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Abstract

This paper shows that there exist Reed–Solomon (RS) codes, over large finite fields, that
are combinatorially list-decodable well beyond the Johnson radius, in fact almost achieving
list-decoding capacity. In particular, we show that for any ε ∈ (0, 1] there exist RS codes
with rate Ω( ε

log(1/ε)+1 ) that are list-decodable from radius of 1 − ε. We generalize this result

to list-recovery, showing that there exist (1 − ε, `, O(`/ε))-list-recoverable RS codes with rate

Ω
(

ε√
`(log(1/ε)+1)

)
. Along the way we use our techniques to give a new proof of a result of

Blackburn on optimal linear perfect hash matrices, and strengthen it to obtain a construction
of strongly perfect hash matrices.

To derive the results in this paper we show a surprising connection of the above problems to
graph theory, and in particular to the tree packing theorem of Nash-Williams and Tutte. We also
state a new conjecture that generalizes the tree-packing theorem to hypergraphs, and show that
if this conjecture holds, then there would exist RS codes that are optimally (non-asymptotically)
list-decodable.
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1 Introduction

Reed–Solomon (RS) codes are a classical family of error correcting codes, ubiquitous in both theory
and practice. To define an RS code, let Fq be the finite field of size q, and let 1 ≤ k < n ≤ q.
Fix n distinct evaluation points α1, α2, . . . , αn ∈ Fq. The [n, k]-Reed–Solomon code over Fq with
evaluation points (α1, . . . , αn) is defined as the set{(

f(α1), . . . , f(αn)
)

: f ∈ Fq[x], deg(f) < k
}
.

RS codes attain the optimal trade-off between rate and distance. The rate of a code C ⊂ Fnq
is defined as R = logq |C|/n. The rate is a number between 0 and 1, and the closer to 1 the
better. The (relative) distance of a code C ⊂ Fnq is defined to be δ(C) = minc 6=c′∈C d(c, c′), where
d(c, c′) = |{i ∈ [n] : ci 6= c′i}|/n is relative Hamming distance. Again, the relative distance is a
number between 0 and 1, and the closer to 1 the better. An [n, k]-RS code has rate k/n and distance
(n− k + 1)/n, which is the best-possible trade-off, according to the Singleton bound [Sin64].

Because RS codes attain this optimal trade-off (and also because they admit efficient algo-
rithms), they have been well-studied since their introduction in the 1960’s [RS60]. However, per-
haps surprisingly, there is still much about them that we do not know. One notable example
is their (combinatorial)1 list-decodability and more generally their list-recoverability. We discuss
list-decodability first, and discuss list-recoverability after that.

List-Decodability of RS Codes. List-decodability can be seen as a generalization of distance.
For ρ ∈ (0, 1) and L ≥ 1, we say that a code C ⊂ Fnq is (ρ, L)-list-decodable if for any y ∈ Fnq ,

|{c ∈ C : d(c, y) ≤ ρ}| ≤ L.

In particular, (ρ, 1)-list-decodability is the same as having distance greater than 2ρ. List-decodability
was introduced by Elias and Wozencraft in the 1950’s [Eli57, Woz58]. By now it is an important
primitive in both coding theory and theoretical computer science more broadly. In general, larger
list sizes (the parameter L) allow for a larger list-decoding radius (the parameter ρ). In this work,
we will be interested in the case when ρ = 1− ε is large.

The list-decodability of Reed–Solomon codes is of interest for several reasons. First, both list-
decodability and Reed–Solomon codes are central notions in coding theory, and the authors believe
that question is interesting in its own right. Moreover, the list-decodability of Reed–Solomon codes
has found applications in complexity theory and pseudorandomness [CPS99, STV01, LP20].

Until recently, the best bounds available on the list-decodability of RS codes were bounds that
hold generically for any code. The Johnson bound states that any code with minimum relative
distance δ is (1−

√
1− δ, qn2δ)-list-decodable over an alphabet of size q ([Joh62], see also [GRS19,

Theorem 7.3.3]). This implies that, for any ε ∈ (0, 1], there are RS codes that are list-decodable up
to radius 1−ε (with polynomial list sizes) that have rate Ω(ε2). The celebrated Guruswami–Sudan
algorithm [GS99] gives an efficient algorithm to list-decode RS codes up to the Johnson bound, but
it breaks down at this point. Meanwhile, the list-decoding capacity theorem implies that no code
(and in particular, no RS code) that is list-decodable up to radius 1 − ε can have rate bounded
above ε, unless the list sizes are exponential.

There have been several works over the past decade aimed at closing the gap between the John-
son bound (rate Θ(ε2)) and the list-decoding capacity theorem (rate Θ(ε)). On the negative side, it
is known that some RS codes (that is, some way of choosing the evaluation points α1, . . . , αn), are

1Throughout this paper, we will study combinatorial (rather than algorithmic) list-decodability.
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not list-decodable substantially beyond the Johnson bound [BKR10]. On the positive side, Rudra
and Wootters [RW14] showed that a random choice of evaluation points will, with high probability,

yield a code that is list-decodable up to radius 1 − ε with rate O
(

ε
log5(1/ε) log q

)
. Unfortunately,

while the dependence on ε in the rate is nearly optimal (the “correct” dependence should be linear
in ε, according to the list-decoding capacity theorem), the log q term in the denominator means
that the rate necessarily goes to zero as n grows, as we must have q ≥ n for RS codes. Working in a
different parameter regime, Shangguan and Tamo showed that over a large alphabet, there exist RS
codes of rate larger than 1/9 that can also be list-decoded beyond the Johnson bound (and in fact,
optimally) [ST20a]. However, this result only holds for small list sizes (L = 2, 3), and in particular,
for such small list sizes one cannot hope to list-decode up to a radius 1−ε that approaches 1. Thus,
there was still a substantial gap between capacity and the best known trade-offs for list-decoding
RS codes.

List-Recoverability of RS Codes. The gap between capacity and the best known trade-offs
for RS codes is even more pronounced for list recovery, a generalization of list decoding. We say
that a code C ⊂ Fnq is (ρ, `, L)-list-recoverable if for any S1, S2, . . . , Sn ⊂ Fq with |Si| = `,

| {c ∈ C : d(c, S1 × S2 × · · · × Sn) ≤ ρ} | ≤ L.

Here, we extend the definition of Hamming distance to sets by denoting

d(c, S1 × · · · × Sn) =
1

n
| {i ∈ [n] : ci 6∈ Si} |.

The parameter ` is called the input list size. List-decoding is the special case of list-recovery for
` = 1. List-recovery first arose in the context of list-decoding (for example, the Guruswami–Sudan
algorithm mentioned above is in fact a list-recovery algorithm), but has since found applications
beyond that, for example in pseudorandomness [GUV09] and algorithm design [DW20].

Both the Johnson bound and the list-decoding capacity theorem have analogs for list-recovery.
The list-recovery Johnson bound [GS01] implies that there are RS codes of rate Ω(ε2/`) that are
list-recoverable up to radius 1− ε with input list size ` and polynomial output list size. However,
the list-recovery capacity theorem implies that there are codes of rate Ω(ε) (with no dependence
on `) that achieve the same guarantee, provided that the alphabet size q is sufficiently large.

Thus the gap for list-recovery (between rate Θ(ε2/`) and Θ(ε)) is even larger than that for list-
decoding, and in particular the dependence on ` becomes important. To the best of our knowledge,
before our work there were no results known for RS codes that established list-recovery up to
arbitrarily large radius 1− ε with a better dependence on ` than 1/`.

Motivating question. Given this state of affairs, our motivating question is whether or not RS
codes can be list-decoded or list-recovered up to radius 1 − ε with rates Ω(ε) (in particular, with
a linear dependence on ε and no dependence on the alphabet size q or the input list size `). As
outlined below, we nearly resolve this question for list-decoding and make substantial progress for
list-recovery.

Subsequent work. After this paper first appeared, and inspired by the techniques in this paper
and in [ST20a], Ferber, Kwan, and Sauermann showed that there exist (1−ε,O(1/ε))-list-decodable
RS codes with rate Ω(ε) over a field size polynomial in the block length, improving our result for
list-decoding [FKS20]. In a very recent work, Goldberg, Shangguan, and Tamo further improved
the rate of [FKS20] by showing the existence of (1 − ε,O(1/ε))-list-decodable RS codes with rate
approaching ε

2−ε [GST21]. See Section 1.2 for more details.
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1.1 Contributions

Our main result establishes the list-recoverability (and in particular, the list-decodability), of Reed–
Solomon codes up to radius 1 − ε, representing a significant improvement over previous work.
Our techniques build on the approach of [ST20a]; the main new technical contribution is a novel
connection between list-decoding RS codes and the Nash-Williams–Tutte theorem in graph theory,
which may be of independent interest. We outline our contributions below.

Existence of RS codes that are near-optimally list-decodable. Our main theorem for
list-decoding is as follows.

Theorem 1.1 (RS codes with near-optimal list-decoding). There is a constant c ≥ 1 so that the
following statement holds. For any ε ∈ (0, 1] and any sufficiently large n, there exist RS codes of
rate R ≥ ε

c(log(1/ε)+1) over a large enough finite field (as a function of n and ε), that are (1−ε, c/ε)-
list-decodable.

As discussed above, Theorem 1.1 is stronger than the result of Rudra and Wootters [RW14],
in that the result of [RW14] requires that the rate tend to zero as n grows, while ours holds for
constant-rate codes. On the other hand, our result requires the field size q to be quite large (see
Table 1), which [RW14] did not require.

Our result also differs from the result of Shangguan and Tamo [ST20a] discussed above. Because
that work focuses on small list sizes, it does not apply to list-decoding radii approaching 1. In
contrast, we are able to list-decode up to radius 1− ε. We note that [ST20a] is able to show that
RS codes are exactly optimal, while we are off by logarithmic factors. Both our work and that of
[ST20a] require large field sizes.

Generalization to list-recovery. Theorem 1.1 follows from a more general result about list-
recovery. Our main result is the following (see Theorem 5.1 for a more detailed version).

