = 0}. A generator matrix of C is also a parity-check matrix of the dual214

code C⊥. Similarly, a parity-check matrix of C is also a generator matrix of C⊥.215

▶ Definition 7 (Dimension of a collection of vector spaces). For a t-tuple V[t] = (V1, . . . , Vt)
of subspaces and J ⊆ [t], the dimension of VJ is defined as

dim(VJ) :=
∑
i∈J

dim(Vi) − dim
(∑

i∈J

Vi

)
.

We need the following simple lemmas, whose proofs are omitted.216

▶ Lemma 2. Let ℓ ≤ n. Let T1 be a ℓ×n matrix of full rank over F. Then there exist matrices217

M1 ∈ Fn×ℓ, M2 ∈ Fn×(n−ℓ), and T2 ∈ F(n−ℓ)×n of full rank such that M1T1 + M2T2 = In218

and T1M2 = 0.219

▶ Lemma 3. Let V1, . . . , Vℓ ⊆ Fn. Then220 (
ℓ⋂

i=1
Vi

)⊥

=
ℓ∑

i=1
V ⊥

i . (1)221

▶ Lemma 4. Let V be a subspace in Fn
q and W be a subspace of V . Then, there exists a222

matrix A ∈ Fn×dim(V )
q with ⟨A⟩ = V such that there exists a n × dim(W ) submatrix B of A223

with ⟨B⟩ = W .224

▶ Lemma 5. Let 0 < α < β < 1 with β − α < 1
4 . Given a subspace V1 ⊆ Fn

q of dimen-225

sion αn, the number of V2 ⊆ Fn
q with dim(V1 + V2) ≤ βn and dim(V2) = αn is at most226

16n2q(β−α)(1+3α−2β)n2 .227

Proof. Let W = V1 ∩ V2 and we write V1 = W ⊕ W1 and V2 = W ⊕ W2. Since

dim(V1 ∩ V2) = dim(V1) + dim(V2) − dim(V1 + V2) ≥ (2α − β)n,

we conclude that a := dim(W ) ≥ (2α−β)n and b := dim(W2) ≤ (β −α)n. To construct V2, it
suffices to construct W and W2 separately. The number of subspaces W equals the number of
ways of picking a dim(W )-dimensional subspace from V1, which is at most 4q(αn−a)a. On the
other hand, the number of W2 equals the number of ways of picking a dim(W2)-dimensional
subspace that W2 ∩ V1 = {0}, which is

dim(W2)−1∏
i=0

qn − qαn+i

qdim(W2) − qi
≤ 4q(n−b)b.

Thus, for fixed (a, b), the total number of V2 is at most 16q(αn−a)a+(n−b)b subject to a+b = αn

and b ≤ (β − α)n. And we have

(αn − a)a + (n − b)b = b(αn − b) + (n − b)b = b((α + 1)n − 2b) ≤ (β − α)(1 + 3α − 2β)n2.

The number of possible (a, b) is at most n2. The claim follows by taking the union bound228

over all possible (a, b). ◀229
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▶ Corollary 8. Let 0 < α < β < 1. There exists a collection F of αn-dimensional subspaces in230

Fn
q of size at least Ω(q(α−α2−2(β−α)−o(1))n2) such that for any V1, V2 ∈ F , dim(V1 +V2) ≥ βn.231

Proof. There are at least qα(1−α)n2
αn-dimensional subspaces in Fn

q . For each such subspace
V , by Lemma 5, we remove at most 16n2q(β−α)(1+3α−2β)n2 subspaces W in Fn

q such that
dim(V + W ) ≤ βn. Thus, by a greedy algorithm (i.e., iteratively adding subspaces that have
not been selected or removed to F), we can find F of size at least

1
16n2 qα(1−α)n2−(β−α)(1+3α−2β)n2

≥ Ω(q(α−α2−2(β−α)−o(1))n2
).

The last inequality is due to 1 + 3α − 2β ≤ 1 + α ≤ 2. The proof is completed. ◀232

The size of family F will be used in the lower bound argument in Appendix A.233

2.2 Rank-Metric Codes234

We first review some basic facts and results about rank-metric codes. The rank distance235

d(A, B) between two matrices A, B ∈ Fm×n
q is defined to be the rank of A − B, i.e.,236

d(A, B) := rank(A − B). Indeed, this defines a distance [8]. A rank-metric code C is a subset237

of Fm×n
q whose rate and minimum distance are given by238

R(C) :=
logq |C|

nm
and d(C) := min

A,B∈C
A̸=B

d(A, B).239

Without loss of generality, we always assume that m ≥ n, since otherwise we can exchange n240

and m. It is convenient to treat an m×n matrix A over Fq as a vector v = (v1, . . . , vn) ∈ Fn
qm241

by identifying Fm
q with Fqm (by fixing a basis of Fqm) and viewing each column of A as242

an element in Fqm . Then, we have rank(A) = dimFq (spanFq
{v1, . . . , vn}). In this way, a243

rank-metric code C may be viewed as a subset of Fn
qm , and we can study linear rank-metric244

codes, i.e, codes that are Fqm-subspaces.245

2.2.0.1 Linear rank-metric codes over a general field F/Fq.246

It is convenient for us to consider a general notion of linear rank-metric codes C ⊆ Fn over247

a field F/Fq that can even be infinite. To properly define this notion, we first define the248

Fq-rank and the kernel subspace of a vector v ∈ Fn.249

▶ Definition 9 (Fq-rank). Let F be an extension field of Fq. For v = (v1, . . . , vn) ∈ Fn, define250

rankFq
(v) := dimFq

(spanFq
{v1, . . . , vn}),251

called the Fq-rank of v.252

▶ Definition 10 (Kernel subspace). For v = (v1, . . . , vn) ∈ Fn, define the Fq-kernel subspace253

(or simply the kernel subspace) of v to be254

kerFq
(v) :=

{
u ∈ Fn

q : uv⊤ = 0
}

=
{

(u1, . . . , un) ∈ Fn
q :

n∑
i=1

uivi = 0
}

.255

The following lemma can be seen as an alternative definition of the Fq-rank.256

▶ Lemma 6. rankFq
(v) = n − dimFq

(kerFq
(v)).257
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Proof. Consider the Fq-linear map Fn
q → F sending u ∈ Fn

q to uv⊤. The image of this map258

is spanFq
{v1, . . . , vn}, whose dimension is rankFq (v) by definition. The kernel of this map is259

kerFq
(v). So rankFq

(v) = n − dimFq
(kerFq

(v)). ◀260

We can now define the notion of a linear rank-metric code over a field F/Fq.261

▶ Definition 11 (Linear rank-metric code). Let F be an extension field of Fq. An [n, k]F262

