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Abstract

We give improved explicit constructions of hitting-sets for read-once oblivious algebraic branching

programs (ROABPs) and related models. For ROABPs in an unknown variable order, our hitting-set

has size polynomial in (nr)
logn

max{1,log logn−log log r} d over a field whose characteristic is zero or large enough,

where n is the number of variables, d is the individual degree, and r is the width of the ROABP. A

similar improved construction works over fields of arbitrary characteristic with a weaker size bound.

Based on a result of Bisht and Saxena (2020), we also give an improved explicit construction of

hitting-sets for sum of several ROABPs. In particular, when the characteristic of the field is zero

or large enough, we give polynomial-size explicit hitting-sets for sum of constantly many log-variate

ROABPs of width r = 2O(log d/ log log d).

Finally, we give improved explicit hitting-sets for polynomials computable by width-r ROABPs in

any variable order, also known as any-order ROABPs. Our hitting-set has polynomial size for width

r up to 2O(log(nd)/ log log(nd)) or 2O(log1−ε(nd)), depending on the characteristic of the field. Previously,

explicit hitting-sets of polynomial size are unknown for r = ω(1).

1 Introduction

Polynomial identity testing (PIT) is one of the fundamental problems in the area of derandomization. The

problem asks whether a given multi-variate polynomial is identically zero. For example, the polynomial

(x+ y)(x− y)−x2− y2 is identically zero. The input to the problem can be given as an algebraic formula

or circuit or other algebraic computation models like arithmetic branching programs or determinant of a

symbolic matrix. The problem is not known to be polynomial-time solvable. One way to test zeroness

could be to check whether the coefficient of each monomial is zero in the polynomial. However, for a given

circuit or branching program, it might take exponential time (in the input size) to compute coefficients.

On the other hand, there is a simple (polynomial time) randomized algorithm to test zeroness of a given

polynomial: just evaluate the input circuit at a random point and see if the evaluation is nonzero. It

is known that a nonzero polynomial evaluated at a random point from gives a nonzero value with high

probability [Ore22, DL78, Zip79, Sch80]. More precisely, for an n-variate polynomial of degree d, if you

evaluate it at a random point from Sn for some subset S ⊆ F, then the probability of the evaluation being

zero is at most d/|S|. The polynomial identity testing question can be asked over any field, however as

this randomized algorithm suggests, in case of finite characteristic we need to take a large enough field

extension.

To obtain a deterministic polynomial time algorithm for the polynomial identity testing has been a long

open question. Such an algorithm is known only for some special cases, for example, read-once oblivious

arithmetic branching programs (ROABP) (for more such cases, see [SY10, Sax09, Sax14]). Deterministic
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identity testing for ROABPs has been widely studied in the last decade. One reason for such an interest

in this special case is that it can be considered as an algebraic analogue of the RL vs. L question. An

ROABP is a product of matrices

f = β>f1f2 · · · fnγ

where β, γ ∈ Fr×1 and fi ∈ Fr×r[xπ(i)] is a matrix with entries being polynomials in the variable xπ(i) for

each 1 ≤ i ≤ n for some permutation π : [n]→ [n]. The permutation π is said to be the variable order of

the ROABP.

Raz and Shpilka [RS05] gave the first polynomial time algorithm to test whether a given ROABP computes

a nonzero polynomial. PIT is also studied in the so-called black-box model, where one does not have

access to the circuit/ABP computing the polynomial. Instead, one has to construct an explicit hitting-

set – a set of points with the guarantee that every nonzero polynomial in the class of interest gives a

nonzero evaluation on at least one of the points in the set. Here, by explicit we mean that every point

in the hitting-set should be computable in polynomial time. Forbes and Shpilka [FS13] first gave a

quasi-polynomial size explicit hitting-set for ROABPs, when the variable order is known. In subsequent

works [FSS14, AGKS15], a quasi-polynomial size explicit hitting-set was also constructed for the unknown

order case. Constructing a polynomial-size explicit hitting-set for ROABPs remains a challenging open

question. This situation is somewhat similar to that for pseudorandom generators (PRG) for log-space

computation. There are no PRGs known with the optimal seed length, i.e. O(log n), but are known with

close to optimal seed length i.e., O(log2 n) [Nis92, INW94, RR99].

There has been a sequence of work in last few years which improve the hitting-set construction for ROABPs

with respect to various parameters. There are usually three parameters associated with ROABPs, its

length or depth n, which is same as the number of variables, the individual degree d – maximum degree

of any variable, and the width r – the size of the matrices involved in the product. The hitting-set of

[FS13] and of [AGKS15] both had size (ndr)O(logn), for the cases of known and unknown variable orders,

respectively. For the known order case slightly better results are known. The first paper [FS13] also

gave a bound of (ndr)O(logn/max{1,log logn−log log r}), which is better when the width r is relatively small.

For the small width case, another improved bound of ndrlogn was obtained by [GKS17], when the field

characteristic is zero or large enough.

A special class of polynomials, which is known to have better hitting-sets, is called any-order ROABPs.

These are polynomials that have small-width ROABPs in every possible variable order. Any-order

ROABPs generalize commutative ROABPs1 and diagonal circuits [Sax08]. Building upon the techniques

of [FSS14], an explicit hitting-set of size (ndr)O(log log r) for any-order ROABPs was obtained in [GKS17].

A more general model, namely, sum of constantly many ROABPs was considered by [GKST17]. As is

known for ROABPs, they could give a polynomial time algorithm for sum of constantly many ROABPs

in the white-box case and also a quasi-polynomial size explicit hitting-set. More precisely, for a sum of c

ROABPs, their hitting-set size is (ndr)O(c·2c log(ndr)).

Recently, Bisht and Saxena [BS20] considered PIT for ROABP and sum of ROABPs in the small variate

regime. For a sum of c ROABPs, they gave a hitting-set of size poly(rn3c , dc), which also means a hitting-

set of size poly(rn, d) for an ROABP. These results are better than those of [GKST17] and [AGKS15]

respectively, when n = O(log(rd)) and r = O(1).

1We say an ROABP is commutative if its output does not change under any permutation of the matrices involved in the

product. The usage of “commutative ROABP” is slightly different in [FSS14], which actually refers to any-order ROABPs

in this paper.
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In this work we give improved explicit hitting-sets for ROABPs (unknown order), sum of several ROABPs

(small variate regime) and any-order ROABPs with respect to various parameters. Though, we are still

away from a polynomial size hitting-set, one important feature of our results is a better dependence on

the degree parameter d. In particular, for unknown order and any-order ROABPs, our dependence on d

is only polynomial instead of quasi-polynomial (when field characteristic is zero/large). This is somewhat

analogous to a recent result for read-once boolean branching programs [BCG18], where they construct a

hitting-set of size quasi-polynomial in length and width, but the dependence on the error parameter 1/ε

is nearly-polynomial.

1.1 Our results

We now state our main theorems, which give improved explicit constructions of hitting-sets for ROABPs

in an unknown order, sum of several ROABPs, and any-order ROABPs.