Theorem 1.2 (RS codes with list-recovery beyond the Johnson bound). There is a constant
c ≥ 1 such that the following statement holds. For any ε ∈ (0, 1], any positive integer `, and any
sufficiently large n, there exist RS codes with rate R ≥ ε

c
√
`(log(1/ε)+1)

over a large enough (as a

function of n, ε, and `) finite field, that are (1− ε, `, c`/ε)-list-recoverable.

Theorem 1.2 establishes list-recoverability for RS codes well beyond the Johnson bound, and in
particular breaks the 1/` barrier. To the best of our knowledge, this is the first result to do so for
radius arbitrarily close to 1, although we note that work of Lund and Potukuchi achieved a similar
rate for small error radius [LP20]. We discuss related work below in Section 1.2 and summarize
quantitative results in Table 1.

Applications to perfect hashing. Our techniques also have an application to the construction
of strongly perfect hash matrices, as detailed below. Given a matrix and a set S of its columns,
a row is said to separate S if, restricted to this row, these columns have distinct values. For a
positive integer t, a matrix is said to be a t-perfect hash matrix if any set of t distinct columns of
the matrix is separated by at least one row. Perfect hash matrices were introduced by Mehlhorn
[Meh84] in 1984 for database management, and since then they have found various applications in
cryptography [Bla03], circuit design [NW95], and the design of deterministic analogs of probabilistic
algorithms [AN96].

Let PHF(n,m, q, t) denote a q-ary t-perfect hash matrix with n rows and m columns. Given
m, q, t, determining the minimal n such that there exists a PHF(n,m, q, t) is one of the major open

3



Radius ρ List size L Rate R Field size q

List-Decoding:

Capacity 1− ε - ≤ ε -

Johnson bound 1− ε poly(n) Cε2 q ≥ n

[RW14] 1− ε C/ε Cε
log5(1/ε) log(q)

q ≥ Cn logC(n/ε)/ε

[ST20a] L
L+1(1−R) L = 2, 3 R q = 2Cn

This work (Thm. 1.1) 1− ε C/ε Cε
log(1/ε) q =

(
1
ε

)Cn
List-Recovery:

Capacity 1− ε - ≤ ε -

Johnson bound 1− ε poly(n) Cε2

` q ≥ n

[LP20] ρ ≤ 1− 1/
√

2 C` C√
`·log q

q ≥ Cn
√
` · log n

This work (Thm. 1.2) 1− ε C`
ε

Cε√
`·log(1/ε)

q =
(
`
ε

)Cn
Table 1: Prior work on list-decoding and list-recovery of RS codes. Above, C refers to an absolute constant.
The “Capacity” results refer to the list-decoding and list-recovery capacity theorems, respectively, and are
impossibility results. Above, we assume that q ≥ n and that n → ∞ is growing relative to 1/ε and `, and
that n is sufficiently large.

questions in this field, and has received considerable attention (see, e.g., [BW98, Bla00, SG16]).
For any integers t ≥ 2, k ≥ 2, and sufficiently large prime power q, using tools from linear algebra
Blackburn [BW98] constructed a PHF(k(t−1), qk, q, t), which remains the best-known construction
for such parameters so far.

Constructing perfect hash matrices is related to list-recovery and list-decoding. Indeed, if the
columns of our matrix are codewords, then the matrix is a t-perfect hash matrix if and only if the
code is (0, t − 1, t − 1)-list-recoverable. On the way to proving our main result on list-recovery,
we prove a theorem (Theorem 3.1, which we will state later), that gives very precise bounds, but
only in a restricted setting. While this setting is too restrictive to immediately yield results on
list-recovery in general, it turns out to be enough to say something interesting about perfect t-hash
matrices. In particular, we are able to recover Blackburn’s result, and extend it to a generalization
of perfect hashing where every set of t columns needs to be separated not just by one row but by
many rows.

Theorem 1.3. Given integers 1 ≤ k < n and t ≥ 3, for a sufficiently large prime power q, there
exists an n× qk matrix, defined on the alphabet Fq, such that any set of t columns is separated by
at least n− k(t− 1) + 1 rows.

We call a matrix with the property given by Theorem 1.3 a strongly t-perfect hash matrix;
this can be viewed as an “error-resilient” version of perfect hash matrices. Strongly perfect hash
matrices were first introduced by the third and fourth authors of this paper for t = 3, with a slightly
different definition [ST20b]. Indeed, Lemma 25 of [ST20b] implies the t = 3 case of Theorem 1.3,
but it breaks down at that point. We overcome this barrier, and construct strongly t-perfect hash
matrices for all integers t ≥ 3. The main ingredient in our proof is a surprising connection from
strongly perfect hashing to graph theory (see Section 4 for the details). Perfect hash matrices with
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a similar property (i.e., every set of t columns needs to be separated by more than one row) have
also been studied in [Dou19], but not to our knowledge in this parameter regime.

Theorem 1.3 recovers Blackburn’s result by taking n = k(t − 1), and it establishes the new
result for strongly perfect hash matrices. Based on a result of Blackburn [BW98], we also show
(Proposition 4.1) that the hash matrix in Theorem 1.3 is optimal for strongly perfect hashing,
among all linear hash matrices. Both Theorem 1.3 and Proposition 4.1 are proved in Section 4.

A new connection to the Nash-Williams–Tutte theorem, and a new hypergraph Nash-
Williams–Tutte conjecture. In order to derive our results, we build on the framework of
[ST20a]. That work developed a framework to view the list-decodability of Reed–Solomon codes
in terms of the singularity of intersection matrices (which we define in Section 2). The main new
technical contribution of our work is to connect the singularity of these matrices to tree-packings in
particular graphs. This connection allows us to use the Nash-Williams–Tutte theorem from graph
theory to obtain our results. The Nash-Williams–Tutte theorem gives sufficient conditions for the
existence of a large tree packing (that is, a collection of pairwise edge-disjoint spanning trees) in a
graph.

We think that this connection is a contribution in its own right, and it is our hope that it will
lead to further improvements to our results on Reed–Solomon codes. In particular, we hope that
it will help establish the following conjecture of [ST20a]:

Conjecture 1.4 (Conjecture 1.5 of [ST20a]). For any ε > 0 and integers 1 ≤ k < n with εn ∈ Z,
there exist RS codes with rate R = k

n over a large enough (as a function of n and ε) finite field,
that are list-decodable from radius 1−R− ε and list size at most d1−R−ε

ε e.

Conjecture 1.4 is stronger than our Theorem 1.1 about list-decoding. In particular, our theo-
rem is near-optimal, but it is interesting mostly in the low-rate/high-noise parameter regime. In
contrast, Conjecture 1.4 conjectures that there exist exactly optimal RS codes, in any parameter
regime.

To encourage others to use our new connection and make progress on Conjecture 1.4, we propose
a method of attack in Section 6. This outline exploits our connection to the Nash-Williams–Tutte
theorem, and proceeds via a conjectured generalization of the Nash-Williams–Tutte theorem to hy-
pergraphs: we show that establishing this hypergraph conjecture (which is stated as Conjecture 6.1
in Section 6) would in fact establish Conjecture 1.4. In Section 6, we give evidence for our hyper-
graph Nash-Williams–Tutte conjecture, Conjecture 6.1, observing that the “easy direction” of the
conjecture follows from the Nash-Williams–Tutte theorem, and also that a quantitative relaxation
of the conjecture follows from existing work [CS07, CCV09]. As further evidence of the viability of
this approach, this quantitative relaxation implies a second proof of our main list-decoding result,
Theorem 1.1, and we also sketch this proof in Section 6.2

1.2 Related Work

We briefly review related work. See Table 1 for a quantitative comparison to prior work.

List-decoding of RS codes. Ever since the Guruswami–Sudan algorithm [GS99], which effi-
ciently list-decodes RS codes up to the Johnson bound, it has been open to understand the extent
to which RS codes are list-decodable beyond the Johnson bound, and in particular if there are RS
codes that are list-decodable all the way up to the list-decoding capacity theorem, matching the

2This second proof does not immediately establish list-recoverability, which is why we focus on our first proof.
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performance of completely random codes. There have been negative results that show that some
RS codes are not list-decodable to capacity [BKR10], and others that show that even if they were,
in some parameter regimes we are unlikely to find an efficient list-decoding algorithm [CW07]. The
work of Rudra and Wootters, mentioned above, showed that for any code with suitably good dis-
tance, a random puncturing of that code was likely to be near-optimally list-decodable; this implies
that an RS code with random evaluation points is likely to be list-decodable. Unfortunately, as
discussed above, this result requires a constant alphabet size q in order to yield a constant-rate
code, while RS codes necessarily have q ≥ n.

Recently, Shangguan and Tamo [ST20a] studied the list-decodability of RS codes in a different
parameter regime, namely when the list size L is very small, either 2 or 3. They were able to get
extremely precise bounds on the rate (showing that there are RS codes that are exactly optimal),
but unfortunately for such small list sizes, it is impossible for any code to be list-decodable up
to radius 1 − ε for small ε, which is our parameter regime of interest. Unlike the approach of
[RW14], which applies to random puncturings of any code, the work of [ST20a] targeted RS codes
specifically and developed an approach via studying intersection matrices. The reason that their
approach stopped at L = 3 was the difficulty of analyzing these intersection matrices. We build
on their approach and use techniques from graph theory—in particular, the Nash-Williams–Tutte
theorem—to analyze the relevant intersection matrices beyond what [ST20a] were able to do. We
discuss our approach more below in Section 1.3.

Subsequent work on list-decoding of RS codes. After our work first appeared, and inspired
by our approach, Ferber, Kwan, and Sauermann [FKS20] gave a beautiful proof establishing the
existence of RS codes with rate Ω(ε) that are list-decodable from radius 1− ε with list size O(1/ε),
over a polynomially (in the code’s length) large finite field.3 Compared with our result on the list-
decodability of RS codes, their result removes the logarithmic factor in 1/ε, and allows for smaller
alphabet sizes; additionally, their proof is much shorter. In further follow-up work, Goldberg,
Shangguan, and Tamo [GST21] further improved the rate from Ω(ε) to a rate approaching ε

2−ε .
However, we believe that there are still some advantages to our approach (beyond inspiring that

of [FKS20] and [GST21]). First, the result of [FKS20] does not apply to list-recovery, and while
[GST21] does apply to list-recovery, they do not surpass the 1/` barrier in the rate. Second, neither
[FKS20] nor [GST21] fully resolve Conjecture 1.4 about optimal list-decodability of RS codes. We
believe that the framework and tools developed in this paper together with Conjecture 6.1 provide
a plausible attack method to resolve Conjecture 1.4.