(linear) rank-metric code is simply an [n, k]F code C ⊆ Fn equipped with the distance function263

d : Fn × Fn → N defined by d(v, v′) := rankFq
(v − v′). The minimum distance of C is264

d(C) := min
v,v′∈C

v ̸=v′

d(v, v′) = min
0 ̸=v∈C

rankFq
(v).265

Analogous to the classical setting, one can prove the following Singleton bound for linear266

rank-metric codes. While this may be well known, we include a proof for completeness.267

▶ Theorem 12 (Singleton bound). Let C be an [n, k]F rank-metric code. Then d(C) ≤268

n − k + 1.3269

Proof. There exists a nonzero codeword v = (v1, . . . , vn) ∈ C whose first k − 1 coordinates270

are zero. So d(C) ≤ rankFq (v) = dimFq (spanFq
{v1, . . . , vn}) = dimFq (spanFq

{vk, . . . , vn}) ≤271

n − k + 1. ◀272

A rank-metric code meeting the Singleton bound is called maximum rank distance (MRD)273

code.274

▶ Lemma 7 ([12, Lemma 2.11]). Let C be an [n, k]F code. If C is MRD, then C⊥ is also275

MRD.276

▶ Lemma 8. Let G ∈ Fk×n be a generator matrix of an [n, k]F code C and H ∈ F(n−k)×n be277

a parity-check matrix of code C. Then the following are all equivalent:278

1. C is MRD.279

2. For any A ∈ Fn×k
q of full rank, the matrix GA ∈ Fk×k also has full rank.280

3. For any B ∈ Fn×(n−k)
q of full rank, the matrix HB ∈ F(n−k)×(n−k) also has full rank.281

Proof. For the first two claims, see [12, Lemma 2.10]. Lemma 7 says that H is the generator282

matrix of a [n, n − k]F MRD code C⊥. The third claim follows by applying the second one283

to the dual code C⊥. ◀284

2.2.0.2 Gabidulin codes.285

The most famous MRD codes are Gabidulin codes, which are defined by using the evaluation286

of linearized polynomials. We briefly review the construction of Gabidulin codes [8] and287

extend it to a general field F/Fq.288

▶ Definition 13 (Gabidulin code over F). Let 0 < k ≤ n be integers. Let F be an extension289

field of Fq such that [F : Fq] ≥ n. Let α1, . . . , αn ∈ F be linearly independent over Fq. Define290

the [n, k]F rank-metric code291

Gn,k(α1, . . . , αn) :=
{

xf = (f(α1), . . . , f(αn)) : f ∈ F[X] is q-linearized, degq(f) < k
}

,292

3 We remark that when F = Fqm , there exists a Singleton bound, |C| ≤ qm(n−d+1), that also applies to
nonlinear rank-metric codes C ⊆ Fn [8]. However, this bound is given in terms of the size of the code,
not the dimension, making it inapplicable when F is infinite.
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where f ∈ F[X] is said to be q-linearized if it only contains monomials whose degrees are293

q-powers, and we define degq(f) = d if deg(f) = qd.294

For a nonzero codeword xf = (f(α1), . . . , f(αn)) ∈ Gn,k(α1, . . . , αn), using the fact that295

f is q-linearized, we have296

kerFq
(xf ) =

{
(u1, . . . , un) ∈ Fn

q : f

(
n∑

i=1
uiαi

)
= 0
}

297

whose dimension over Fq is bounded by k − 1 since α1, . . . , αn are linearly independent over298

Fq and f has at most deg(f) ≤ qk−1 roots. So rankFq (xf ) ≥ n − k + 1 by Lemma 6. This299

shows that Gabidulin codes are MRD codes.300

The dual code of a Gabidulin code is also a Gabidulin code, which can be seen as an301

analogy of a Reed–Solomon code.302

▶ Theorem 14 (Duality of Gabidulin codes). Let F be an extension field of Fq, and let303

α1, . . . , αn ∈ F be linearly independent over Fq. Then there exists (β1, . . . , βn) ∈ Fn \ {0}304

such that305

n∑
i=1

αqj−1

i βqh−1

i = 0 for (j, h) ∈ [k] × [n − k]. (2)306

The choice of (β1, . . . , βn) satisfying (2) is unique up to a scalar in Fq \ {0}. Moreover,307

β1, . . . , βn are linearly independent over Fq, and
(

βqi−1

j

)
i∈[n−k],j∈[n]

is a parity-check matrix308

of Gn,k(α1, . . . , αn), i.e.,309

Gn,k(α1, . . . , αn)⊥ = Gn,n−k(β1, . . . , βn).310

A proof can be found in [3, Lemma 2.7.2]. We present this proof for completeness.311

Proof of Theorem 14. This holds for any extension field F no matter if F is finite or infinite.312

Let β1, . . . , βn be the unique solution up to the scalar such that313

n∑
i=1

αqj

i βi = 0, j = k + 1 − n, . . . , k − 1. (3)314

The uniqueness is due to the fact that (αqk−j

i )(i,j)∈[n]×[n−1] is a Moore matrix of rank n − 1
if α1, . . . , αn are Fq-linearly independent. Then, for j ∈ [k], h ∈ [n − k], we have

n∑
i=1

αqj

i βqh

i =
(

n∑
i=1

αqj−h

i βj

)qh

= 0.