1.1.1 ROABPs in an unknown order

We have the following result for general ROABPs in an unknown order.

Theorem 1.1. Let C be the family of polynomials f ∈ F[x1, x2, . . . , xn] computed by ROABPs of length

n, width r and individual degree d in an unknown order. If char(F) = 0 or char(F) > d, then there exists

an explicit hitting-set for C of size polynomial in

M(n, r, d) := d · (nr)
logn

max{1,log logn−log log r} .

In arbitrary characteristic, there exists an explicit hitting-set for C of size polynomial in

M ′(n, r, d) :=


(nr)lognd nd ≤ r2,

(nd)
logn

log log(nd)−log log r r2 < nd < rn,

nd nd ≥ rn.

Comparison with previous work. In all cases, our bounds are strictly better than the previous best

bound of (ndr)O(logn) [AGKS15] for unknown order ROABPs. In particular, our dependence on the

individual degree d is better. Our bounds are also better than known order case results of [FS13]. Recall

that they had an explicit hitting-set of size (ndr)O(logn), and for small r, they had an explicit hitting-set

of size (ndr)O(logn/max{1,log logn−log log r}) (not explicitly written, but follows from [FS13, Theorem 3.24]).

These results are subsumed by Theorem 1.1. In fact, we follow the same idea in [FS13] of merging k ≥ 2

parts of the ROABP at each level of the recursion. We note that our construction has two advantages

compared with [FS13]:

• Theorem 1.1 applies to ROABPs in an unknown order, while it is not clear how to achieve the same

using the construction in [FS13]. The requirement that the hitting-set works in an unknown order

is crucial for the model of the sum of several ROABPs which is discussed below.

• When char(F) = 0 or char(F) > d, our size bound depends only polynomially on the individual

degree bound d, which gives much smaller hitting-sets compared with [FS13] if n, r � d.
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The hitting-set constructed in [BS20, Lemma 9] for C of size poly(rn, d) is also subsumed by our result.

When char(F) = 0 or char(F) > d, Theorem 1.1 improves this by giving an explicit hitting-set of size

M(n, r, d) ≤ poly((nr)logn, d). In particular, in the log-variate case n = O(log(rd)) considered in [BS20],

they can achieve a poly(n, r, d)-size hitting-set only when r = O(1), while we can achieve the same for

r up to 2O(log d/ log log d). In arbitrary characteristic, we obtain a worse size bound M ′(n, r, d), which still

subsumes [BS20, Lemma 9].2

Finally, in comparison with the hitting-set of [GKS17, Theorem 3.6] of size poly(nlog r, d) for known order

ROABPs, our bound of M(n, r, d) is weaker. In particular, they give polynomial-size hitting-sets when

the width r is constant. However, their result is not known to be extendible to ROABPs in an unknown

order.

1.1.2 Sum of several ROABPs

The paper [BS20] studied the problem of constructing hitting-sets for the sum of several (log-variate)

ROABPs and established a reduction from this problem to constructing hitting-sets for ROABPs in an

unknown order. Using this reduction, we obtain the following result for the model of sum of several

ROABPs.

Theorem 1.2. Let C be the family of polynomials f ∈ F[x1, x2, . . . , xn] computed by the sum of c ROABPs

of length n, width r ≥ 2 and individual degree d in unknown and possibly different orders.

(1) If char(F) = 0 or char(F) > d, there exists an explicit hitting-set for C of size polynomial in

2cn ·M(n, (2r)3c , d)c where M(·, ·, ·) is as in Theorem 1.1. In particular, the hitting-set has size

poly(d) when c = O(1), n = O(log d) and r = 2O(log d/ log log d).

(2) In arbitrary characteristic, there exists an explicit hitting-set for C of size polynomial in 2cn ·
M ′(n, (2r)3c , d)c where M ′(·, ·, ·) is as in Theorem 1.1.

The paper [BS20] constructed an explicit hitting-set of size poly(rn3c , dc) for C, which has size poly(d)

when n = O(log d) and c, r are constants. This result is subsumed by our Theorem 1.2 (2) since M ′(n, r, d)

is bounded by poly(n, rn, d). Moreover, when char(F) = 0 or char(F) > d, our Theorem 1.2 (1) yields a

poly(d)-size hitting-set for n = O(log d), c = O(1) and r = 2O(log d/ log log d) (instead of constant r).

1.1.3 Any-order ROABPs

Recall that any-order ROABPs are polynomials that have small-width ROABPs in every possible variable

order. We obtain the following result for any-order ROABPs.

Theorem 1.3. Let C be the family of polynomials f ∈ F[x1, x2, . . . , xn] computed by ROABPs of length

n, width r and individual degree d in any order.

(1) If char(F) = 0 or char(F) > n4(d + 1)2, then there exists an explicit hitting-set for C of size

poly(n, rlog log r, d). In particular, the hitting-set has size poly(n, d) for r = 2O(log(nd)/ log log(nd)).

2We note that [BS20, Lemma 9] is proved using ideas different from ours. To directly see that our bound subsumes the

bound poly(rn, d) when r2 < nd < rn, write nd = rn
1/e

with 1 < e < logn and note M ′(n, r, d) = (nd)
logn

log log(nd)−log log r =

ren
1/e

= rO(n).
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(2) In arbitrary characteristic, there exists an explicit hitting-set for C of size

poly(rlog log r, (nd)
1+ log log r

max{1,log log(nd)−log log r} ).

In particular, the hitting-set has size poly(n, d) for r = 2O(log1−ε(nd)) and any constant 0 < ε < 1.

The previous best explicit construction of hitting-sets for any-order ROABPs [GKS17] has size polynomial

in (ndr)log log r, which is superpolynomial for width r = ω(1). Our hitting-set has polynomial size for r

up to 2O(log(nd)/ log log(nd)) or 2O(log1−ε(nd)) depending on the characteristic of F.

1.2 Proof techniques

We prove our results by combining the analyses in previous work [FSS14, AGKS15, GKS17, GKST17,

BS20] with the following ideas.

(1) Low-degree concentration via random shift. Randomly shifting a multivariate polynomial is

an important and common technique in polynomial identity testing for ROABPs and related models. For

example, it was used in [ASS13, FSS14, AGKS15, GKS17, GKST17, FGS18] to achieve rank concentration

of polynomials. We use a simple version of this technique, applied only to univariate polynomials: View

the layers of a width-r ROABP as univariate polynomials f1(x1), f2(x2), . . . , fn(xn) with matrix-valued

coefficients. We preprocess these polynomials by performing the shift fi(xi) 7→ fi(xi + α) simultaneously

for i = 1, 2, . . . , n with randomly chosen α ∈ F.

Assuming char(F) is zero or large, a standard argument shows that with high probability, each of the

new polynomials fi(xi + α) is low-degree concentrated in the sense that its coefficient span, which has

dimension `i ≤ r2, is spanned by the coefficients of the `i monomials with the lowest degrees. This is

useful when the width r is much smaller than the degree bound d of the polynomials, as it allows us to

reduce d to r2 in the analysis.