List-recovery of RS codes. While the Guruswami–Sudan algorithm is in fact a list-recovery
algorithm, much less was known about the list-recovery of RS codes beyond the Johnson bound
than was known about list-decoding. (There is a natural extension of the Johnson bound for list-
recovery, see [GS01]; for RS codes, it implies that an RS code of rate about ε2/` is list-recoverable
up to radius 1− ε with input list sizes ` and polynomial output list size). As with list-decoding, it
is known that some RS codes are not list-recoverable beyond the Johnson bound [GR06]. However,
much less was known on the positive front. In particular, neither of the works [RW14, ST20a]
discussed above work for list-recovery. In a recent work, Lund and Potuchuki [LP20] have proved
an analogous statement to that of [RW14]: any code of decent distance, when randomly punctured
to an appropriate length, yields with high probability a good list-recoverable code. This implies

3In fact, they show something more general: if one begins with any code of sufficiently large distance over a
sufficiently large alphabet, and randomly punctures it to rate Ω(ε), the resulting code is with high probability
(1− ε,O(1/ε)) list-decodable.
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the existence of RS codes that are list-recoverable beyond the Johnson bound. However, in [LP20]
there is again a dependence on log(q) in the rate bound, meaning that for RS codes, the rate
must be sub-constant. Further, the work of [LP20] only applies up to radius ρ = 1 − 1/

√
2, and

in particular does not apply to radii ρ = 1 − ε, as we study in this work. Our results also work
in the constant-ρ setting of [LP20], and in that regime we show that RS codes of rate Ω(1/

√
`)

are (ρ, `, O(`)) list-recoverable, which improves over the result of [LP20] by a factor of log q in the
rate. However, we do require the field size to be much larger than that is required by [LP20] (see
Table 1).

Subsequent work on list-recovery of RS codes. The recent work of Goldberg, Shangguan,
and Tamo [GST21] mentioned above builds on [FKS20], and shows that there are RS codes of rate
approaching ε

1+`−ε that are (1 − ε, `, Lε,`)-list-recoverable, for a constant Lε,` that depends only
on ε and `. Compared to our work, while [GST21] improves the dependence on ε in the rate by a
factor of log(1/ε), it has a worse dependence on `, and in particular does not break the 1/` barrier
that is present in the Johnson bound.

List-decoding and list-recovery of RS-like codes. There are constructions—for example, of
folded RS codes and univariate multiplicity codes [GR08, GW13, Kop15, KRZSW18]—of codes that
are based on RS codes and that are known to achieve list-decoding (and list-recovery) capacity,
with efficient algorithms. Our goal in this work is to study Reed–Solomon codes themselves.

Perfect hash matrices and strongly perfect hash matrices. Perfect hash matrices have
been studied extensively since the 1980s. There are two parameter regimes that are studied. The
first is when the alphabet size q is constant and the number of rows tends to infinity [Nil94, FK84,
KM88, Kör86, XY19]. The second is when the number of rows is viewed as a constant, while q
may tend to infinity [BW98, Bla00, SG16]. In both cases the strength t of a perfect hash matrix
is a constant. Our work studies the second case; as mentioned above, Blackburn [Bla00] gave an
optimal construction for linear hash matrices in this parameter regime, and as a special case we
obtain a second proof of Blackburn’s result.

The study of strongly perfect hash matrices is relatively new [ST20b]. The thesis [Dou19]
collected some recent results on a closely related topic. However, the parameters considered there
are quite different from those in our paper, and to the best of our knowledge, our construction
is the best known in the parameter regime we consider. Another related notion called balanced
hashing was introduced in [AG07, AG09], where, with our notation, any set of t columns of a
matrix needs to be separated by at least a1 and at most a2 rows, for some integers a1 ≤ a2. Note
that in our setting, we want every set of t columns to be separated by as many rows as possible,
while in the setting of balanced hashing it cannot exceed the threshold a2; thus, the two settings
are incomparable.

1.3 Technical Overview

Intersection matrices. Our approach is centered around intersection matrices, introduced in
[ST20a]. Intersection matrices and their nonsingularity are defined formally below in Definition 2.2,
but we give a brief informal introduction here. A t-wise intersection matrix, M , is defined by a
collection of sets I1, I2, . . . , It ⊆ [n], and has entries that are monomials in Fq[x1, x2, . . . , xn]. It
was shown in [ST20a] that if there is a counter-example to the list-decodability of a Reed–Solomon
code with evaluation points (α1, . . . , αn)—that is, if there exist polynomials f1, f2, . . . , fL+1 that
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Vk(I1 ∩ I2)

Vk(I1 ∩ I3)

Vk(I2 ∩ I3)

Vk(I1 ∩ I4)

Vk(I2 ∩ I4)

Vk(I3 ∩ I4)

Ik

Ik

Ik

Ik

Ik

Ik

−Ik

−Ik

−Ik

~f1 − ~f2

~f1 − ~f3

~f2 − ~f3

~f1 − ~f4

~f2 − ~f4

~f3 − ~f4

= 0

Figure 1: Let f1, f2, f3, f4 ∈ Fq[x] have degree k − 1 and suppose that Ij = {i : fj(αi) = g(αi)}. (In
particular, fi and fj agree on Ii ∩ Ij). Then the matrix-vector product depicted above is zero, where the

vector ~fi refers to the k coefficients of the polynomial fi, and the i-th coordinate of this vector is the

coefficient of xi−1 in f . Here, Vk(Ii ∩ Ij) ∈ F|Ii∩Ij |×kq denotes the Vandermonde matrix with (i, j) entry

equal to αj−1
i for 1 ≤ i ≤ |Ii ∩ Ij | and j ∈ [k]. The notation Ik denotes the k × k identity matrix.

all agree with some other polynomial g : Fq → Fq at many points αi—then there is a (L+ 1)-wise
intersection matrix that becomes singular when αi is plugged in for xi for all i ∈ [n].

The set-up (both the definition of an intersection matrix and the connection to list-decoding) is
most easily explained by an example. Suppose that we are interested in list-decoding for L = 3, and
suppose that we are interested in a RS code with evaluation points α1, α2, . . . , αn. Let f1, f2, f3, f4

and g be a counter-example to list-decoding, as above, and for 1 ≤ j ≤ 4, let Ij = {i ∈ [n] :
fj(αi) = g(αi)}. Now consider the product shown in Figure 1 (see the caption for notation).

An inspection of Figure 1 shows that the matrix-vector product depicted is zero. Indeed, the
top part is zero for any choice of the fi, and the bottom part is zero since fi and fj are assumed
to agree on {αs : s ∈ Ii ∩ Ij}. The matrix shown is the 4-wise intersection matrix for the sets
I1, I2, I3, I4, evaluated at α1, . . . , αn. If the fi’s agree too much with the function g (i.e., if they
are a counter-example to list-decodability for some given radius), then the sets Ii ∩ Ij are going to
be larger, and this matrix will have more rows. In particular, the more the fi’s agree with g, the
harder it is for this matrix to be singular. Intuitively, this sets us up for a proof by contradiction: if
f1, f2, f3, f4 agree too much with g, then this matrix is nonsingular (at least for a non-pathological
choice of αi’s); but Figure 1 displays a kernel vector!

A t-wise intersection matrix (for sets I1, . . . , It) generalizes a 4-wise intersection matrix shown
in Figure 1. The bottom part looks exactly the same—a block-diagonal matrix with Vandermonde
blocks—and the top part is an appropriate generalization that causes the analogous k ·

(
t
2

)
-long

vector corresponding to the fi’s to vanish.

A conjecture about t-wise intersection matrices. With the motivation in Figure 1, the
strategy of [ST20a] was to study t-wise intersection matrices M for t = L+ 1, and to show that for
every appropriate choice of I1, . . . , It, the polynomial det(M) ∈ Fq[x1, x2, . . . , xn] is not identically
zero. The list-decodability of RS codes would then follow from the DeMillo–Lipton–Schwartz—
Zippel lemma along with a counting argument. In particular, they made the following conjecture,
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and showed that it implies Conjecture 1.4 about list-decoding. Below, the weight of a family of
subsets I1, . . . , It of [n] is defined to be

wt(I1, . . . , It) =
t∑
i=1

|Ii| −

∣∣∣∣∣
t⋃
i=1

Ii

∣∣∣∣∣ , (1)

and for a set J of indices, we use the shorthand wt(IJ) := wt(Ij : j ∈ J).

Conjecture 1.5 (Conjecture 5.7 of [ST20a]). Let t ≥ 3 be an integer and I1, . . . , It ⊆ [n] be subsets
satisfying

(i) wt(IJ) ≤ (|J | − 1)k for all nonempty J ⊆ [t],

(ii) Equality holds for J = [t], i.e., wt(I[t]) = (t− 1)k.

Then the t-wise intersection matrix Mk,(I1,...,It) is nonsingular over any finite field.

The conditions (i) and (ii) above turn out to be the right way of quantifying “the fi’s agree
enough with g.” That is, if the fi’s agree too much with g (in the sense of going beyond Conjec-
ture 1.4 about list-decoding), then it is possible to find sets Ij so that (i) and (ii) hold.

Unfortunately, the work of [ST20a] was only able to establish Conjecture 1.5 for t = 3, 4
(corresponding to L = 2, 3), and it seemed challenging to extend their techniques directly to much
larger values of L.

Establishing the conjecture under an additional assumption, and using that to establish
our main results. In this work, we use a novel connection to the Nash-Williams–Tutte theorem,
which establishes the existence of pairwise edge-disjoint spanning trees in a graph, to extend the
results of [ST20a] to larger L, at the cost of an additional assumption. More precisely, we are able
to show in Theorem 3.1 (stated and proved in Section 3) that Conjecture 1.5 holds, provided that
the sets Ij do not have any nontrivial three-wise intersections Ii ∩ Ij ∩ I` 6= ∅.

The connection to the Nash-Williams–Tutte theorem is explained in Section 3. Briefly, we
consider each term in the expression

det(M) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

Mi,σ(i).