This is due to (3) and the fact that k + 1 − n ≤ j − h ≤ k − 1. ◀315

▶ Definition 15 (Symbolic Gabidulin code). Let 0 < k ≤ n. Let F = Fq(X1, . . . , Xn), where316

X1, . . . , Xn are transcendental and algebraically independent elements over Fq. A [n, k]F317

symbolic Gabidulin code is a F-linear code with generator matrix G = (Xqi−1

j )(i,j)∈[k]×[n],318

i.e.,319

Gn,k(X1, . . . , Xn) :=
{

xf = (f(X1), . . . , f(Xn)) : f ∈ F[X] is q-linearized, degq(f) < k
}

.320
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2.3 Known Results on the List Decoding of Gabidulin Codes321

For G ∈ Fk×n over an extension field F/Fq, A ∈ Fn×d
q , and V = ⟨A⟩ ⊆ Fn

q , define GV ⊆ Fn to322

be the column space of GA. The following results on the list decoding of symbolic Gabidulin323

codes can be found (implicitly) in [12].324

▶ Theorem 16 (Implicit in Theorem 1.16, [12]). Let ℓ > 0 be an integer. Let Gn,k(X1, . . . , Xn)325

be a symbolic Gabidulin code with generator matrix G and parity-check matrix H. Let326

V1, . . . , Vℓ be subspaces of Fn
q , each of dimension at most k. Then,327

dimF

⋂
i∈[ℓ]

GVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 (4)328

where the maximum is taken over all possible partitions P1 ⊔P2 ⊔· · ·⊔Ps of [ℓ]. Let V1, . . . , Vℓ329

be subspaces of Fn
q , each of dimension at most n − k. Then,330

dimF

⋂
i∈[ℓ]

HVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 . (5)331

▶ Lemma 9 (Lemma 6.1, [12]). Let F be an extension field of Fq and let G ∈ Fk×n. For332

i = 1, . . . , ℓ, let Vi be a subspace of Fn
q and let Ai ∈ Fn×dim Vi

q such that Vi = ⟨Ai⟩. Then,333

GVi
= ⟨GAi⟩ and334

dim

⋂
i∈[ℓ]

GVi

 =
∑
i∈[ℓ]

dim GVi − rank
(

G{Ai}i∈[ℓ]

)
, (6)335

where we define the matrix G{Ai}i∈[ℓ] :=


GA1 GA2
GA1 GA3

...
. . .

GA1 GAℓ

.336

3 Characterization of the List Decodable Property337

Let F be the extension field of Fq. Let C be a [n, k]F code with generator matrix G and338

parity-check matrix H. Assume xiG ∈ Fn, i = 1, . . . , ℓ + 1 are ℓ + 1 codewords close to a339

vector y ∈ Fn, i.e.,340

ℓ+1∑
i=1

rankFq (y − xiG) ≤ ℓn(1 − R + ε). (7)341

By replacing y with y − x1G and xi with xi − x1 for i > 1, we may assume x1 = 0. Thus,342

(7) is equivalent to:343

rank(y) +
ℓ+1∑
i=2

rankFq
(y − xiG) ≤ ℓn(1 − R + ε), (8)344

Let Vi = ker(y − xiG) ⊆ Fn
q be a vector space and Ai ∈ Fn×dim(Vi)

q such that ⟨Ai⟩ = Vi.345

It follows that rank(Ai) = dim(Vi) = n − rank(y − xiG) and (y − xiG)Ai = 0. Since346
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A⊤
i (y⊤ − G⊤x⊤

i ) = 0,347 
A⊤

1 0 · · · 0
A⊤

2 −A⊤
2 G⊤ · · · 0

...
...

. . .
...

A⊤
ℓ+1 0 · · · −A⊤

ℓ+1G⊤




y⊤

x⊤
2
...

x⊤
ℓ+1

 = 0. (9)348

Let the matrix above be denoted as RG,V[ℓ+1] where V[ℓ+1] = (V1, . . . , Vℓ+1). Since Ai ∈349

Fn×dim(Vi)
q , RG,V[ℓ+1] is a (

∑ℓ+1
i=1 dim(Vi)) × (ℓk + n) matrix.350

▶ Lemma 10. Let ρ ∈ (0, 1), λ ≥ 0, and ℓ be a positive integer. Let C be an [n, k]F-351

linear code over a finite field Fq with generator matrix G ∈ Fk×n. Suppose C is not (ρ, ℓ)352

average-radius list decodable in the rank metric and ρ ≤ ℓ
ℓ+1 (1 − (1 + λ) k

n ). Then, there exist353

t ∈ {2, 3, . . . , ℓ + 1} and Fq-linear subspaces V1, . . . , Vt ⊆ Fn
q such that354

1. ker(RG,V[t]) ̸= 0.355

2. dim(V[t]) ≥ (1 + λ)(t − 1)k356

3. dim(VJ) ≤ (1 + λ)(|J | − 1)k for some non-empty set J ⊆ [t].357

Proof. As C is not (ρ, ℓ) average-radius list decodable in the rank metric, there exists a vector
y ∈ Fn and ℓ + 1 codewords c1, . . . , cℓ+1 ∈ C such that

∑
i∈[ℓ+1] rankFq (y − ci) ≤ (ℓ + 1)ρn.

Let Vi = ker(y − ci) and we have
∑

i∈[ℓ+1] dim(Vi) ≥ (ℓ + 1)n(1 − ρ). This implies that

dim(V[ℓ+1]) =
∑

i∈[ℓ+1]

dim(Vi) − dim(
∑

i∈[ℓ+1]

Vi) ≥
∑

i∈[ℓ+1]

dim(Vi) − n ≥ ℓ(1 + λ)k.

Thus, we can choose a minimal set S ⊆ [ℓ + 1] of size at least 2 such that dim(VS) ≥358

(1 + λ)(|S| − 1)k. By permuting the codewords c1, . . . , cℓ+1, we may assume that S = [t].359

By the definition of dim(VJ), dim(VJ) = 0 for any subset J of size 1. Then, for any subset360

J ⊆ [t], Item 3 holds due to the minimality of S. It remains to show that Item 1 holds. To361

see this, we first notice that ci = xiG for some xi ∈ Ft
qm . Let Ai ∈ Fn×dim(Vi)

q such that362

⟨Ai⟩ = Vi. Since Vi = ker(y − ci), we have (y − ci)Ai = (y − xiG)Ai = 0. Let y′ = y − x1G363

and x′
i = xi − x1 for i = 2, . . . , ℓ + 1. Then (y′, x′

2, . . . , x′
t)⊤ ∈ ker(RG,V[t]). This completes364

the proof. ◀365

▶ Definition 17 (Reduced Matrix). Let V[t] = (V1, . . . , Vt), where each Vi is a linear subspace366

of Fn
q . Let V ⊆ Fn

q be a linear subspace and V̂i = Vi ∩ V be the intersection of Vi and V .367

The reduced matrix RV
G,V[t]

is defined as368

RV
G,V[t]

=


Â⊤

1 0 · · · 0
Â⊤

2 −Â⊤
2 G⊤ · · · 0

...
...