We remark that a generalization of this technique was developed in [FGS18], where it was shown that a

(pseudo-)random shift achieves low-cone concentration for multivariate polynomials [FGS18, Theorem 2].

We only need the special case for univariate polynomials, which is classical and uses the nonsingularity

of the Wronskian matrix.

(2) Merging multiple parts at each level of the recursion. Explicit hitting-sets for ROABPs

of size (ndr)O(logn) were constructed in [FS13, AGKS15], which may be seen as analogues of the PRG

constructions in [Nis92] and [INW94] for read-once branching programs. Roughly speaking, these hitting-

sets are recursively constructed as follows: Divide the ROABP into two parts, construct a hitting-set for

each part recursively, and then merge them at the cost of increasing the size by a factor polynomial in

ndr. The size of the final hitting-set is (ndr)O(logn) as the recursion tree has depth O(log n).

A slightly better construction was also given in [FS13] for ROABPs of small width. The idea is to merge

k parts of the ROABP at each level of the recursion, where k is possibly greater than two. We use the

same idea in this paper but replace the construction in [FS13] by the one in [AGKS15], which has the

advantage of working for ROABPs in an unknown order. The cost incurred at each level of the recursion

is bounded by poly(n, d, rk) while there are O(log n/ log k) levels. When char(F) is zero or large, the cost

incurred at each level may be improved to poly(n, rk) by using the idea (1) above. We then choose the

optimal k according to the parameters n, r and d.
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(3) Reducing the number of variables via hashing. In [FSS14, GKS17], hitting-sets for any-order

ROABPs are constructed in two steps: The first step is to explicitly construct a small set T ⊆ Fn such that

for some s = (s1, s2, . . . , sn) ∈ T , performing the shift xi 7→ xi + si achieves low-support concentration for

any-order ROABPs. The second step is to convert an any-order ROABP with low-support concentration

into a short ROABP.

In [FSS14], the cost of the first step (i.e., the size of T ) is polynomial in n and dlog r. This was later

improved to (ndr)O(log log r) in [GKS17]. In this paper, we further improve the cost to poly(n, rlog log r, d)

when char(F) is zero or large. In arbitrary characteristic, we obtain a worse bound which still improves

those in [FSS14, GKS17]. See Theorem 4.4 for details.

One crucial idea used in [FSS14, GKS17] (which originates from [ASS13]) is that for any-order ROABPs,

low-support concentration is a “local” property. Namely, in order to achieve low-support concentration

of n-variate any-order ROABPs, it suffices to achieve it when restricting to every subset of ` variables,

where ` = O(log r). In this paper, we use a construction similar to the one in [GKS17] except that we

further exploit the locality by using hash functions. This has the effect of reducing n to poly(log r) in the

analysis, which leads to the improvement.

Organization of the paper. Preliminaries and notations are given in Section 2. Theorem 1.1 and 1.2

are proved in Section 3. Theorem 1.3 is proved in Section 4. Finally, some open problems are listed in

Section 5.

2 Preliminaries

Notations. Let N := {0, 1, 2, . . . } and N+ := {1, 2, . . . }. Denote {1, 2, . . . , n} by [n]. The cardinality of

a set S is denoted by |S|. Denote by log a the logarithm of a > 0 with base two.

Let F be a field. Throughout this paper, we always assume |F| is large enough. This can be guaranteed

by replacing F with an extension field if necessary. We often write x as a shorthand for a list of variables

x1, x2, . . . , xn. For a = (a1, a2, . . . , an) ∈ Nn, write xa for the monomial
∏n
i=1 x

ai
i . The support of xa is

supp(xa) := {i ∈ [n] : ai > 0}. The set of all monomials in x1, x2, . . . , xn is denoted by M(x1, x2, . . . , xn)

or M(x).

For an algebra A over F, write A[x] for the ring of polynomials in the variables x with coefficients

in A. For f ∈ A[x] and a monomial m = xa, denote by coeff (m) ∈ A the coefficient of m in f .

The linear span of a set T ⊆ A over F is denoted by spanT . The coefficient span of f ∈ A[x] is

span(f) := span{coeff (m) : m is a monomial in f}.

More generally, for an extension field K of F, denote by A ⊗F K the tensor product of A and K over F,

which is an algebra over K, i.e., A ⊗F K is obtained from A by extending the field of scalars from F to

K. For f ∈ (A ⊗F K)[x] and a monomial m = xa, again denote by coeff (m) ∈ A ⊗F K the coefficient

of m in f . The linear span of a set T ⊆ A ⊗F K over K is denoted by spanK T . The coefficient span of

f ∈ (A⊗F K)[x] over K is spanK(f) := spanK{coeff (m) : m is a monomial in f}.

Let r ∈ N+ be a parameter. From now on, we fix A to be Mr×r(F), the algebra of r × r matrices over F,

even though statements in this paper often hold over other algebras as well. So A⊗FK is simply Mr×r(K),

the algebra of r × r matrices over K.
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Rank concentration. We need the following definitions about rank concentration.

Definition 2.1. Let f ∈ A[x] = A[x1, x2, . . . , xn] be a polynomial over A.

(1) Let S be a set of monomials of f . We say f is concentrated on S if span(f) = span{coeff (m) : m ∈
S}.

(2) For ` ∈ N, we say f is `-support concentrated if it is concentrated on S = {xa : |supp(xa)| < `}.

(3) For ` ∈ N, we say f is `-degree concentrated if it is concentrated on S = {xa : deg(xa) < `}.

More generally, for an extension field K of F, we say f ∈ (A ⊗F K)[x] is concentrated on a set S of

monomials over K, `-support concentrated over K, or `-degree concentrated over K if f satisfies (1), (2), or

(3) above with span(f) and span{coeff (m) : m ∈ S} replaced by spanK(f) and spanK{coeff (m) : m ∈ S}
respectively.

We use low-degree concentration of f only for univariate polynomials f in this paper.

Hitting-sets. We say a set H ⊆ Fn is a hitting-set for a nonzero polynomial f ∈ F[x1, . . . , xn] if

there exists α ∈ H such that f(α) 6= 0. We say H ⊆ Fn is a hitting-set for a class of polynomials

C ⊆ F[x1, . . . , xn] if H is a hitting-set for every nonzero polynomial in C.

ROABPs. A read-once oblivious arithmetic branching program (ROABP) in the order x1, . . . , xn is a

weighted directed graph B with n+ 1 layers of vertices {V0, V1, . . . , Vn} together with a start node s and

an end node t. All the edges are from s to V0, Vi−1 to Vi for i ∈ [n], or Vn to t.

For i ∈ [n], the weight of an edge e from Vi−1 to Vi is a univariate polynomial we ∈ F[xi] ⊆ F[x]. The

weights of the edges e from s to V0 and those from Vn to t are constants (i.e, we ∈ F). We define the weight

of a path in B from s to t to be the product of the weights of the edges on that path. The polynomial

computed by B is the sum of the weights of the paths in B from s to t.