We show that
∏n
i=1Mi,σ(i) is a nonzero monomial in x1, . . . , xn if and only if σ picks out a tree

packing of a graph4 that is determined by the sets I1, . . . , It. It turns out that the requirements
of (i) and (ii) in Conjecture 1.5 translate exactly into the requirements needed to apply the Nash-
Williams–Tutte theorem to this graph. Thus, if (i) and (ii) hold, then there exists a tree packing
in this graph and hence a nonzero term in det(M).

If the sets Ii ∩ Ij and Ii′ ∩ Ij′ that appear in the lower part of the t-wise intersection matrix do
not intersect (that is, if there are no three-wise intersections among the sets Ij), then the reasoning
above is enough to establish the conclusion of Conjecture 1.5, because all of the terms that appear
in the expansion of the determinant are distinct monomials, and they cannot cancel. This is why
Theorem 3.1 has this assumption.

While Theorem 3.1 is not strong enough to immediately establish results for list-decoding or
list-recovery (indeed, there is no reason that there should not be three-wise intersections for the

4Throughout this paper, a tree packing of a graph G means a collection of pairwise edge-disjoint spanning trees
of G.
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polynomials fi discussed above), it is enough for our application to perfect hash matrices, which
we work out in Section 4.

In order to apply Theorem 3.1 to list-decoding, we back off from Conjecture 1.5 a bit. First,
we allow a factor of Θ(log t) slack on the right-hand sides of (i) and (ii). Second, rather than
showing that the t-wise intersection matrix Mk,(I1,...,It) is nonsingular, we show that there exists
a t′-wise intersection matrix that is nonsingular for some t′ < t. Following the connection of
[ST20a] illustrated in Figure 1, this turns out to be enough to establish our main theorem on
list-decoding/recovery.

We choose this smaller intersection matrix in Lemma 5.3 by carefully choosing a random subset
J of [t]. By greedily removing elements from the sets {Ij : j ∈ J}, we can obtain subsets I ′j ⊂ Ij
with empty three-wise intersections I ′j ∩ I ′j′ ∩ I ′j′′ = ∅. Furthermore, by the careful random choice of
J , and since we allowed a Θ(log t) slack in the initial weight bounds, we can show this step does not
delete too many elements. This is the key step of Lemma 5.3. Using some of the sets {Ij : j ∈ J},
we can find a smaller intersection matrix obeying the setup of Conjecture 1.5 with the additional
guarantee that all three-wise intersections are empty. We provide a more detailed summary of the
proof in Section 5.1.

Another avenue to list-decoding: a hypergraph Nash-Williams–Tutte conjecture. Ex-
tending our connection of list-decoding RS codes to the Nash-Williams–Tutte theorem, we show
that a suitable hypergraph generalization of the Nash-Williams–Tutte theorem would imply Con-
jecture 1.5 about the nonsingularity of intersection matrices, without any need for an additional
assumption about three-wise intersections of the sets Ij .

We conjecture that such a generalization is true, and we state it in Section 6 as Conjecture 6.1.
It requires a bit of notation to set up, so we do that in Section 6 rather than here; however, the
reader interested in the hypergraph conjecture can at this point jump straight to Section 6 without
missing anything.

We show that if our hypergraph conjecture were true, it would imply Conjecture 1.5, on the
nonsingularity of intersection matrices (Theorem 6.2). This in turn would imply Conjecture 1.4,
establishing the existence of RS codes with optimal list-decodability. This suggests a plan of attack
towards Conjecture 1.4.

While we are unable to establish this challenging conjecture in full, we give some evidence for
it. First, we show that the “easy part” of the conjecture follows from the Nash-Williams–Tutte
theorem. Second, we observe that a quantitative relaxation of the conjecture follows from known
results on Steiner tree packings [CS07] and disjoint bases of polymatroids [CCV09]. This relaxation
can be combined with the connection of hypergraph packings and intersection matrices established
in Theorem 6.2, and the connection between intersection matrices and list decoding RS codes, to
give a second proof of Theorem 1.1, that there are near -optimally list-decodable RS codes.

In addition to implying the optimal list-decodability of RS codes, Conjecture 6.1 may be of
independent interest. A hypergraph generalization of Nash-Williams–Tutte is known for partition-
connected hypergraphs [FKK03] (see Section 6 for definition), a well studied notion. However, for
a different notion called weak-partition-connectivity, less seems to be known, and Conjecture 6.1
poses a Nash-Williams–Tutte generalization for weakly-partition-connected hypergraphs.

Organization. A graphical overview of our results can be found in Figure 2. We begin in Section 2
with the needed notation and definitions, including the definition of t-wise intersection matrices.

In Sections 3, 4, and 5, we prove Theorem 1.1 and Theorem 1.2 using our proof of Conjecture 1.5
under the additional assumption of no three-wise intersections. More precisely, in Section 3, we
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show how to use the Nash-Williams–Tutte theorem from graph theory to prove Theorem 3.1,
which establishes Conjecture 1.5 under the assumption of no three-wise intersections. In Section 4
we use Theorem 3.1 to prove Theorem 1.3 about perfect hash matrices. A reader interested in
the list-recovery result can skip Section 1.3 and continue directly to Section 5. In Section 5 we
prove Theorem 1.2 on the list-recoverability of RS codes. As list-recovery is more general than
list-decoding, this gives our first proof of Theorem 1.1 on list-decoding.

In Sections 6, we conjecture a hypergraph generalization of the Nash-Williams–Tutte theorem
and prove (Theorem 6.2) that it implies optimal list-decodability of RS codes. We also give some
evidence for it by observing an “easy direction” follows from the ordinary Nash-Williams–Tutte
theorem, by highlighting a known relaxation, and sketching how this relaxation gives us a second
proof of Theorem 1.1.

1.4 Future Directions and Open Questions

In this work, we have shown the existence of near-optimally list-decodable RS codes in the large-
radius parameter regime. To do this, we have established a connection between the intersection
matrix approach of [ST20a] and tree packings. Along the way, we also developed applications to the
construction of strongly perfect hash matrices, and we have introduced a new hypergraph version
of the Nash-Williams–Tutte theorem. We highlight a few questions that remain open.

Can RS codes exactly achieve list-decoding capacity? In spite of the results and tools
developed in this paper, we were not able to prove Conjecture 1.4. We hope that the avenue of
attack discussed in Section 6 will be able to finish the job. We note that the analogous question
regarding the limits of list-recoverability of RS codes also remains open.

Efficient list-decoding of RS codes? We remark that, using a simple idea from [ST20a] one
can convert each of the existence results of RS codes reported in this paper into an explicit code
construction, although over a much larger field size. Hence, given such an explicit code construction,
is it possible to decode it efficiently up to its guaranteed list-decoding radius? A similar question
can be asked for list-recoverability. We note that [CW07], which shows that decoding RS codes
much beyond the Johnson bound is likely hard in certain parameter regimes, does not apply to our
parameter regime when the field size is large.

Generalizing the Nash-Williams–Tutte theorem to hypergraphs. In an attempt to resolve
Conjecture 1.4, we present Conjecture 6.1, a new graph-theoretic conjecture, which can be viewed
as a generalization of the Nash-Williams–Tutte theorem to hypergraphs. In addition to being
interesting on its own, resolving this conjecture would imply the existence of optimally list-decodable
RS codes.
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Conjecture 6.1
Hypergraph

Nash-Williams–
Tutte Conjecture

Conjecture 1.5
Nonsingularity of

intersection matrices

Conjecture 1.4
Optimal List De-

coding of RS Codes

Thm. 6.2 [ST20a]

Lemma 3.2
Nash-Williams–
Tutte theorem
[NW61, Tut61].

Theorem 3.1
Nonsingularity
of intersection

matrices, provided
that Ii ∩ Ij ∩ I` = ∅
for all distinct i, j, l.

Theorem 1.2
Main Theorem:
List Recovery
of RS codes

Theorem 1.3
Existence of

strongly perfect
hash matrices

Theorem 1.1
List Decoding
of RS codes

Proposed roadmap
to optimal

list-decoding,
presented in
Section 6.

Our proof of
Theorem 1.1,
presented in

Sections 3, 4, 5

Figure 2: A diagram of the results and conjectures presented in this work. Solid arrows represent logical
implications. Dashed lines indicate how the proposed roadmap to optimal list decoding parallels our proof
of Theorem 1.1.

2 Preliminaries

The main goal of this section is to present the definition of t-wise intersection matrices over an
arbitrary field F.

Let N+ = {1, 2, . . . } and [n] = {1, 2, . . . , n} for n ∈ N+. Denote by log x the base-2 logarithm
of x. For a finite set X and an integer 1 ≤ k ≤ |X|, let

(
X
k

)
= {A ⊆ X : |A| = k} be the family

of all k-subsets of X. For an integer t ≥ 3, we define the following lexicographic order on
(

[t]
2

)
.

For distinct S1, S2 ∈
(

[t]
2

)
, S1 < S2 if and only if max(S1) < max(S2) or max(S1) = max(S2) and

min(S1) < min(S2). For a partition P of X, let |P| denote the number of parts of P. In the
remaining part of this paper, assume that n, k are integers satisfying 1 ≤ k < n.

We view a polynomial f ∈ Fq[x] of degree at most k − 1 as a vector of length k defined by its
k coefficients, where for 1 ≤ i ≤ k, the i-th coordinate of this vector is the coefficient of xi−1 in f .
By abuse of notation that vector is also denoted by f .

2.1 Cycle Spaces

We need the notion of the cycle space of a graph, which is typically defined over the boolean field
F2 (see, e.g., [Die17]). Here we define it over an arbitrary field F. An equivalent definition can be
found in [BBN93], where it is called the “circuit-subspace”.

Let Kt be the undirected complete graph with the vertex set [t]. Denote by {i, j} the edge
connecting vertices i and j. Let Ko

t be the oriented graph obtained by replacing {i, j} with the
directed edge (i, j) for all 1 ≤ i < j ≤ t. For a graph G with vertex set [t], an oriented cycle in G
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is a set of directed edges of the form

C = {(i0, i1), (i1, i2), . . . , (im−1, im)}

where m ≥ 3, i0, . . . , im−1 are distinct, im = i0 and {ij−1, ij} is an edge of G for all j = 1, . . . ,m.
Suppose C is a union of edge-disjoint oriented cycles in G. Then C is uniquely represented by

a vector uC = (uC{i,j} : {i, j} ∈
(

[t]
2

)
) ∈ F(t2), defined for 1 ≤ i < j ≤ t by

uC{i,j} =


1 (i, j) ∈ C,
−1 (j, i) ∈ C,
0 else.