. . .
...

Â⊤
t 0 · · · −Â⊤

t G⊤

 . (10)369

where Âi ∈ Fn×dim(V̂i)
q of full rank with ⟨Âi⟩ = V̂i. If VJ = spanFq

{ei : i ∈ J} for some370

J ⊆ [n], we shorthand RJ
G,V[t]

:= RVJ

G,V[t]
if no ambiguity occurs.371

Let A ⊆ Fn×dim(V )
q with ⟨A⟩ = V . Since the column vectors in Âi lie in V = ⟨A⟩, we may372

write Âi = ATi where Ti ∈ Fdim(V )×dim(V̂i)
q of full rank. Using the above notation, we have373

the following results.374
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▶ Lemma 11. Let G1 = GA and Ui = ⟨Ti⟩ for i = 1, . . . , t. Let U[t] = (U1, . . . , Ut). Assume375

ker(RG1,U[t]) = 0, i.e., there is no nonzero solution to376


T ⊤

1 0 · · · 0
T ⊤

2 −T ⊤
2 G⊤

1 · · · 0
...

...
. . .

...
T ⊤

t 0 · · · −T ⊤
t G⊤

1




y⊤

x⊤
2
...

x⊤
t

 = 0. (11)377

Then ker(RV
G,V[t]

) = 0.378

Proof. Assume that there exists a solution (y, x2, . . . , xt) ∈ ker(RV
G,V[t]

). Let y′ = yA.379

Then, (y′, x2, . . . , xt)⊤ is a solution to (11) by observing380

Â⊤
i G⊤ = (ATi)⊤G⊤ = T ⊤

i A⊤G⊤ = T ⊤
i (GA)⊤ = T ⊤

i G⊤
1 . ◀381

4 Connection to the Parity-Check Matrix382

▶ Definition 18. Let F be the extension field of Fq. Let H be the parity-check matrix383

of a [n, k]F code C. Let V[t] = (V1, . . . , Vt) be a tuple of subspaces of Fn
q . Assume that384

Di ∈ Fn×dim(Vi)
q such that ⟨Di⟩ = Vi for i ∈ [t]. Define the following matrix385

MH,V[t] =


HD1 HD2 0 · · · 0
HD1 0 HD3 · · · 0

...
...

...
. . .

...
HD1 0 0 · · · HDt

 . (12)386

Since each Di is an n × dim(Vi) matrix over Fq, MH,V[t] is a (t − 1)(n − k) ×
∑t

i=1 dim(Vi)387

matrix over Fq.388

The following theorem connects the matrices MH,V⊥
[t]

and RG,V[t] . See Appendix B for its389

proof.390

▶ Theorem 19. Let F be an extension field of Fq. Let G and H be the generator and391

parity-check matrix of a [n, k]F MRD code C, respectively. Let V[t] = (V1, . . . , Vt) and392

V⊥
[t] = (V ⊥

1 , . . . , V ⊥
t ). Then, there is an injective F-linear map ϕ : ker(RG,V[t]) → ker(MH,V⊥

[t]
).393

We note that the matrix RG,V[t] is not a square matrix as (t − 1)k + n <
∑

i∈[ℓ+1] dim(Vi).394

This means that if RG,V[t] has full rank, there exists a reduced submatrix RV
G,V[t]

of RG,V[t]395

that has the same rank as RG,V[t] . The following theorem proves this claim provided that396

the dimension of V is not too small. See Appendix C for its proof.397

▶ Theorem 20. Let F = Fq(X1, . . . , Xn) where X1, . . . , Xn are transcendental and alge-398

braically independent elements over Fq. Let G = (Xqi−1

j )(i,j)∈[k]×[n] be the generator matrix399

of a [n, k]F symbolic Gabidulin code. Let λ > 0 and t > 1. Assume that V[t] = (V1, . . . , Vt)400

satisfies that dim(V[t]) ≥ (1 + λ)(t − 1)k and dim(VJ) ≤ (|J | − 1)(1 + λ)k for all nonempty401

J ⊆ [t]. Let V ⊆ Fn
q be a linear space with dim(V ) ≥ n − λk

t−1 . Then, ker(RV
G,V[t]

) = 0.402



Z. Guo, C. Xing, C. Yuan, and Z. Zhang 43:13

5 Random Assignment to Achieve the Capacity403

5.1 Random Puncturing404

Let {e1, . . . , en} be the standard basis of Fn
q . Theorem 20 states that for any subspace405

V ⊆ Fn
q of dimension at least n − λk

t−1 , and V[t] = (V1, . . . , Vt) satisfying Item 2 and406

Item 3, we have ker(RV
G,V[t]

) = 0. In this section, we focus on the subspace of the form407

WJ := spanFq
{ei : i ∈ J} for some subset J ⊆ [n]. Recall that we shorthand RWJ

G,V as RJ
G,V .408

By focusing on the subset J ⊆ [n], we are able to mimic the technique in [13] to bound409

the probability that RJ
G,V[t]

is not of full rank when selecting the value of Xi uniformly at410

random. The connection between RJ
G,V[t]

and RG,V[t] can be found in the following lemma.411

▶ Lemma 12. Let V[t] = (V1, . . . , Vt) ∈ (Fn
q )t and V ⊆ Fn

q . Then, there exist Ai and Âi in412

(9) and (10) such that RV
G,V[t]

is a submatrix of RG,V[t] .413

Proof. From Lemma 4, we can find Ai ∈ Fn×dim(Vi)
q and its submatrix Âi ∈ Fn×dim(V̂i)

q such414

that ⟨Ai⟩ = Vi, ⟨Âi⟩ = V̂i. This implies that (Â⊤
i , 0, . . . , 0, −Â⊤

i G⊤, 0, . . . , 0) is a submatrix of415

(A⊤
i , 0, . . . , 0, −A⊤

i G⊤, 0, . . . , 0). In view of the expression of RV
G,V[t]

and RG,V[t] , we conclude416

that RV
G,V[t]

is a submatrix of RG,V[t] . ◀417

Next, we define the faulty index which was first proposed in [13].418

▶ Definition 21 (Faulty index). Assume r ≥ ℓ. Let A ∈ Fq(X1, . . . , Xn)r×ℓ be a matrix such419

that rank(A) = ℓ and the entries of A are in Fq[X1, . . . , Xn]. For α1, . . . , αn ∈ Fqm , we say420

i ∈ [n] is the faulty index of A (with respect to α1, . . . , αn) if A|X1=α1,...,Xi−1=αi−1 has full421