Let r = max{|Vi| : i ∈ [n]}. We say B has length3 n and width r. We say B has individual degree d if

deg(we) ≤ d for e ∈ E(B). By adding dummy vertices, we may always assume each layer Vi of B has

exactly r vertices. The polynomial f computed by B can be represented as a product of matrices

f = β>f1f2 · · · fnγ

where β, γ ∈ Fr×1 and fi ∈ A[xi] for i ∈ [n] with A = Mr×r(F).

Let c > 0 be a large enough constant. Throughout the paper, we always assume the length n of an

ROABP is at least c and the width r is at least two, which is fine since explicit hitting-sets of polynomial

size for ROBAPs are easy to construct when n < c or r = 1. These assumptions are made to avoid

technicalities in boundary cases (e.g. log log r is undefined when r = 1). Similarly, we always assume the

individual degree bound d is at least c by replacing d with max{d, c} if necessary.

Unknown-order and any-order ROABPs. The above definition of ROABPs is given with respect

to a particular variable order x1, x2, . . . , xn. More generally, we say an ROABP has an unknown order

3The length is also called the depth and equals the number of variables.
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or is an unknown-order ROABP if it has the variable order xπ(1), xπ(2), . . . , xπ(n) where π is an arbitrary

permutation of [n].

Let C be a class of unknown-order ROABPs. We say f ∈ F[x] is computed by ROABPs in C in any order

(or simply an any-order ROABP in C) if for every permutation π of [n], f is computed by an ROABP in

C that has the variable order xπ(1), xπ(2), . . . , xπ(n). In this paper, C will be the class of unknown-order

ROABPs of length n, width r and individual degree d for some n, r and d.

We also say a polynomial f ∈ A[x] over A is computed by ROABPs of length n, width r and individual

degree d in any order if for any permutation π of [n], we can write f = f1f2 · · · fn such that fi ∈ A[xπ(i)]

is a univariate polynomial of degree at most d in xπ(i) where A = Mr×r(F).

3 Hitting-sets for ROABPs

In this section, we give an explicit construction of hitting-sets for ROABPs in an unknown order. Then

we prove Theorem 1.1 and Theorem 1.2.

3.1 Low-degree concentration by random shift

We start with the following lemma, which states that random shift achieves low-degree concentration with

high probability.

Lemma 3.1. Suppose char(F) = 0 or char(F) > d ∈ N. Let f ∈ A[x] be a univariate polynomial of degree

d. Let ` = dimF(span(f)) ≤ dimFA = r2. Then for all but at most d` choices of α ∈ F, f(x + α) is

`-degree concentrated.

Proof. Using the fact that all the `× ` minors of the Wronskian matrix W =
[(
i
j

)]
0≤i≤d,0≤j<`

are nonzero

when char(F) = 0 or char(F) > d, it can be shown that f(x+ t) is `-degree concentrated over F(t), where

t is an indeterminate. We omit the proof of this claim but note it is a special case of [FGS18, Theorem 2]

applied to univariate polynomials.

View A as a vector space over F. As f(x + t) is `-degree concentrated, the matrix formed by the `

vectors coeff(x+t)(1), coeff(x+t)(x), . . . , coeff(x+t)(x
`−1) ∈ A has a nonzero ` × ` minor g(t). Note g(t) is

a polynomial in t of degree at most d`. So for all but at most d` choices of α, we have g(α) 6= 0. For such

α, the vectors coeff(x+α)(1), coeff(x+α)(x), . . . , coeff(x+α)(x
`−1) are linearly independent and hence span

the space span(f) = span(f(x+ α)). So f(x+ α) is `-degree concentrated.

We use Lemma 3.1 to preprocess the univariate polynomials fi in an ROABP so that they are r2-degree

concentrated: Suppose f1 ∈ A[x1], f2 ∈ A[x2] . . . , fn ∈ A[xn] are univariate polynomials of degree at most

d. Let S ⊆ F such that |S| > ndr2. By Lemma 3.1 and the union bound, there exists α ∈ S such that

fi(xi + a) is r2-degree concentrated for every i ∈ [n].

Remark. Lemma 3.1 may not hold if 0 < char(F) ≤ d. For example, let a, b ∈ A be linearly independent

over a field F of characteristic p > 0. Let f(x) = axd + b where d ≥ p is a power of p. Then f(x+ α) =

axd + αda+ b is not `-degree concentrated for α ∈ F and ` ≤ d. In fact, this holds not only for the shift

x 7→ x+ α but also for any variable substitution.
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3.2 Basis isolation

A weight assignment of the variables x1, x2, . . . , xn is a map w : {x1, x2, . . . , xn} → N. Extend w to a

map w :M(x)→ N on the set M(x) of monomials by

w(xa) :=
n∑
i=1

w(xi)ai for xa =
n∏
i=1

xaii ∈M(x).

One basic tool we need is the following explicit construction of weight assignments that separate polyno-

mially many monomials.

Lemma 3.2 ([AGKS15, Lemma 4, restated]). For n, s, ` ∈ N+ and 0 < ε < 1, there exist weight

assignments w1, w2, . . . , wN : {x1, x2, . . . , xn} → [N logN ], where N = poly(n, s, log `, ε−1), such that for

any s monomials m1,m2, . . . ,ms ∈ M(x) of individual degree less than `, all but at most ε-fraction of

wi among w1, w2, . . . , wN separate these monomials, i.e., wi(mj) 6= wi(mj′) for j, j′ ∈ [s] with mj 6= mj′.

The weight assignments w1, w2, . . . , wN can be computed in time polynomial in N .

We are interested in weight assignments that have the property of basis isolation, introduced in [AGKS15].

Definition 3.3 (basis isolating weight assignment [AGKS15]). For a polynomial f ∈ A[x], we say w :

{x1, x2, . . . , xn} → N is a basis isolating weight assignment for f if there exists a set S ⊆ M(x) of

monomials whose coefficients in f form a basis of span(f), such that

(1) w(m) 6= w(m′) for distinct m,m′ ∈ S, and

(2) for m ∈M(x) \ S, we have

coeff (m) ∈ span{coeff (m′) : m′ ∈ S, w(m′) < w(m)}.

The following lemma states that, if w is a basis isolating weight assignment, then the variable substitution

map xi 7→ yw(xi) preserves the nonzeroness of polynomials. This makes basis isolating weight assignments

a very useful tool for PIT.

Lemma 3.4 ([AGKS15, Lemma 6]). Let f(x) ∈ A[x], β, γ ∈ Fr, and g(x) = β>f(x)γ ∈ F[x]. Sup-

pose w : {x1, x2, . . . , xn} → N is a basis isolating weight assignment for f ∈ A[x]. Then g(x) = 0 iff

g(yw(x1), yw(x2), . . . , yw(xn)) = 0.

Explicit construction. We use the following explicit construction of basis isolating weight assignments

for ROABPs, which is a k-ary generalization of the one in [AGKS15].