Hence, the sign of a nonzero coordinate uC{i,j} indicates whether the orientation of {i, j} in C

complies with its orientation in Ko
t . We further assume that the coordinates of uC are ordered by

the aforementioned lexicographic order on
(

[t]
2

)
.

Denote by C(G) ⊆ F(t2) the subspace spanned by the set of vectors

{uC : C is an oriented cycle in G}

over F. We call C(G) the cycle space of G over F. We are particularly interested in the cycle space
C(Kt) of Kt. For distinct i, j, ` ∈ [t], denote by ∆ij` the oriented cycle {(i, j), (j, `), (`, i)} and call
it an oriented triangle. We have the following lemma, generalizing [Die17, Theorem 1.9.5].

Lemma 2.1. The vector space C(Kt) ⊆ F(t2) has dimension
(
t−1

2

)
, and the set

Bt = {u∆ijt : 1 ≤ i < j ≤ t− 1}

is a basis of C(Kt).

Proof. The vectors in Bt are linearly independent since u
∆ijt

{i,j} = 1 and u
∆ijt

{i′,j′} = 0 for 1 ≤ i < j ≤ t−1

and 1 ≤ i′ < j′ ≤ t−1 with {i, j} 6= {i′, j′}. Let W be the span of Bt over F. Consider an arbitrary
oriented cycle C in Kt. We claim that uC ∈ W , and this would imply that Bt is a basis of C(Kt)
and that the dimension of C(Kt) is |Bt| =

(
t−1

2

)
.

Denote by eC the smallest {i, j} ∈
(

[t]
2

)
in the lexicographic order such that (i, j) ∈ C or

(j, i) ∈ C. Next, we will prove the claim by a reverse induction on the lexicographic order of eC .
Note that t 6∈ eC since |C| ≥ 3, which implies that the claim is vacuously true when eC = {t− 1, t}
(which never occurs). Now assume that the claim holds for all oriented cycles C ′ with eC′ > eC .
Let {i, j} = eC , where i < j. We may assume that (i, j) ∈ C by flipping the orientation of C if
necessary, which corresponds to negating uC .

Let s be the number of directed edges that C and ∆ijt share. If s = 3 then it is clear by definition
that C = ∆ijt, and we are done. Otherwise, 1 ≤ s ≤ 2 and it is easy to verify that uC−u∆ijt = uC

′

for a set C ′ that is either an oriented cycle in G or a disjoint union of two oriented cycles C1, C2 in
G passing through t. The latter case occurs when C passes through t and (t, i), (j, t) 6∈ C. In either
case, the smallest edge (under the lexicographic order) of C ′ is greater than the edge eC = {i, j}.
Hence, by the induction hypothesis and the fact that uC

′
= uC1 +uC2 when C ′ is the disjoint union

of C1 and C2, we have uC
′ ∈W . So uC = uC

′
+ u∆ijt ∈W , completing the proof of the claim.

The basis Bt is also viewed as a
(
t−1

2

)
×
(
t
2

)
matrix over F whose columns are labeled by the

edges {i, j} of Kt, according to the lexicographic order defined above. Moreover, the rows of Bt
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represent u∆ijt for 1 ≤ i < j ≤ t − 1, and are labeled by {i, j} ∈
(

[t−1]
2

)
, also according to the

lexicographic order. For example, B3 = (1,−1, 1) and

B4 =


1 −1 1

1 −1 1

1 −1 1

 ,

where the 6 columns are labeled and ordered lexicographically by {1, 2} < {1, 3} < {2, 3} < {1, 4} <
{2, 4} < {3, 4}. Observe for example that the ±1 entries in the first row correspond to the oriented
triangle ∆124 = {(1, 2), (2, 4), (4, 1)}, where we have −1 on the column labeled by the edge {1, 4},
since the directed edge (4, 1) in ∆124 has the opposite orientation from the orientation of the edge
in Ko

t .
We remark that the above definition of Bt, is given with respect to the fixed orientation of the

edges of Ko
t , as with the definition of uC for any oriented cycle C. One may define Bt with respect

to other orientations of edges, which corresponds to changing the signs in some columns. These
definitions are all equivalent and the analysis in this paper holds for any orientation up to change
of signs.

Moreover, when the characteristic of F is two, we recover the definition of Bt in [ST20a] using
the fact that 1 = −1. While working in the case char(F) = 2 has the advantage that there is no
need to distinguish the signs, the theory holds more generally over any field.

2.2 t-Wise Intersection Matrices

We proceed to define t-wise intersection matrices, but we begin with a few preliminary definitions.
Given n variables or field elements x1, . . . , xn, define the n× k Vandermonde matrix

Vk(x1, . . . , xn) =


1 x1 · · · xk−1

1

. . .

1 xn · · · xk−1
n

 . (2)

When the xi’s are understood from the context, for I ⊆ [n], we use the abbreviation Vk(I) :=
Vk(xi : i ∈ I) to denote the restriction of Vk(x1, . . . , xn) to the rows with indices in I.

Let Ik denote the identity matrix of order k. Next, we give the definition of t-wise intersection
matrices.

Definition 2.2 (t-wise intersection matrices). For a positive integer k and t ≥ 3 subsets I1, . . . , It ⊆
[n], the t-wise intersection matrix Mk,(I1,...,It) is the (

(
t−1

2

)
k +

∑
1≤i<j≤t |Ii ∩ Ij |) ×

(
t
2

)
k variable

matrix with entries in F[x1, . . . , xn], defined as Bt ⊗ Ik
diag

(
Vk(Ii ∩ Ij) : {i, j} ∈

(
[t]
2

))
 ,

where ⊗ is tensor product of matrices and

• Bt ⊗ Ik is a
(
t−1

2

)
k ×

(
t
2

)
k matrix with entries in {0,±1},
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• diag
(
Vk(Ii∩Ij) : {i, j} ∈

(
[t]
2

))
is a block diagonal matrix with blocks Vk(Ii∩Ij), ordered by the

lexicographic order on {i, j} ∈
(

[t]
2

)
. Note that this matrix has order (

∑
1≤i<j≤t |Ii∩Ij |)×

(
t
2

)
k.

If Ii ∩ Ij = ∅ for some i, j, then Vk(Ii ∩ Ij) is of order 0 × k and the {i, j} ∈
(

[t]
2

)
block of k

columns is a
∑

1≤i<j≤t |Ii ∩ Ij | × k zero matrix.

The reader is referred to Appendix A (see Example A.1) for an example of a 4-wise intersection
matrix. We note that when t = 2, Bt is an empty matrix and Mk,(I1,I2) is simply a Vandermonde
matrix.

For a vector α ∈ Fn, the evaluation of Mk,(I1,...,It) at the vector α is denoted by Mk,(I1,...,It)(α),
where each variable xi is assigned the value αi. Given subsets I1, . . . , It ⊆ [n], we call the variable
matrix Mk,(I1,...,It) nonsingular if it contains at least one

(
t
2

)
k×

(
t
2

)
k submatrix whose determinant

is a nonzero polynomial in F[x1, . . . , xn].
The paper [ST20a] connects the nonsingularity of intersection matrices to the list-decodability

of RS codes. We will use this connection to prove our main result, Theorem 1.2.
However, we will first prove that certain intersection matrices are nonsingular. This will both

allow us to cleanly illustrate the connection to disjoint tree packings of graphs, and it will also yield
Theorem 1.3 about perfect hash matrices. We will do this in Theorem 3.1 in the next section.

3 Connection to Tree Packing and an Intermediate Result

In this section we prove the following theorem. We recall from (1) the definition of the weight of a
collection of sets:

wt(I1, . . . , It) =
t∑
i=1

|Ii| −

∣∣∣∣∣
t⋃
i=1

Ii

∣∣∣∣∣ ,
Theorem 3.1. Let t ≥ 2 be an integer and I1, . . . , It ⊆ [n] be subsets satisfying (i) Ii ∩ Ij ∩ Il = ∅
for all 1 ≤ i < j < l ≤ t; (ii) wt(IJ) ≤ (|J | − 1)k for all nonempty J ⊆ [t]; (iii) wt(I[t]) = (t− 1)k.
Then the t-wise intersection matrix Mk,(I1,...,It) is nonsingular over any field.

As discussed above, this theorem stops short of Conjecture 1.5, due to the assumption that
Ii∩Ij∩I` = ∅. In the language of list-decoding Reed–Solomon codes, this only gives us a statement
about lists of potential codewords that have no three-wise intersections. However, we will build on
this statement to prove our main theorem about list-recovery (Theorem 1.2), and moreover this
is already enough to prove our result on the existence of strongly perfect hash matrices (Theorem
1.3).

The main tool of proving Theorem 3.1 is the following classical result in graph theory.

Lemma 3.2 (Nash-Williams [NW61], Tutte [Tut61], see also Theorem 2.4.1 of [Die17]). A multi-
graph contains k edge-disjoint spanning trees if and only if for every partition P of its vertex set it
has at least (|P| − 1)k cross-edges. Here an edge is called a cross-edge for P if its two endpoints
are in different members of P.

In order to apply the Nash-Williams–Tutte theorem, we will construct a graph G from the sets
I1, I2, . . . , It. We first note that the assumptions on I1, . . . , It from Theorem 3.1 imply some nice
properties that will later allow us to apply Lemma 3.2.
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Claim 3.3. Suppose that I1, . . . , It are subsets satisfying the assumptions of Theorem 3.1. Then
the matrix Mk,(I1,...,It) is a square matrix of order

(
t
2

)
k. Further, for any J ⊆ [t] with |J | ≥ 2,

wt(IJ) =
∑

{i,j}∈(J2)

|Ii ∩ Ij |. (3)

Proof. By (1) (the definition of weight) and the inclusion-exclusion principle

wt(I[t]) =
t∑
i=1

|Ii| −

∣∣∣∣∣
t⋃
i=1

Ii

∣∣∣∣∣ =
t∑

j=2

∑
J∈([t]j )

(−1)|J |

∣∣∣∣∣⋂
i∈J

Ii

∣∣∣∣∣ . (4)

Therefore, by assumption (i) of Theorem 3.1 we have wt(I[t]) =
∑

1≤i<j≤t |Ii ∩ Ij |. Then, by

assumption (iii) the matrix Mk,(I1,...,It) is in fact a square matrix of order
(
t
2

)
k. Similarly, (3) holds

for any J ⊆ [t] with |J | ≥ 2.