(column) rank but A|X1=α1,...,Xi=αi does not.422

Algorithm 1 Output faulty indices

Input: V = (V1, . . . , Vt) ⊆ (Fn
q )t, α1, . . . , αn ∈ Fqm , and positive integer r

Output: “Success” or (i1, . . . , ir) ∈ [n]r

Let G = (Xqi−1

j )(i,j)∈[k]×[n] and J = [n].
for j = 1 to r, do

if rank(RJ
G,V) < (t − 1)k + n then

Output “Fail” and halt.
else if i ∈ [n] is the faulty index of RJ

G,V then
ij = i and J = J \ {i}.

else
Output “Success” and halt.

end if
end for
Output (i1, . . . , ir).

▶ Lemma 13. Let λ ≥ 0 and let t ≥ 1 be an integer. Let V[t] = (V1, . . . , Vt) ⊆ (Fn
q )t such that423

dim(V[t]) ≥ (1 + λ)(t − 1)k and dim(VJ ) ≤ (1 + λ)(|J | − 1)k for all nonempty J ⊆ [t]. Let r424

be a positive integer with r ≤ λk
t−1 + 1. Then, for all α1, . . . , αn ∈ Fqm , running Algorithm 1425

on the input V[t], α1, . . . , αn, and r yields the following two possible scenarios:426

1. Algorithm 1 outputs “Success”. In this case, RG,V[t] |X1=α1,...,Xn=αn
has full rank.427
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2. Algorithm 1 outputs an r-tuple (i1, . . . , ir) ∈
([n]

r

)
. In this case, for each j ∈ [r], ij is the428

faulty index of R
Sj

G,V[t]
for Sj = [n] \ {i1, . . . , ij−1}.429

Proof. Assume the algorithm reaches the j-th round of the loop. At the beginning, we have430

|J | ≥ n − j + 1 ≥ n − r + 1 ≥ n − λk
t−1 . Then by Lemma 11 and the fact that G is the431

generator matrix of a symbolic Gabidulin code, RJ
G,V has full rank and thus the algorithm432

never outputs “Fail”. Suppose that the algorithm outputs “Success” and halts in the j-th433

round. This means that the faulty index of RJ
G,V does not exist in this round. This implies434

that RG,V |X1=α1,...,Xn=αn
has full rank. It remains to consider the case where the algorithm435

outputs a r-tuple (i1, . . . , ir). For j ∈ [r], the index ij is chosen to be the faulty index of436

R
Sj

G,V , where Sj = [n] \ {i1, . . . , ij−1}. The distinctness of i1, . . . , ir is due to the fact that if437

i /∈ Sj , then R
Sj

G,V does not contain Xi. ◀438

▶ Lemma 14. Suppose m ≥ n and (α1, . . . , αn) are chosen uniformly at random in Fqm .439

Then, for any r-tuple (i1, . . . , ir) ∈
([n]

r

)
and (V1, . . . , Vt) ∈ (Fn

q )t, the probability that440

Algorithm 1 outputs (i1, . . . , ir) given the input (V1, . . . , Vt), α1, . . . , αn and r is at most441 (
(t−1)kqk−1

qm

)r

.442

Proof. For j ∈ [r], define the following:443

1. Sj := [n] \ {i1, . . . , ij−1}.444

2. Let Mj be the smallest nonsingular maximal minor of R
Sj

G,V in the lexicographic order.445

The same argument in Lemma 13 implies that for j ∈ [r], R
Sj

G,V has full rank and hence446

Mj exists.447

3. Let Ej be the event that det(Mj |X1=α1,...,Xij −1=αij −1) ̸= but det(Mj |X1=α1,...,Xij
=αij

) is448

zero.449

Note that if (i1, . . . , ir) is output by the algorithm, then E1, . . . , Er occurs. So it suffices to450

prove that Pr[E1 ∧ · · · ∧ Er] ≤
(

(t−1)kqk−1

qm

)r

.451

Let (j1, j2, . . . , jr) be a permutation of (1, 2, . . . , r) such that ij1 < · · · < ijr , i.e., ijℓ
is the452

ℓ-th smallest index among i1, . . . , ir for ℓ ∈ [r]. For ℓ ∈ {0, 1, . . . , r}, define Fℓ := Ej1∧· · ·∧Ejℓ
,453

where we let F0 be the event that always occurs. Then Fr = Ej1 ∧ · · · ∧ Ejr
= E1 ∧ · · · ∧ Er.454

If Pr[Fr] = 0 then we are done. So assume Pr[Fr] > 0. By definition, if Fℓ occurs and ℓ′ < ℓ,455

then Fℓ′ also occurs. So Pr[Fℓ] > 0 for all ℓ ∈ {0, 1, . . . , r}. Note456

Pr[E1 ∧ · · · ∧ Er] = Pr[Fr] =
r∏

ℓ=1

Pr[Fℓ]
Pr[Fℓ−1] .457

So it suffices to prove that Pr[Fℓ]
Pr[Fℓ−1] ≤ (t−1)kqk−1

qm for ℓ ∈ [r].458

Fix ℓ ∈ [r] and let j = jℓ. Let T be the set of all β = (β1, . . . , βij−1) ∈ Fij−1
q such that459

Pr
[(

α<ij
= β

)
∧ Fℓ−1

]
> 0, where α<ij

= β is a shorthand for (α1 = β1) ∧ · · · ∧ (αij−1 =460

βij−1). Note that for β ∈ T , the event
(
α<ij = β

)
∧ Fℓ−1 is simply α<ij = β since461

Fℓ−1 = Ej1 ∧ · · · ∧ Ejℓ−1 depends only on α1, . . . , αijℓ−1
and is bound to happen conditioned462

on α<ij
= β. We then have463

Pr[Fℓ]
Pr[Fℓ−1] =

∑
β∈S Pr

[(
α<ij = β

)
∧ Fℓ

]∑
β∈S Pr

[(
α<ij

= β
)