Let n, ` ∈ N+, k ∈ {2, . . . n} and 0 < ε < 1 where n is a power of k. Let u = log n/ log k ∈ N. Let

N = poly(n, s, log `, ε−1) and w1, w2, . . . , wN be as in Lemma 3.2 with respect to the parameters n, s, `, ε,

where s = max{`, r2k}. Let h = n`N logN . For t = (t1, t2, . . . , tu) ∈ [N ]u, define the weight assignment

wt : {x1, x2, . . . , xn} → [N logNhu] by

wt(xi) =
u∑
j=1

wtj (xi)h
u−j .

So wt is a linear combination of wt1 , wt2 , . . . , wtu , where wtj is multiplied by hu−j for j ∈ [u]. If u = 0

(i.e., n = 1), define wt(x1) = 1 instead for the unique element t ∈ [N ]u.
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Lemma 3.5. Let π : [n] → [n] be a permutation. Let f =
∏n
i=1 fi where fi ∈ A[xπ(i)] is `-degree

concentrated for i ∈ [n]. Then for all but at most ε′-fraction of t ∈ [N ]u, wt is a basis isolating weight

assignment for f , where ε′ = (n−1)ε
k−1 .

Proof. We prove the lemma for the case (xπ(1), xπ(2), . . . , xπ(n)) = (x1, x2, . . . , xn). The same proof works

for arbitrary variable orders since the monomial separation property of wi as asserted in Lemma 3.2 is

closed under any permutation of the variables x1, x2, . . . , xn.

The proof is done by induction on u = log n/ log k.

Base case: Suppose u = 0, i.e., n = 1. We want to prove that the weight assignment wt defined by

wt(x1) = 1 is basis isolating for f = f1. Choose the set of monomials S ⊆ F[x1] in the following greedy

way: Start with S = ∅ and enumerate i = 0, 1, 2 . . . . For each i, add xi to S whenever coeff1(xi) 6∈
span{coeff1(m) : m ∈ S}. Continue this process until span{coeff1(m) : m ∈ S} = span(f). Then wt and

S satisfy Definition 3.3. So wt is a basis isolating weight assignment for f = f1.

Inductive step: Suppose u > 0, and assume the claim holds for u′ = u − 1. Let n′ = n/k = ku
′
.

Divide [n] into k blocks B1, B2, . . . , Bk, where Bi = {(i− 1)n′ + 1, (i− 1)n′ + 2, . . . , in′}. For i ∈ [k], let

f (i) =
∏
j∈Bi fj =

∏in′

j=(i−1)n′+1 fj . So f =
∏k
i=1 f

(i).

Let ε′′ = (n′−1)ε
k−1 . By the induction hypothesis and the union bound, for all but at most kε′′-fraction of

t = (t1, t2, . . . , tu−1) ∈ [N ]u−1, wt is a basis isolating weight assignment for f (1), f (2), . . . , f (k). Fix such

t. For i ∈ [k], let Si ⊆M(xj : j ∈ Bi) be a set of monomials in the variables xj with j ∈ Bi such that wt,

Si and f (i) satisfy the conditions in Definition 3.3. Then |Si| ≤ dimF span(f (i)) ≤ dimFA = r2 for i ∈ [k].

Claim 1. The monomials in S1, S2, . . . , Sk have individual degree less than `.

Proof of Claim 1. Assume to the contrary that some Si contains a monomial m whose degree in some

variable xj is d ≥ `. Write m = xdjm̄ where m̄ does not depend on xj . As fj is `-degree concentrated, we

have coeffj (x
d
j ) ∈ span{coeffj (x

a
j ) : 0 ≤ a < `}. Using the fact f (i) =

∏
j∈Bi fj and fj ∈ A[xj ] for j ∈ Si,

we see

coeff (i)(m) ∈ span{coeff (i)(xaj m̄) : 0 ≤ a < `} ⊆ span{coeff (i)(m′) : wt(m
′) < wt(m)}.

But, from (2) of Definition 3.3, we know that for any m′ ∈M(xj : j ∈ Bi) \ Si,

coeff (i)(m′) ∈ span{coeff (i)(m′′) : m′′ ∈ Si, wt(m
′′) < wt(m

′)}.

From the above two containments we get that

coeff (i)(m) ∈ span{coeff (i)(m′′) : m′′ ∈ Si, wt(m
′′) < wt(m)}.

This contradicts the fact that the coefficients of the monomials in Si form a basis of span(fi) (Defini-

tion 3.3).

Let T := {
∏k
i=1mi : mi ∈ Si for i ∈ [k]}. Then span{coeff (m) : m ∈ T} = span(f). Note |T | =∏k

i=1 |Si| ≤ r2k ≤ s, and T consists of monomials of individual degree less than `. By Lemma 3.2,

for all but at most ε-fraction of tu ∈ [N ], wtu separates the monomials in T . Fix such tu and let

t′ = (t1, t2, . . . , tu) = (t, tu).
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For m ∈ T , as the individual degree of m is less than `, we have 0 ≤ wtu(m) < n`N logN = h. By

definition, wt′(m) = wtu(m) if u = 1 and wt′(m) = wt(m)h + wtu(m) if u > 1. In either case, we have

wt′(m) 6= wt′(m
′) whenever wtu(m) 6= wtu(m′) for m,m′ ∈ T . Therefore, the weight assignment wt′ also

separates the monomials in T .

Next, we choose a subset S ⊆ T of monomials such that wt′ , S, and f satisfy the conditions in

Definition 3.3. Initially, let S = ∅. Choose m ∈ T with the minimum weight wt′(m) such that

coeff (m) 6∈ span{coeff (m′) : m′ ∈ S}, and add m to S. Note m is unique as wt′ separates the monomials

in T . Repeat this step until span{coeff (m) : m ∈ S} equals span{coeff (m) : m ∈ T} = span(f).

We check that wt′ , S and f satisfy the conditions in Definition 3.3. The set {coeff (m) : m ∈ S} is a basis

of span(f) by our choice of S. As wt′ separates the monomials in T ⊇ S, Condition (1) of Definition 3.3

holds. We now prove that Condition (2) also holds.

Claim 2. Let m ∈M(x) \ S. Then

coeff (m) ∈ span{coeff (m′) : m′ ∈ S, wt′(m
′) < wt′(m)}.

Proof of Claim 2. We prove the claim by induction on w := wt′(m). The claim is vacuously true for

w < 0 (since this is impossible). Now suppose w ≥ 0 and the claim holds for w′ < w. If m ∈ T , the claim

holds by our choice of S. So assume m 6∈ T . Write m =
∏k
i=1mi where mi is a monomial in the variables

in Bi. As m 6∈ T , there exists i ∈ [k] such that mi 6∈ Si. Assume i = 1 (the other cases are similar). By

the choice of S1, we have

coeff (1)(m1) ∈ span{coeff (1)(m′1) : m′1 ∈ S1, wt(m
′
1) < wt(m1)}

⊆ span{coeff (1)(m′1) : m′1 ∈ S1, wt′(m
′
1) < wt′(m1)}.

where the second step holds since wtu(m′1) < n`N logN = h for m′1 ∈ S1, which in turn holds by Claim 1.