To prove Theorem 3.1, let us construct a multigraph G defined on a set V of t vertices, say
V = {v1, . . . , vt}. For 1 ≤ i < j ≤ t, connect vertices vi, vj by |Ii ∩ Ij | multiple edges.

Applying Lemma 3.2 to G leads to the following claim.

Claim 3.4. Let G be as above. Then G contains k edge-disjoint spanning trees.

Proof. Let P = {V1, . . . , Vs} be an arbitrary partition of V . Then it is clear that
∑s

i=1 |Vi| = t.
According to Lemma 3.2, to prove the claim it suffices to show that G has at least (s− 1)k cross-
edges with respect to P. By (3) and assumption (iii) of Theorem 3.1 it is easy to see that G
contains

∑
1≤i<j≤t |Ii ∩ Ij | = (t− 1)k edges. Moreover, by (3) and assumption (ii) of Theorem 3.1

one can infer that for each i ∈ [s], the induced subgraph of G on the vertex set Vi has at most
wt(Ij : j ∈ Vi) ≤ (|Vi| − 1)k edges. It follows that the number of cross-edges of G (with respect to
P) is at least

(t− 1)k −
s∑
i=1

(|Vi| − 1)k =

(
t− 1−

s∑
i=1

|Vi|+ s

)
k = (s− 1)k,

as needed, thereby completing the proof of the claim.

Below, we will relate a tree packing of this graph G to the determinant of the intersection
matrix Mk,(I1,...,It). In order to do this, we first record a property of the matrix Bt. Recall that the

columns of Bt are indexed by
(

[t]
2

)
.

Claim 3.5. Removing a set of columns from Bt will not reduce its row rank if and only if the
columns are labeled by an acyclic subgraph of Kt.

Proof. First we prove the if direction. Assume to the contrary that we can remove from Bt some
columns labeled by an acyclic subgraph H of Kt and reduce the row rank. Let B′t be the submatrix
of Bt after the removal of the columns labeled by H. The rows of B′t are linearly dependent by

assumption. Hence, there exists a nonzero vector u ∈ F(t−1
2 ) such that u · B′t = 0. As u 6= 0 and

the rows of Bt are linearly independent, we have u · Bt 6= 0. Let S ⊆
(

[t]
2

)
be the support of u · Bt,

where the support of a vector of length n is the subset of [n] that records the indices of its nonzero
coordinates. As u · Bt 6= 0 and u · B′t = 0, we have ∅ 6= S ⊆ H.
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Consider the
(
t
2

)
× t matrix D = (D{i,j},s) which is defined by

D{i,j},s =


1 s = j,

−1 s = i,

0 otherwise,

where 1 ≤ i < j ≤ t and s ∈ [t]. Note that the rows and columns of D are labeled by {i, j} ∈
(

[t]
2

)
and s ∈ [t] respectively. It is easy to verify that Bt ·D = 0, which implies that u ·Bt ·D = 0. Denote

u · Bt by w = (w{i,j}) ∈ F(t2), whose support is S. As ∅ 6= S ⊆ H and H is acyclic, we can find
s0 ∈ [t] whose degree in S is one, i.e., there exists a unique edge {i0, j0} ∈ S such that s0 ∈ {i0, j0}.
Then, the s0-th entry of w ·D is∑

{i,j}∈([t]2 )

w{i,j}D{i,j},s0 = w{i0,j0}D{i0,j0},s0 = ±w{i0,j0} 6= 0,

which is a contradiction as w ·D = u · Bt ·D = 0.
Now we prove the only if direction. It suffices to prove that removing from Bt a set of columns

labeled by a cycle C of Kt will reduce its row rank by at least 1. Let us orient the edges of C to
make it an oriented cycle, which by abuse of notation is also denoted by C. Since the rows of Bt
form a basis of C(Kt), there is a nonzero vector u ∈ F(t−1

2 ) such that u · Bt = uC . Let B′t be the
submatrix of Bt after the removal of the columns labeled by C. Then it is not hard to check that
u · B′t = 0, which implies that the rows of B′t are linearly dependent, as needed.

Next we present the proof of Theorem 3.1. Recall from Claim 3.3 that under the assumptions
of Theorem 3.1, the t-wise intersection matrix

Mk,(I1,...,It) =

 Bt ⊗ Ik
diag

(
Vk(Ii ∩ Ij) : {i, j} ∈

(
[t]
2

))
 ,

is a square matrix of order
(
t
2

)
k, and is defined by exactly (t − 1)k variables xs, s ∈ S, where

S ⊆ [n] is some subset of size (t−1)k. In order to prove that Mk,(I1,...,It) is nonsingular, we proceed
to show the nonsingularity of the following matrix, obtained by permuting the columns and rows
of Mk,(I1,...,It):

M ′k,(I1,...,It) :=

 Ik ⊗ Bt(
Ci : 0 ≤ i ≤ k − 1

)
 ,

where Ci = diag
(
V

(i)
k (Ij∩Ij′) : {j, j′} ∈

(
[t]
2

))
and V

(i)
k (Ij∩Ij′) is the (i+1)-th column of Vk(Ij∩Ij′).

Above,
(
Ci : 0 ≤ i ≤ k − 1

)
is a (t − 1)k ×

(
t
2

)
k variable matrix, which consists of the matrices Ci

stacked next to each other. See Figure 3 for an illustration, and Example A.2 in Appendix A for a
concrete example.

Proof of Theorem 3.1. If t = 2, then Mk,(I1,I2) is a k × k Vandermonde matrix, which is non-
singular, so assume t ≥ 3. For the rest of the proof, we will consider the matrix M ′ = M ′k,(I1,...,It)
discussed above, and show that it is nonsingular.

Let the graph G be as in the discussion above; recall that for distinct i, j ∈ [t], two vertices
vi, vj in G are connected by |Ii ∩ Ij | edges. By Claim 3.3, M ′ is a square matrix with

(
t
2

)
k rows
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This column indexed by
{j, `} ∈

(
[t]
2

)
and i ∈ [k]

This row is indexed by xs,
for s ∈ Ij ∩ I`.

This is xis

Mk,(I1,...,It)

Ik

Ik

Ik

Ik

Ik

Ik

−Ik

−Ik

−Ik

Bt

Bt

Bt

This column indexed by i ∈ [k]
and {j, `} ∈

(
[t]
2

)
This row is indexed by xs,

for s ∈ Ij ∩ I`.

xis

M ′k,(I1,...,It)

Figure 3: Re-ordering the rows/columns of an intersection matrix. (In this cartoon, t = 4 and k = 3).

and columns, and k(t − 1) “variable” rows at the bottom. Let S ⊆ [n] be the subset that records
the indices of variables xs that appear in M ′.

For 1 ≤ i < j ≤ t, fix an arbitrary one-to-one correspondence between the |Ii ∩ Ij | edges
connecting vi, vj and the |Ii ∩ Ij | variables xs ∈ S so that s ∈ Ii ∩ Ij . Since any three distinct
subsets Ii, Ij , I` have empty intersection, this yields a one-to-one correspondence

φ : E(G) −→ {xs : s ∈ S},

between the (t− k)k edges of G and the (t− 1)k variables with indices in S.
By Claim 3.4, the edges of G can be partitioned into k edge-disjoint spanning trees Ti, and

G =
⋃k−1
i=0 Ti.

Observe that for each 0 ≤ i ≤ k − 1, Ci has entries that are either zero or of the form xis for
some xs ∈ S. We will show how to use the tree decomposition of G to choose nonzero entries in
each Ci so that (a) every row in the bottom part of M ′ is chosen exactly once, and (b) when the
columns chosen are removed from M ′, the resulting submatrix of Bt is nonsingular. This will mean
that the product of these non-zero entries appears in the determinant expansion of M ′.

For each i, we pick t− 1 non-zero elements from each Ci: we choose xis for xs ∈ {φ(e) : e ∈ Ti}.
That is, we consider all of the variables xs corresponding to edges that appear in Ti. Let mi(x)
denote the product of these entries:

mi(x) =
∏

xs∈{φ(e) : e∈Ti}

xis.

Let m(x) =
∏k−1
i=0 mi(x). Since φ is a bijection, m(x) is a product of (t−1)k distinct entries chosen

from the submatrix
(
Ci : 0 ≤ i ≤ k − 1

)
, and crucially, no two of them appear in the same row or

column.
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To conclude the proof, it is enough to show that m(x) appears as a nonvanishing term in the
determinant expansion of M ′k,(I1,...,It). Indeed, removing from M ′k,(I1,...,It) the (t − 1)k rows and

columns that correspond to m(x), the resulting submatrix is a block diagonal matrix

diag
(
B′t(i) : 0 ≤ i ≤ k − 1

)
,

where for each i, B′t(i) is a square submatrix of Bt of order
(
t−1

2

)
. By construction, each B′t(i) is

obtained by removing from Bt a set of t−1 columns labeled by the spanning tree Ti. By Claim 3.5,
this implies that B′t(i) is nonsingular. Moreover, as each of the sets Ii ∩ Ij are disjoint due to the
assumptions of the theorem, the monomial m(x) appears only once in the determinant expansion
of M ′k,(I1,...,It). Consequently, the “coefficient” of m(x) in the determinant expansion of M ′k,(I1,...,It)
is nonvanishing, completing the proof of the theorem.

4 Application to Perfect Hashing

In this section, we apply Theorem 3.1 to perfect hashing, and we prove Theorem 1.3.

Theorem (Theorem 1.3, restated). Given integers 1 ≤ k < n and t ≥ 3, for a sufficiently large
prime power q, there exists an n × qk matrix, defined on the alphabet Fq, such that any set of t
columns is separated by at least n− k(t− 1) + 1 rows.