∧ Fℓ−1
] =

∑
β∈S Pr

[(
α<ij = β

)
∧ Ej

]∑
β∈S Pr

[
α<ij

= β
]464

≤ max
β∈S

Pr
[(

α<ij
= β

)
∧ Ej

]
Pr
[
α<ij

= β
] = max

β∈S
Pr
[
Ej | α<ij = β

]
.465
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Fix β = (β1, . . . , βij−1) ∈ T . We just need to prove that Pr
[
Ej | α<ij

= β
]

≤ (t−1)kqk−1

qm .466

Let467

Q := det(Mj |X1=β1,...,Xij −1=βij −1) ∈ Fq[Xij
, . . . , Xn].468

If Q = 0, then Ej never occurs conditioned on α<ij
= β and we are done. So assume469

Q ̸= 0. View Q as a polynomial in Xij+1, . . . , Xn over the ring Fq[Xij ], and let Q0 ∈ Fq[Xij ]470

be the coefficient of a nonzero term of Q. Then conditioned on α<ij
= β, the event Ej471

occurs only if αij is a root of Q0 ̸= 0. Note that deg Q0 ≤ degXij
Q ≤ degXij

(det(Mj)),472

which is bounded by (t − 1)kqk−1 from the expression of R
Sj

G,V . Also note that conditioned473

on α<ij
= β, the random variable αij

is uniformly distributed over Fm
q . It follows that474

Pr
[
Ej | α<ij

= β
]

≤ (t−1)kqk−1

qm . ◀475

▶ Corollary 22. Under the notations and conditions in Lemma 14, suppose m ≥ n and
(α1, . . . , αn) is chosen uniformly at random, then

Pr[ker(RG,V |X1=α1,...,Xn=αn
) ̸= 0] ≤

(
(t − 1)knqk−m

)r

.

Proof. Take a union bound over sequences (i1, . . . , ir) ∈
([n]

r

)
, by Lemma 14, the probability476

that Algorithm 1 outputs a faulty sequence on the input V1, . . . , Vt and α1, . . . , αn is at most477

nr×((t−1)kqk−m)r. If this doesn’t happen, by Lemma 13, ker(RG,V |X1=α1,...,Xn=αn) ̸= 0. ◀478

5.2 Application to List Decoding479

We are ready to prove our main results.480

▶ Theorem 23. Let ε ∈ (0, 1), c > 1 and n, k, m, ℓ be positive integers with k ≤ n and481

m ≥ cℓ(ℓ+1)n
ε . Then with probability at least 1 − q−Ω(n), a randomly punctured Gabidulin482

code C ⊆ Fn
qm with rate R := k

n is ( ℓ
ℓ+1 (1 − R − ε), ℓ) average-radius list decodable.483

Proof. Let λ = ε
R = εk

n . By Lemma 10, if C with generator matrix G is not ( ℓ
ℓ+1 (1−R−ε), ℓ)484

average-radius list decodable in the rank metric, then, there exist t ∈ {2, 3, . . . , ℓ + 1} and485

Fq-linear subspaces V1, . . . , Vt ⊆ Fn
q such that486

1. ker(RG,V[t]) ̸= 0.487

2. dim(V[t]) ≥ (1 + λ)(t − 1)k488

3. dim(VJ) ≤ (1 + λ)(|J | − 1)k for some non-empty set J ⊆ [t].489

Choose α1, . . . , αn ∈ Fqm uniformly at random. The probability that α1, . . . , αn are Fq-490

linearly dependent is at most nq(n−m) = q−Ω(n). Let Ḡ = (αqi−1

j )(i,j)∈[k]×[n]. To prove this491

theorem,it suffices to show that Items 1–3 simultaneously hold with probability at most492

q−O(n2). We fix t ∈ {2, 3, . . . , ℓ + 1} and V1, . . . , Vt ⊆ Fn
q satisfying Item 2 and Item 3.493

Let r = ⌊ λk
t−1 + 1⌋ ≥ λk

t−1 = εn
t−1 . Observe that RḠ,V[t]

= RG,V[t] |X1=α1,...,Xn=αn
where494

G = (Xqi−1

j )(i,j)∈[k]×[n]. By Corollary 22, the probability that ker(RḠ,V[t]
) ̸= 0 holds is at495

most (ℓknqk−m)r ≤ (ℓknqk−m) εn
ℓ , where we use the fact that r ≥ εn

ℓ . The number of t-tuples496

V[t], where t ranges over {2, . . . , ℓ + 1}, is bounded by
∑ℓ+1

t=2(qn2)t ≤ 2q(ℓ+1)n2 . By the union497

bound, the probability that Items 1–3 hold for some t ∈ {2, . . . , ℓ + 1} and V1, . . . , Vt ⊆ Fn
q is498

at most 2q(ℓ+1)n2 × (ℓknqk−m) εn
ℓ + nqn−m = 2(knqk+nℓ(ℓ+1)/ε−m)εn/ℓ + q−Ω(n) = q−Ω(n) as499

m ≥ cnℓ(ℓ+1)
ε for some c > 1. ◀500
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A Field Size Lower Bound for Capacity-Achieving Rank-Metric Codes501

We prove a lower bound on the field size of capacity achieving rank-metric codes by adapting502

the argument in [1]. We first prove a lower bound for rank-metric codes with large distance503

in Theorem 24. Then, we remove this distance requirement in Corollary 25.504

▶ Theorem 24. Let ℓ ≥ 2. For any r ∈ [0, 1], any rank-metric code C ⊆ Fn
qm of rate R and505

minimum distance at least (1 − R − ε)n + 1 that is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable506

must have m = Ω( Rn
ε ).507

Proof. Fix a subspace V0 ⊆ Fn
q of dimension b := 4εn. Choose a subspace V 0 such that508

V0 ⊕ V 0 = Fn
q . Let α = R − ε and β = R + ε. Let F be the collection of subspaces V ⊆ V 0509

of dimension αn such that for any pair of vector spaces V1, V2 ∈ F1, dim(V1 + V2) ≥ βn.510

By Corollary 8, the size of F can be at least qΩ((α−α2−4ε−o(1))n2). It suffices to prove that511