Therefore

coeff (m) ∈ span{coeff (m′1m2 · · ·mk) : m′1 ∈ S1, wt′(m
′
1) < wt′(m1)}

⊆ span{coeff (m′) : m′ ∈M(x), wt′(m
′) < wt′(m)}.

Consider a monomial m′ ∈ M(x) satisfying wt′(m
′) < wt′(m). By the induction hypothesis, either

m′ ∈ S, or coeff (m′) is in the span of the coefficients of those monomials in S with weight strictly less

than wt′(m
′) < wt′(m). It follows that coeff (m) ∈ span{coeff (m′) : m′ ∈ S,wt′(m

′) < wt′(m)}.

By the union bound, for all but at most ε′-fraction of t′ = (t1, . . . , tu) ∈ [N ]u, where ε′ = kε′′+ ε = (n−1)ε
k−1 ,

wt′ is a basis isolating weight assignment for f . This completes the proof for the inductive step.

Let ε = 1/n. Then the maximum values of the weight assignments wt constructed above are polynomial in

hu with h = poly(n, `, rk) and u = log n/ log k, which suggests that we should choose k = Θ(log(n`)/ log r).

However, as k ∈ {2, . . . , n}, we have to choose k = 2 (resp. k = n) when log(n`)/ log r is subconstant

(resp. superlinear in n). This yields the following theorem.

Theorem 3.6. Let C be the family of polynomials f = β>f1f2 · · · fnγ computed by ROABPs of length n,

width r and individual degree d in an unknown order, where each fi is `-degree concentrated. Then there

exists an explicit hitting-set for C of size polynomial in M0(n, r, d, `), where

M0(n, r, d, `) :=


(nr)lognd n` ≤ r2,

(n`)
logn

log log(n`)−log log r d r2 < n` < rn,

n`d n` ≥ rn.
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Proof. Choose

k =


2 n` ≤ r2,

log(n`)/ log r r2 < n` < rn,

n n` ≥ rn.

By adding dummy variables, we may assume n is a power of k. Let ε = 1/n. Construct the weight

assignment wt : {x1, x2, . . . , xn} → [N logNhu] for t ∈ [N ]u as above, where N = poly(n, s, log `, ε−1),

s = max{`, r2k}, h = n`N logN , and u = log n/ log k.

Consider 0 6= f = β>f1f2 · · · fnγ ∈ C. By Lemma 3.5, there exists t ∈ [N ]u such that wt is a basis

isolating weight assignment for f1f2 · · · fn ∈ A[x], which implies that gwt(y) := f(ywt(x1), . . . , ywt(xn)) 6= 0

by Lemma 3.4. As gwt(y) is univariate, any subset of F of size deg(gwt) + 1 ≤ N logNhund + 1 is a

hitting-set for gwt . Enumerating all t ∈ [N ]u, we obtain an explicit hitting-set for C of size at most

Nu(N logNhund+ 1), which is polynomial in M0(n, r, d, `).

Theorem 1.1 follows easily from Theorem 3.6.

Proof of Theorem 1.1. Note degree-d polynomials are trivially (d + 1)-degree concentrated. The second

part of Theorem 1.1 (the claim for arbitrary characteristic) then follows from Theorem 3.6 with ` = d+1.

Moreover, when char(F) = 0 or char(F) > d, we may preprocess the polynomials fi using Lemma 3.1 so

that they are r2-degree concentrated. The first part of Theorem 1.1 then follows from Theorem 3.6 with

` = r2.

3.3 Sum of several ROABPs.

Using the reduction in [BS20], we may extend Theorem 1.1 to the model of sum of several ROABPs and

prove Theorem 1.2. Here we only sketch the proof as it is the same as the proof in [BS20] except for some

small adjustments.

Proof sketch of Theorem 1.2. Choose a function M∗(n, r, d) ≥ poly(n, r, d) such that we have explicit

hitting-sets of size at most M∗(n, r, d) for the family of polynomials computed by ROABPs of length n,

width r and individual degree d in an unknown order. By Theorem 1.1, we may choose M∗(n, r, d) to

be polynomial in M(n, r, d) when char(F) = 0 or char(F) > d and polynomial in M ′(n, r, d) in arbitrary

characteristic.

Fix n and d. It was shown in the proof of [BS20, Lemma 14] (and the proof of [BS20, Lemma 12]) that for

c ≥ 1 and r ≥ 2, one can explicitly construct a set S of ring homomorphisms Ψ : F[x1, x2, . . . , xn]→ F[t]

satisfying the following properties (C is the class of sum of c ROABPs):

• If 0 6= f ∈ C, there exists Ψ ∈ S such that Ψ(f) 6= 0.

• For f ∈ C and Ψ ∈ S, the degree of Ψ(f) is at most S(c, r), where S(1, r) ≤M∗(n, r, d) and

S(c, r) ≤ poly(M∗(n, r, d)) · S(c− 1, 2r3) (1)

for c ≥ 2.
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• The time complexity of computing S is at most T (c, r), where T (1, r) ≤ poly(M∗(n, r, d)) and

T (c, r) ≤ n2n · poly(M∗(n, r, d)) · T (c− 1, 2r3) (2)

for c ≥ 2. In particular, the size of S is bounded by T (c, r).

In fact, the proof in [BS20] is given for the choice of the upper bound M∗(n, r, d) = poly(rn, d) for the

single ROABP model, but the same proof works in a black-box way for any upper bound M∗(n, r, d) ≥
poly(n, r, d) for this model (cf. [BS20, Meta-Lemma]).

Solving the recursive relations (1) and (2) above gives the upper bounds S(c, r) ≤ poly(M∗(n, (2r)3c , d)c)

and T (c, r) ≤ poly(2cn,M∗(n, (2r)3c , d)c).

For f ∈ C and Ψ ∈ S, any subset of F of size S(c, r) + 1 is a hitting-set for Ψ(f) since Ψ(f) is a univariate

polynomial of degree at most S(c, r). Enumerating all possible Ψ ∈ S, we obtain an explicit hitting-set

for C of size at most T (c, r)(S(c, r) + 1), which is polynomial in 2cn ·M(n, (2r)3c , d)c when char(F) = 0 or

char(F) > d and polynomial in 2cn ·M ′(n, (2r)3c , d)c in arbitrary characteristic.

4 Hitting-sets for any-order ROABPs

In this section, we prove Theorem 1.3 by giving an explicit construction of hitting-sets for any-order

ROABPs.

4.1 Low-support concentration

Following [FSS14, GKS17], we first achieve low-support concentration by shifting the variables. The basic

tool is the following lemma.