We will also show that Theorem 1.3 is optimal, at least within the class of linear hash matrices.
Generalizing a definition of [BW98] (with a slightly different terminology), we say that an n × qk
matrix M is called linear if it is defined over the field Fq and has the form M = PQ, where P is an
n × k coefficient matrix and Q is the k × qk matrix whose columns are formed by the qk distinct
vectors of Fkq .

With this terminology, we will prove the following proposition, which generalizes a result of
[BW98] (see Theorem 4 of [BW98]).

Proposition 4.1. If a linear n× qk matrix separates any set of t columns by at least r rows, then
r ≤ n− k(t− 1) + 1.

Proposition 4.1 implies that the bound in Theorem 1.3 is tight, at least for linear constructions.

4.1 Proof of Theorem 1.3

Fix F to be the finite field Fq, and let us begin with an overview of the proof. Recall that an
evaluation vector of Fnq is a vector whose coordinates are all distinct. It is well-known that an

[n, k]-RS code over Fnq is of size qk, and that any two distinct codewords agree on at most k − 1

coordinates. For our purpose, we view an [n, k]-RS code as an n × qk matrix whose columns are
the codewords of the code. More precisely, the columns are all the vectors{(

f(α1), . . . , f(αn)
)T
, f ∈ Fq[x], deg(f) < k

}
with some arbitrary ordering, and α = (α1, . . . , αn) is the evaluation vector that defines the code.
We say that the evaluation vector α defines the n× qk matrix.

Fix an integer t ≥ 3. An evaluation vector α ∈ Fnq is called “bad” if it does not define a strongly
t-perfect hashing matrix. The main idea in the proof of Theorem 1.3 is to show that the number of
bad evaluation vectors is at most On,t(q

n−1), whereas there are q!
(q−n)! = Θn(qn) distinct evaluation

19



vectors. Therefore, for sufficiently large q there must exist an evaluation vector that is not bad,
i.e., it defines an n× qk strongly t-perfect hash matrix.

The main tool used in proving the upper bound on the number of bad evaluation vectors is the
following well-known result.

Lemma 4.2 (DeMillo-Lipton-Schwartz-Zippel lemma, see, e.g., [Juk11] Lemma 16.3). A nonzero
polynomial f ∈ Fq[x1, . . . , xn] of degree d has at most dqn−1 zeros in Fnq .

We need two more lemmas before presenting the proof of Theorem 1.3.

Lemma 4.3. Given integers 1 ≤ k < n, t ≥ 3, if an evaluation vector α ∈ Fnq does not define

an n× qk strongly t-perfect hashing matrix, then there exists an integer s ∈ {3, . . . , t} and subsets
I1, . . . , Is ⊆ [n] such that

(i) Ii ∩ Ij ∩ Il = ∅ for all 1 ≤ i < j < l ≤ s;

(ii) wt(IJ) ≤ (|J | − 1)k for any nonempty subset J ⊆ [s];

(iii) wt(I[s]) = (s− 1)k;

(iv) the s-wise intersection matrix Mk,(I1,...,Is) over Fq is a nonsingular square matrix of order
k
(
s
2

)
, whose determinant is a nonzero polynomial in Fq[x1, . . . , xn] of degree less than k2t.

Proof. If an evaluation vector α ∈ Fnq is bad, then the n × qk matrix it defines contains t distinct
columns defined by polynomials f1, . . . , ft, which are separated by at most n − k(t − 1) rows.
Equivalently, there are at least k(t− 1) rows that do not separate these t columns.

Next, we iteratively construct the sets I1, . . . , It ⊆ [n]. We set all of them to be the empty set,
and then for each row i that does not separate the t columns, we add i to arbitrary two sets Ij , Il
for which fj(αi) = fl(αi). It is easy to verify that the sets Ij satisfy the following properties

(a) Ii ∩ Ij ∩ Il = ∅ for all 1 ≤ i < j < l ≤ t;

(b) |Ii ∩ Ij | ≤ k − 1 for distinct i, j ∈ [t];

(c) wt(I[t]) =
∑

1≤i<j≤t |Ii ∩ Ij | ≥ k(t− 1).

Indeed, (a) follows from the definition of I1, . . . , It, (b) follows from the property of RS codes, and
(c) follows from (4) and (a).

Let s be the smallest positive integer for which there exist a subset S ⊆ [t] of size s with
wt(IS) ≥ k(s − 1) > 0. By (c) s is well-defined. Furthermore, as wt(IS) = 0 for any |S| = 1 and
wt(IS) < k for any |S| = 2, we have 3 ≤ s ≤ t. Assume without loss of generality that S = [s].

By construction and the minimality of s, the sets I1, . . . , Is satisfy properties (i) and (ii). We
proceed to verify that also (iii) holds. Note that properties (i) and (ii) continue to hold if one
removes an element from one of the sets Ij , and by doing so, the weight wt(I[s]) can reduce by at
most one. Hence, by iteratively removing elements from the sets Ij , one can construct sets, which
we also denote by I1, . . . , Is, that satisfy property (iii), while retaining properties (i) and (ii).

Since the subsets I1, . . . , Is ⊆ [n] satisfy the three assumptions of Theorem 3.1, it holds that
Mk,(I1,...,Is) is a nonsingular matrix. The claims on the order of the matrix and the degree of the
polynomial are easy to verify, thereby completing the proof of (i)-(iv)

Lemma 4.4. Let α be an evaluation vector that does not define an n×qk strongly t-perfect hashing
matrix, and let Mk,(I1,...,Is) be the s-wise intersection matrix for 3 ≤ s ≤ t given by Lemma 4.3.
Then, the matrix Mk,(I1,...,Is)(α), which is the evaluation of Mk,(I1,...,Is) at α, does not have full
rank.
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Proof. To prove the lemma it suffices to show that the matrix Mk,(I1,...,Is)(α) has a nontrivial kernel.
Towards this end, let f1, . . . , fs be the s distinct polynomials that correspond to the set S = [s]
found in the proof of Lemma 4.3.

We view a polynomial of degree at most k − 1 also as a vector of length k defined by its k
coefficients, where for 1 ≤ i ≤ k, the i-th coordinate of the vector is the coefficient of the monomial
xi−1 in that polynomial. Let fij = fi − fj ∈ Fkq for 1 ≤ i < j ≤ s, and let f = (fij : 1 ≤ i < j ≤

s) ∈ F(s2)k
q , which is the concatenation of the vectors fij according to the lexicographic order on(

[s]
2

)
defined in Section 2.

We claim that Mk,(I1,...,Is)(α) · fT = 0. Note that for any 1 ≤ i < j ≤ s, we have

fij + fjs − fis = 0. (5)

Recall that the row vectors of Bs correspond to the oriented triangles ∆ijs. Then it follows from
(5) and the definition of Bs that

(Bs ⊗ Ik) · fT = 0. (6)

Moreover, observe that by definition, for any l ∈ Ii ∩ Ij we have fi(αl) = fj(αl), which implies that
0 = fi(αl)− fj(αl) = (fi − fj)(αl) = fij(αl). Therefore Vk(Ii ∩ Ij) · fTij = 0, which implies that

diag
(
Vk(Ii ∩ Ij) : {i, j} ∈

(
[s]

2

))
· fT = 0. (7)

Combining (6) and (7) we conclude that Mk,(I1,...,Is)(α) · fT = 0, completing the proof of the
claim.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We give an upper bound on the number of bad evaluation vectors that
do not define a strongly t-perfect hash matrix.

Let M be the set of s-wise intersection matrix Mk,(I1,...,Is) that satisfy conditions (i)-(iv) of
Lemma 4.3 for any s ∈ {3, . . . , t}. It is clear that any s-wise intersection matrix Mk,(I1,...,Is) is
completely determined by the subsets I1, . . . , Is, therefore the size of M is at most 2nt.

By Lemma 4.3, for any bad evaluation vector α ∈ Fnq there exists a matrix M ∈ M whose
determinant is a nonzero polynomial in Fq[x1, . . . , xn] of degree less than k2t. However, by Lemma
4.4 det(M)(α) = 0. Therefore, the set of bad evaluation vectors is contained in the union of the
zero sets of the polynomials det(M), M ∈M, which by Lemma 4.2, is of size at most

|M| · (k2t)qn−1 ≤ (2ntk2t)qn−1 = On,t(q
n−1).

The result follows by observing that the number of evaluation vectors, i.e., the number of vectors
in Fnq with pairwise distinct coordinates is q!

(q−n)! = Θn(qn). Hence, for sufficiently large q there
exist many evaluation vectors that are not bad, and the result follows.

4.2 Proof of Proposition 4.1

Next, we prove Proposition 4.1, which implies that Theorem 1.3 is tight, at least for linear hash
matrices.
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Proof of Proposition 4.1. It is clear that any n × qk matrix M given by an [n, k]-RS code is
linear, as we may write M = Vk(α1, . . . , αn) · Q, where α = (α1, . . . , αn) is the evaluation vector,
Vk(α1, . . . , αn) is the associated n× k Vandermonde matrix as defined in (2), and Q is the k × qk
matrix whose columns are formed by the qk distinct vectors of Fkq . The statement on the optimality

follows from Theorem 4 of [BW98] which claims that any linear N×qk matrix that has the property
that any set of t columns is separated by at least one row, satisfies N ≥ k(t− 1).

By this result, the restriction to the first k(t− 1)− 1 rows of an n× qk linear matrix, contains
a set of t columns that are not separated at all. Hence, this set of columns is separated by at most
n− k(t− 1) + 1 rows of the n× qk linear matrix, and the result follows.

5 Near-Optimal List-Recovery of RS Codes: Proof of the Main
Theorem

In this section we prove our main theorem on the list-recovery of RS codes, Theorem 1.2. We will
in fact prove the following theorem, which implies Theorem 1.2.

Theorem 5.1. Let k, n, L, ` ∈ N+, ε ∈ (0, 1], and δ > 0 be such that L ≥ (1 + δ)`/ε− 1 and

k/n ≤ ε

c
√
`(1+δ

δ )(log(1
ε ) + log(1+δ

δ ) + 1)
,

where c > 0 is the constant in Lemma 5.3. Consider the RS code

C = {(f(α1), . . . , f(αn)) : f(x) ∈ Fq[x], deg(f) < k}

where q ≥ 2c
′(L+n logL) for a large enough constant c′ > 0 and α1, . . . , αn are chosen uniformly and

independently from Fq at random. Then with high probability, the code C has rate R = k/n and is
list-recoverable up to relative distance 1−ε with input list size ` and output list size L. In particular,

by choosing δ to be any positive constant, we could achieve L = O(`/ε) and R = Ω
(

ε√
`(log(1/ε)+1)

)
.