ℓqbm ≥ |F|/2, as this would imply m = Ω( Rn
ε ).512

Assume to the contrary that ℓqbm < |F|/2. Let M be uniformly distributed from C. For513

a fixed subspace V ∈ F , let A ∈ Fn×αn
q such that ⟨A⟩ = V . Let EV be the event that there514

exists a codeword M1 ∈ C different from M such that MA = M1A, i.e., (M − M1)A = 0.515

If EV does not hold, then M is uniquely determined by MA ∈ Fm×αn
q . As the number of516

possible values of MA is at most qαnm and |C| = qRmn, we have517

Pr[¬EV ] ≤ qαmn

qRmn
= q−εRmn.518

Therefore, over random M ∈ C, the expected number of V ∈ F such that EV happens is519 ∑
V ∈F (1 − Pr[¬EV ]) ≥ |F|/2. Then, we can fix a codeword M ∈ C such that the size of the520

set521

FM := {V ∈ F : EV happens}522

is at least |F|/2.523

Let A0 ∈ Fn×b
q such that ⟨A0⟩ = V0. By the definition of FM , for each V ∈ FM , there524

exists a codeword MV ̸= M such that the kernel subspace of M − MV contains V . Since525

MV A0 ∈ Fm×b
q for any codeword MV and ℓqbm < |F|/2 ≤ |FM |, by the pigeonhole principle,526

there exists distinct V1, . . . , Vℓ ∈ FM such that MV1A0 = · · · = MVℓ
A0. Moreover, by527

the definition of FM , for i = 1, . . . , ℓ, there exists Ai ∈ Fn×αn
q with ⟨Ai⟩ = Vi such that528

(M − MVi
)Ai = 0.529

Assume MVi
= MVj

for some i ̸= j. Then (M − MVi
)Ai = 0 and (M − MVi

)Aj = 0. Let530

A ∈ Fn×dim(Vi+Vj)
q such that ⟨A⟩ = Vi +Vj . As the columns of A are in Vi +Vj = ⟨Ai⟩+ ⟨Aj⟩,531

we have (M − MVi)A = 0, i.e., Vi + Vj is contained in the kernel subspace of M − MVi .532

Since M and MVi
are in code C of minimum distance at least (1 − R − ε)n + 1, we have533

rank(M − MVi
) ≥ (1 − R − ε)n + 1. This implies that the kernel subspace of M − MVi

534

is at most (R + ε)n − 1. So dim(Vi + Vj) ≤ (R + ε)n − 1. However, as Vi, Vj ∈ F and535

thus dim(Vi + Vj) ≥ βn = (R + ε)n, which yields a contradiction. Thus, we conclude that536

MV1 , . . . , MVℓ
are all distinct.537

Since V 0 ∩ V0 = {0}, there exists B0 ∈ Fn×(n−b)
q such that ⟨B0⟩ = V 0 and

(
A0 B0

)
∈538

Fn×n
q has full rank. Let Y ∈ Fm×n

q such that (MV1 − Y )A0 = · · · = (MVℓ
− Y )A0 = 0 and539

(M − Y )B0 = 0. This can be achieved by choosing Y =
(
MV1A0 MB0

) (
A0 B0

)−1.540

For i ∈ [ℓ], we have (M − Y )Ai = 0 since ⟨Ai⟩ = Vi, Vi ⊆ V 0, V 0 = ⟨B0⟩, and541

(M − Y )B0 = 0. And for i ∈ [ℓ], we know (M − MVi
)Ai = 0, which implies542

(MVi
− Y )Ai = (MVi

− M)Ai + (M − Y )Ai = 0 and (MVi
− Y )A0 = 0.543
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Since V0 ∩ ⟨Vi⟩ ⊆ V0 ∩ V 0 = {0} for i ∈ [ℓ], we have dim(V0 + Vi) = dim V0 + dim Vi = b + αn544

and hence545

rank(MVi − Y ) ≤ n − (b + αn) ≤ (1 − R − 3ε)n,546

as b = 4εn. As (M − Y )B0 = 0, we have rank(M − Y ) ≤ n − dim(V 0) = b = 4εn. It follows547

that548

rank(M − Y ) +
ℓ∑

i=1
rank(MVi − Y ) ≤ 4εn + ℓ(1 − R − 3ε) ≤ ℓ(1 − R − ε)n.549

as ℓ ≥ 2. This contradicts the claim that C is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable. ◀550

We now show how to remove the minimum distance requirement in Theorem 24.551

▶ Corollary 25. Let ℓ ≥ 2. For any r ∈ [0, 1], any rank-metric code C ⊆ Fn
qm of rate R that552

is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable must have m = Ω( Rn

ε ).553

Proof. Compared to Theorem 24, this statement only remove the minimum distance require-
ment. Thus, if we find a subcode of C with minimum distance (1 − R − ε) and the same rate
R, then we can apply the argument in Theorem 24 directly to obtain the desired result. To
achieve this goal, we prove the claim that for any M ∈ C, there are at most ℓ − 1 codewords
T1, . . . , Tℓ−1 in C that is within minimum distance at most (1 − R − ε)n from M1. Assume
not and we find T1, . . . , Tℓ such that rank(M − Ti) ≤ (1 − R − ε)n. Let M be the center and
we claim that

rank(M − M) +
ℓ∑

i=1
rank(M − Ti) ≤ ℓ(1 − R − ε).

Thus, C is not
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable code and a contradiction happens.554

Therefore, we can find a subcode C1 ⊆ C of size at least |C|
ℓ such that the minimum distance555

of C1 is at least (1 − R − ε)n. We can apply the same argument in Theorem 24 to obtain556

the desired result. ◀557

B Proof of Theorem 19558

Proof. For i ∈ [t], let Ai ⊆ Fn×dim Vi
q such that ⟨Ai⟩ = Vi. By Lemma 2, there exist559

full-rank matrices Bi ∈ Fn×dim(V ⊥
i )

q , Ci ∈ Fn×dim(Vi)
q , and Di ∈ Fn×dim(V ⊥

i )
q such that560

CiA
⊤
i + DiB

⊤
i = In and ⟨Di⟩ = V ⊥

i . Define the linear map ϕ such that it sends a row vector561

v := (y, x2, · · · , xt) ∈ ker(RG,V[t]) to562

ϕ(y, x2, · · · , xt) =
(

− yB1, (y − x2G)B2, . . . , (y − xtG)Bt

)
.563

Since Bi is an n × (n − dim(Vi)) matrix over Fq, ϕ(v) is a vector of length
∑t

i=1(n − dim(Vi))564

which is exactly the number of columns of MH,V⊥
[t]