Lemma 4.1 ([GKST17, Lemma 5.2]). Suppose w : x → N is a basis isolating weight assignment for

f =
∏n
i=1 fi ∈ A[x]. Then f(x1 +yw(x1), x2 +yw(x2), . . . , xn+yw(xn)) is dlog(r2 + 1)e-support concentrated

over F(y).

The next lemma states that low-support concentration is a “local” property for any-order ROABPs.

Lemma 4.2 ([ASS13, FSS14, GKS17]). Let ` < n. Let s = (s1, s2, . . . , sn) ∈ Kn where K is an extension

field of F. Suppose for any distinct i1, i2 . . . , i` ∈ [n] and f1 ∈ A[xi1 ], f2 ∈ A[xi2 ], . . . , f` ∈ A[xi` ] of degree

at most d, the product f1(xi1 + si1)f2(xi2 + si2) · · · f`(xi` + si`) is `-support concentrated over K. Then for

f(x) ∈ A[x] computed by ROABPs of length n, width r and individual degree d in any order, f(x + s) is

`-support concentrated over K.

Explicit construction. Let K = F(y, z, t), where y, z and t are indeterminates. We construct s ∈
F[y, z, t]n such that the shift x 7→ x + s achieves low-support concentration over K for polynomials

computed by any-order ROABPs. The construction is as follows.

• Let ` = r2 if char(F) = 0 or char(F) > d. Otherwise let ` = d+ 1.

• Choose sufficiently large n̄ = poly(log r) and let H = {h : [n] → [n̄]} be an explicit family of hash

functions of size poly(n, log r) such that for any T ⊆ [n] of size dlog(r2 +1)e, there exists h ∈ H that

maps T injectively to [n̄]. Such an explicit family H can be constructed using pairwise independence

[CW79].
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• Using Lemma 3.5, construct a set S of weight assignments w : {u1, u2, . . . , un̄} → N of the vari-

ables u1, u2, . . . , un̄ such that for any permutation π : [n̄] → [n̄] and polynomials f1 ∈ A[u1], f2 ∈
A[u2], . . . , fn̄ ∈ A[un̄] of degree at most d that are `-degree concentrated, there exists a basis isolating

weight assignment in S for
∏n̄
i=1 fπ(i).

• Fix an injective map ψ : S × H → F. For (w, h) ∈ S × H, construct the polynomial pw,h(z) ∈ F[z]

of degree |S × H| − 1 by interpolation such that for (w′, h′) ∈ S ×H,

pw,h(ψ(w′, h′)) =

{
1 (w′, h′) = (w, h)

0 (w′, h′) 6= (w, h).

• Define s = (s1, s2, . . . , sn) ∈ F[y, z, t]n by

si(y, z, t) = t+
∑

(w,h)∈S×H

yw(uh(i))pw,h(z)

for i ∈ [n]. So si(y, ψ(w, h), t) = t+ yw(uh(i)) for i ∈ [n] and (w, h) ∈ S ×H.

The main difference between the above construction and the one in [GKS17] is the use of hash functions,

which has the effect of reducing the number of variables from n to n̄ = poly(log r) in the analysis.

Lemma 4.3. Suppose f ∈ A[x] is computed by ROABPs of length n, width r and individual degree d in

any order. Then f(x + s) is dlog(r2 + 1)e-support concentrated over K = F(y, z, t).

Proof. The lemma is trivial if n < dlog(r2 + 1)e. So assume n ≥ dlog(r2 + 1)e. Let n′ = dlog(r2 + 1)e.
Consider distinct i1, i2 . . . , in′ ∈ [n] and f1 ∈ A[xi1 ], f2 ∈ A[xi2 ], . . . , fn′ ∈ A[xin′ ] of degree at most d. By

Lemma 4.2, it suffices to prove that

g :=

n′∏
j=1

fj(xij + sij ) ∈ (A[y, z, t])[x] ⊆ (A⊗F K)[x]

is n′-support concentrated over K.

Fix h ∈ H such that h maps {i1, . . . , in′} injectively to [n̄]. Note that there exists α ∈ F such that for

j ∈ [n′], fj(xij + α) is `-degree concentrated: If char(F) = 0 or char(F) > d, then ` = r2 and this claim

follows from Lemma 3.1. Otherwise, ` = d+ 1 and this claim holds trivially. Fix such α.

Let f∗(u1, u2, . . . , un̄) :=
∏n′

j=1 fj(uh(ij) + α) ∈ A[u1, u2, . . . , un̄]. By the choice of S, there exists a basis

isolating weight assignment w : {u1, u2, . . . , un̄} → N in S for f∗. Fix such w. By Lemma 4.1,

f∗(u1 + yw(u1), . . . , un̄ + yw(un̄)) =

n′∏
j=1

fj(uh(ij) + y
w(uh(ij)) + α)

is n′-support concentrated over F(y). Substituting uh(ij) with xij for j ∈ [n′], we see that

g∗ :=
n′∏
j=1

fj(xij + y
w(uh(ij)) + α) ∈ (A[y])[x] ⊆ (A⊗F F(y))[x]

is n′-support concentrated over F(y).
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Let g0 =
∏n′

j=1 fj(xij ). As g0(x +α) = g∗|y=0, we have spanF(y)(g0) = spanF(y)(g0(x +α)) ⊆ spanF(y)(g
∗).

On the other hand, note the coefficients of g∗ can be written as linear combinations of those of g0 over

F(y). So spanF(y)(g
∗) ⊆ spanF(y)(g0). It follows that spanF(y)(g

∗) = spanF(y)(g0). Also note spanK(g) =

spanK(g0) since g(x) = g0(x + s).

Let D := dimF(span(g0)). We have

D = dimF(y)(spanF(y)(g0)) = dimF(y)(spanF(y)(g
∗))

and

D = dimK(spanK(g0)) = dimK(spanK(g)).

As g∗ is n′-support concentrated over F(y), there exist m1,m2, . . . ,mD ∈ M(x) of support size less

than n′ such that coefg∗(m1), coefg∗(m2), . . . , coefg∗(mD) are linearly independent. Also note g∗ =

g|z=ψ(w,h),t=α, which implies coefg∗(mi) = coefg(mi)|z=ψ(w,h),t=α for i ∈ [D]. Therefore, the coefficients

coefg(m1), coefg(m2), . . . , coefg(mD) are also linearly independent. It follows that g is n′-support concen-

trated over K, as desired.

Theorem 4.4. Let s = (s1, . . . , sn) ∈ F[y, z, t]n be as above. Let T ⊆ F be a large enough set with

|T | =

poly(n, rlog log r, d) char(F) = 0 or char(F) > d

poly(n, rlog log r, d
1+ log log r

max{1,log log d−log log r} ) otherwise.

Suppose f ∈ A[x] is computed by ROABPs of length n, width r and individual degree d in any order.

Then there exists (a, b, c) ∈ T 3 such that f(x + s(a, b, c)) ∈ A[x] is dlog(r2 + 1)e-support concentrated.