. Next, we show that ϕ(v) belongs to565

ker(MH,V⊥
[t]

). To see this, we observe that Hy⊤ = H(y − x2G)⊤ = · · · = H(y − xtG)⊤.566

Also,567

Hy⊤ = H
(
C1 D1

)(A⊤
1

B⊤
1

)
y⊤ = H

(
C1 D1

)( 0
B⊤

1 y⊤

)
= HD1B⊤

1 y⊤
568

APPROX/RANDOM 2025



43:18 Gabidulin Codes Achieve Capacity with an Optimal Column-To-Row Ratio

and569

H(y − xiG)⊤ = H
(
Ci Di

)(A⊤
i

B⊤
i

)
(y − xiG)⊤ = H

(
Ci Di

)( 0
B⊤

i (y − xiG)⊤

)
570

= HDiB
⊤
i (y − xiG)⊤.571

This implies that HD1B⊤
1 y⊤ = HDiB

⊤
i (y − xiG)⊤ for i = 2, . . . , t, and thus ϕ(v) belongs572

to ker(MH,V⊥
[t]

).573

It remains to show that ϕ is an injection. It suffices to show that ϕ(v) = 0 implies574

v = 0 as ϕ is a linear map. As y⊤ =
(
C1 D1

)(A⊤
1

B⊤
1

)
y⊤ =

(
C1 D1

)( 0
B⊤

1 y⊤

)
, we know575

that yB1 = 0 implies y = 0. Similarly, as (y − xiG)⊤ =
(
Ci Di

)(A⊤
i

B⊤
i

)
(y − xiG)⊤ =576

(
Ci Di

)( 0
B⊤

i (y − xiG)⊤

)
, we know that (y − xiG)Bi = 0 implies y − xiG = 0 for577

i = 2, . . . , t. So ϕ(v) = 0 implies v = 0. ◀578

C Proof of Theorem 20579

Proof. Let n′ = dim(V ). Let A ⊆ Fn×n′

q such that ⟨A⟩ = V . Let U[t] = (U1, . . . , Ut) ⊆ (Fn′

q )t
580

be given in Lemma 11 and we have dim(Ui) = dim(Vi ∩ V ). Note that581

dim(U[t]) =
∑
i∈[t]

dim(Ui)−dim(
t∑

i=1
Ui) ≥ dim(V[t])−(n−dim(V ))(t−1) ≥ (1+λ)(t−1)k−λk

(13)582

and583

dim(UJ) ≤ dim(VJ) ≤ (1 + λ)(|J | − 1)k (14)584

for any nonempty set J ⊆ [t].585

By Lemma 11, to prove ker(RV
G,V[t]

) = 0, it suffices to show that ker(RG1,U[t]) = 0 for586

G1 = GA. Here GA = (Zqi−1

j )[k]×[n′] is also a generator matrix of a symbolic Gabidulin code587

C by letting (Z1, . . . , Zn′) = (X1, . . . , Xn)A. Moreover, by replacing Fn′

q with V ′ :=
∑t

i=1 Ui588

and identifying view Ui as a subspace of V ′, we may assume
∑t

i=1 Ui = Fn′

q .589

It follows from (13) and (14) that dim(Ui) ≥ dim(U[t])−dim(U[t]/{i}) ≥ k. So dim(U⊥
i ) ≤590

n′ − k. Let H1 be the parity-check matrix of C, i.e., G1H⊤
1 = 0. Define U⊥

[t] = (U⊥
1 , . . . , U⊥

t ).591

Then, by Definition 18, we have592

MH1,U⊥
[t]

=


H1D1 H1D2 0 · · · 0
H1D1 0 H1D3 · · · 0

...
...

...
. . .

...
H1D1 0 0 · · · H1Dt

 (15)593

where Di ⊆ Fn′×dim(U⊥
i )

q with ⟨Di⟩ = U⊥
i . By Theorem 16, we have594

dim(
t⋂

i=1
⟨H1Di⟩) = max

P1⊔···⊔Ps=[t]

( s∑
i=1

dim(
⋂

j∈Pi

U⊥
j ) − (s − 1)(n′ − k)

)
. (16)595
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We proceed to compute the RHS of (16). For s = 1 and P1 = [t], as
∑

i∈[t] Ui = Fn′

q , we596

conclude597 ⋂
j∈[t]

U⊥
i

(1)= (
∑
i∈[t]

Ui)⊥ = 0. (17)598

For s ≥ 2 and nonempty sets P1, . . . , Ps that forms a partition of [t], we have599

s∑
i=1

dim(
⋂

j∈Pi

Uj) (1)=
s∑

i=1

(
n′ − dim(

∑
j∈Pi

U⊥
j )
)

= sn′ +
s∑

i=1
dim(UPi

) −
s∑

i=1

∑
j∈Pi

dim(Uj)

(14)
≤ sn′ + (λ + 1)

s∑
i=1

(|Pi| − 1)k −
t∑

j=1
dim(Uj) = sn′ + (λ + 1)k(t − s) − dim(U[t]) − n′

(13)
≤ sn′ + (λ + 1)k(t − s) − (1 + λ)(t − 1)k + λk − n′ ≤ (s − 1)(n′ − k).

(18)600

Combining (16), (17), and (18), we conclude that
⋂t

i=1⟨H1Di⟩ = 0. Now, by Lemma 9, this
implies

rank(MH,V⊥
[t]

) =
t∑

i=1
dim(⟨HDi⟩) − dim(

t⋂
i=1

⟨H1Di⟩) =
t∑

i=1
dim(⟨HDi⟩) =

t∑
i=1

rank(Di)

The last equality holds since by Lemma 8, the rank of HDi equals rank(Di), as Di ⊆601

Fn′×dim(U⊥
i )

q is of full rank and dim(U⊥
i ) = n′ − dim(Ui) ≤ n′ − k. Since the number602

of columns in MH,V⊥
[t]

is
∑t

i=1 rank(Di) which is equal to its rank, the only solution in603

ker(MH,V⊥
[t]

) is 0. The proof is completed. ◀604
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