If char(F) = 0 or char(F) > d, then |T | = poly(n, d) for r = 2O(log(nd)/ log log(nd)). In arbitrary character-

istic, we have (1) |T | = poly(n, d) for r = 2O(log1−ε(nd)) and any constant 0 < ε < 1 and (2) |T | = poly(n)

for r, d = 2O(logn/ log logn).

Proof. We know |H| = poly(n, log r). If char(F) = 0 or char(F) > d, then |S| and the maximum value

of every w ∈ S are bounded by poly(M(n̄, r, d)) = poly(rlog log r, d). Otherwise they are bounded by

poly(M ′(n̄, r, d)) ≤ poly(rlog log r, d
1+ log log r

max{1,log log d−log log r} ). The degree of each si ∈ F[y, z, t] is polynomial

in |S|, |H| and max{w(ui) : w ∈ S, i ∈ [n̄]}.

Let D = dimF(span(f)). By Lemma 4.3, f(x + s) is dlog(r2 + 1)e-support concentrated over K. So there

exist monomials m1,m2 . . . ,mD ∈ M(x) of support size less than dlog(r2 + 1)e and individual degree at

most d such that coeff(x+s)(m1), coeff(x+s)(m2), . . . , coeff(x+s)(mD) ∈ A⊗F K are linearly independent.

Therefore, the matrix formed by these coefficients (viewed as vectors over K) has a nonzero D × D

minor g ∈ K. Note g is a polynomial in y, z, t whose degree is polynomial in n, r, d and the degrees

of the polynomials si ∈ F[y, z, t]. By the Schwartz-Zippel-DeMillo-Lipton lemma, for large enough T

whose size is as in Theorem 4.4, there exists (a, b, c) ∈ T 3 such that g(a, b, c) 6= 0. For such (a, b, c),

the coefficients coeff(x+s(a,b,c))(m1), coeff(x+s(a,b,c))(m2), . . . , coeff(x+s(a,b,c))(mD) ∈ A span the coefficient

span of f , which implies that f(x + s(a, b, c)) is dlog(r2 + 1)e-support concentrated.

The remaining claims are straightforward to verify. The only one that may not be obvious is the claim

|T | = poly(n, d) for r = 2O(log1−ε(nd)) and any constant 0 < ε < 1. If n ≤ d, this is easy to see. So assume

n ≥ d and hence log log r ≤ (1 − ε) log log n + O(1). Now divide it into two cases d < 2(logn)1−ε/2
and

d ≥ 2(logn)1−ε/2
and note |T | = poly(n) in both cases.
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4.2 Converting low-support concentrated any-order ROABPs into short ROABPs

Our next step follows that in [FSS14, GKS17], which converts any-order ROABPs with low-support

concentration into short ROABPs. In particular, we need the following lemma proved in [FSS14].

Lemma 4.5 ([FSS14, Lemma 7.6, restated]). Let C be the set of polynomials f ∈ F[x] computed by

ROABPs of length n, width r and individual degree d in any order such that f has a monomial m

with a nonzero coefficient and |supp(m)| < `. Then for some n′ = O(`2), there exists an explicit set

S ⊆ (F[y1, y2, . . . , yn′ ])
n of size poly(n, r, d) satisfying the following condition: For any f ∈ C, there exists

(φ1, φ2, . . . , φn) ∈ S such that f(φ1, φ2, . . . , φn) ∈ F[y1, y2, . . . , yn′ ] is a nonzero polynomial computed by

ROABPs of length n′, width r and individual degree n4(d+ 1)2 in any order.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Consider 0 6= f ∈ C. Regard f ∈ F[x] as an element of A[x] ∼= Mr×r(F[x]) such

that the (1, 1)-th entry of the corresponding matrix is f and the other entries are zero. Then f , regarded

as an element of A[x] this way, is also computed by ROABPs of length n, width r and individual degree

d in any order. Let s = (s1, s2, . . . , sn) ∈ F[y, z, t]n and T ⊆ F be as in Theorem 4.4. By Theorem 4.4,

there exists (a, b, c) ∈ T 3 such that f∗(x) := f(x + s(a, b, c)) is dlog(r2 + 1)e-concentrated. As f 6= 0, this

implies that f∗(x) has a monomial m with a nonzero coefficient and |supp(m)| < dlog(r2 + 1)e.

Let S ⊆ (F[y1, y2, . . . , yn′ ])
n be the set in Lemma 4.5 with ` = dlog(r2 + 1)e. By Lemma 4.5, there exists

φ = (φ1, φ2, . . . , φn) ∈ S such that f∗(φ1, φ2, . . . , φn) is a nonzero polynomial computed by ROABPs of

length n′, width r and individual degree n4(d+ 1)2, where n′ = O((log r)2).

Finally, use Theorem 1.1 to construct an explicit hitting-set H for

f∗(φ1, φ2, . . . , φn) = f(φ1 + s1(a, b, c), φ2 + s2(a, b, c), . . . , φn + sn(a, b, c)).

Then Ha,b,c,φ := {(φ1(α) + s1(a, b, c), φ2(α) + s2(a, b, c), . . . , φn(α) + sn(a, b, c)) : α ∈ H} is a hitting-set

for f . We do not know the correct (a, b, c) ∈ T 3 and φ ∈ S but may just enumerate all the possible

choices and then take the union of Ha,b,c,φ. When char(F) = 0 or char(F) > n4(d + 1)2, the size of the

final hitting-set we obtain is polynomial in

|T |3 · |S| ·M(n′, r, n4(d+ 1)2) = poly(n, rlog log r, d) · poly(n, r, d) ·M(n′, r, n4(d+ 1)2)

= poly(n, rlog log r, d).

In arbitrary characteristic, the size of the final hitting-set is polynomial in

|T |3 · |S| ·M ′(n′, r, n4(d+ 1)2)

= poly(n, rlog log r, d
1+ log log r

max{1,log log d−log log r} ) · poly(n, r, d) ·M ′(n′, r, n4(d+ 1)2)

= poly(rlog log r, (nd)
1+ log log r

max{1,log log(nd)−log log r} ).

5 Open problems

We list some open problems.
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• The results we have obtained in positive characteristics are worse than those in characteristic zero,

due to the issue that random shift may fail to achieve low-degree concentration in positive charac-

teristics. Is it possible to close the gaps between characteristic zero and characteristic p > 0?

• In characteristic p > 0, are there explicit hitting-sets of polynomial size for any-order ROABPs

of length n, width r and individual degree d when r, d = 2O(logn/ log logn)? The following issue

prevents us from obtaining such a result: In Lemma 4.5, the substitution map f 7→ f(φ1, φ2, . . . , φn)

increases the individual degree from d to n4(d+ 1)2. Thus an application of Lemma 4.5 forces the

new individual degree to be at least poly(n) even if we start with d = no(1).

• It was shown in [FGS18] that in characteristic zero, explicit hitting-sets of size poly(s) exist for

log-variate diagonal circuits of size s. It is a natural question to ask if this result can be extended

to commutative or any-order log-variate ROABPs of width poly(s) and individual degree poly(s).
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