We begin with an overview of the proof.

5.1 Overview of the Proof

We give an overview of our proof of Theorem 5.1. For simplicity, let us first assume the input list
size ` equals one, i.e., we restrict to the case of list decoding. In this case, Theorem 5.1 states that
there exist RS codes of rate Ω( ε

log(1/ε)+1) that are list-decodable from radius 1 − ε with list size

O(1/ε).
As discussed previously, Conjecture 1.5 about the nonsingularity of intersection matrices would

be enough to establish Theorem 5.1, and indeed an even stronger result. While we do not know
if Conjecture 1.5 holds in general, Theorem 3.1 states that it holds under an extra condition that
Ii ∩ Ii′ ∩ Ii′′ = ∅ for distinct i, i′, i′′ ∈ [t]. Our proof of Theorem 5.1 is based on this theorem.

As Theorem 3.1 requires the above extra condition, which does not hold in general, we cannot
simply follow the proof in [ST20a] and replace Conjecture 1.5 by Theorem 3.1. One naive way of
fixing this is removing elements from the sets Ii until the condition Ii ∩ Ii′ ∩ Ii′′ = ∅ for distinct
i, i′, i′′ ∈ [t] is satisfied. Specifically, for each j ∈ [n] such that there exist more than two sets
Ii1 , . . . , Iis containing j, we pick two sets (say Ii1 and Ii2) and remove j from all the other sets.
The resulting sets I ′1, . . . , I

′
t satisfy the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ [t] and we

can now apply Theorem 3.1 to conclude that Mk,(I′1,...,I
′
t)

is nonsingular.
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The problem with this idea, however, is that wt(I ′[t]) is generally much smaller than wt(I[t]),

possibly by a factor of Θ(t) = Ω(1/ε). So in order to achieve wt(I ′[t]) ≥ (t − 1)k as required by

Theorem 3.1,5 we need to start with sets Ii such that wt(I[t]) � (t − 1)k. As a consequence,
implementing this idea directly only yields RS codes of rate Ω(ε2).

To mitigate this problem, we perform a random sampling of the collection {I1, . . . , It} before
removing elements from Ii. Namely, we choose a random subset J ⊆ [t] of some appropriate
cardinality to be determined later. Then, we remove elements from the sets Ii just like before,
but only for i ∈ J , so that the resulting sets I ′i satisfy the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct
i, i′, i′′ ∈ J . Finally, we apply Theorem 3.1 to conclude that the |J |-wise intersection matrix
Mk,(I′i)i∈J

is nonsingular, which can still be used to prove the list-decodability of the RS code.
The advantage of replacing [t] by the random sample J ⊆ [t] is that the condition wt(I ′[t]) ≥

(t − 1)k is replaced by wt(I ′J) ≥ (|J | − 1)k. It turns out that the condition I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for
distinct i, i′, i′′ ∈ J is easier to satisfy since |J | may be much smaller than t. Consequently, we are
able to show that there exist RS codes of rate Ω( ε

log(1/ε)+1) using this improved method.

Finally, we explain how to choose the cardinality of the sample J . Let j ∈ [n] and denote by
sj the number of sets among I1, . . . , It that contain j. Then for the index j, it is best to choose
|J | = Θ(t/sj). However, the number sj may vary when j ranges over [n], meaning that there may
not be a single choice of |J | that works best for all j ∈ [n] simultaneously.

We solve this problem using the following trick: Create a logarithmic number of “buckets” and
put j ∈ [n] in the i-th bucket if 2i−1 ≤ sj < 2i. Then choose |J | according to the heaviest bucket.
Here, we lose a factor of O(log(1/ε)+1) in the rate because there are about logL = O(log(1/ε)+1)
buckets.

Generalization to list recovery. In the case of list decoding, we choose each set Ii to be the
subset of coordinates where a codeword ci and the received word y agree. In the more general
setting of list recovery, there are multiple received words y(1), . . . , y(`) in the input list, so we need

to keep track of multiple sets I
(1)
i , . . . , I

(`)
i for each i ∈ [t].

One way of extending our proof to list recovery is choosing r ∈ [`] that maximizes wt(I
(r)
[t] ) =

wt(I
(r)
1 , . . . , I

(r)
t ) and then proceeding as in the case of list decoding, with I1, . . . , It replaced by

I
(r)
1 , . . . , I

(r)
t . It is not hard to show that this yields RS codes of rate Ω( ε

`(log(1/ε)+1)) which are

list-recoverable from radius 1− ε with input list size ` and output list size O(`/ε).
With a more careful analysis, we show that we can achieve a better rate Ω( ε√

`(log(1/ε)+1)
), as

stated by Theorem 1.2. Our analysis is inspired by [LP20] which proved a similar result on the
list-recoverability of randomly punctured codes with a different setting of parameters.

5.2 A Combinatorial Lemma

In this subsection, we state a combinatorial lemma (Lemma 5.3). It guarantees the existence of a
subset J ⊆ [t] and sets I ′i ⊆ Ii for i ∈ J that satisfy certain conditions, particularly the condition
I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J . We then use this lemma together with Theorem 3.1 to
prove Theorem 1.2. The proof of this combinatorial lemma is postponed to Subsection 5.4.

First, we need the following generalization of the weight function wt(·).

Definition 5.2 (Generalized weight function). Let n, t ∈ N+ and I1, . . . , It ⊆ [n]. Let Sj = {i ∈
[t] : j ∈ Ii} for j ∈ [n]. For J ⊆ [t] and ` ∈ N+, define the l-th generalized weight wt`(IJ) of IJ to

5Theorem 3.1 requires the stronger condition wt(I ′[t]) = (t − 1)k, but this can be achieved by further removing
elements from the sets I ′i.
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be

wt`(IJ) :=
n∑
j=1

max{|Sj ∩ J | − `, 0}.

Note that wt(IJ) =
∑

i∈J |Ii| − |
⋃
i∈J Ii| = wt1(IJ). Also note that

wt`(IJ) ≥
n∑
j=1

(|Sj ∩ J | − `) =
∑
i∈J
|Ii| − `n. (8)

The proof of Theorem 1.2 uses the following combinatorial lemma, which we prove in the next
subsection.

Lemma 5.3. Let k, n, t, ` ∈ N+, ε ∈ (0, 1], δ > 0, and I
(r)
1 , . . . , I

(r)
t ⊆ [n] for r ∈ [`]. Let

Ii =
⋃`
r=1 I

(r)
i for i ∈ [t]. Suppose t ≥ (1 + δ)`/ε, |Ii| ≥ εn for i ∈ [t], and

wt`(I[t]) ≥
(
c
√
`

(
log

(
1

ε

)
+ log

(
1 + δ

δ

)
+ 1

))
· tk.

where c > 0 is a large enough absolute constant. Then there exist J ⊆ [t] and a collection (I ′i)i∈J
of subsets of [n] indexed by J such that |J | ≥ 2, I ′i ⊆ Ii for i ∈ J , and the following conditions are
satisfied:

(1) I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J .

(2) wt(I ′J ′) ≤ (|J ′| − 1)k for all nonempty J ′ ⊆ J .

(3) wt(I ′J) = (|J | − 1)k.

(4) For every j ∈ [n], there exists rj ∈ [`] such that {i ∈ J : j ∈ I ′i} ⊆ {i ∈ J : j ∈ I(rj)
i }.

Remark 5.4. Condition (4) is introduced for list recovery. For the case ` = 1, which corresponds
to list decoding, Condition (4) is automatically satisfied by choosing rj = 1 for j ∈ [n] since in this

case I ′i ⊆ Ii = I
(1)
i for i ∈ J .

We also need the following lemma that bounds the number of pairs (J, (I ′i)i∈J).

Lemma 5.5. The number of (J, (I ′i)i∈J) satisfying Condition (1) of Lemma 5.3 is at most 2t(1 +
t+
(
t
2

)
)n.

Proof. There are at most 2t choices of J . Now fix J ⊆ [t]. For j ∈ [n], let Tj = {i ∈ J : j ∈ I ′i}.
Note that we have |Tj | ≤ 2 for all j ∈ [n] by Condition (1) of Lemma 5.3. So for each j ∈ [n], the
number of choices of Tj is at most 1 + t+

(
t
2

)
. Also note that the sets I ′i are determined by the sets

Tj by I ′i = {j ∈ [n] : i ∈ Tj}. So the number of choices of (J, (I ′i)i∈J) is at most 2t(1 + t+
(
t
2

)
)n.

5.3 Proof of Theorem 5.1

Now we are ready to prove our main theorem. For the reader’s convenience, we restate it below.

Theorem (Theorem 5.1, restated). Let k, n, L, ` ∈ N+, ε ∈ (0, 1], and δ > 0 such that L ≥
(1 + δ)`/ε− 1 and

k/n ≤ ε

c
√
`(1+δ

δ )(log(1
ε ) + log(1+δ

δ ) + 1)
,
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where c > 0 is the constant in Lemma 5.3. Consider the RS code

C = {(f(α1), . . . , f(αn)) : f(x) ∈ Fq[x], deg(f) < k}

where q ≥ 2c
′(L+n logL) for a large enough constant c′ > 0 and α1, . . . , αn are chosen uniformly and

independently from Fq at random. Then with high probability, the code C has rate R = k/n and is
list-recoverable up to relative distance 1−ε with input list size ` and output list size L. In particular,

by choosing δ to be any positive constant, we could achieve L = O(`/ε) and R = Ω
(

ε√
`(log(1/ε)+1)

)
.

Proof. Let t = L+ 1. Consider the following two conditions:

(1) αi 6= αj for all distinct i, j ∈ [n].

(2) For all J ⊆ [t] and (I ′i)i∈J satisfying Conditions (1)–(3) of Lemma 5.3, we have

det(Mk,(I′i)i∈J
(α1, . . . , αn)) 6= 0,

where Mk,(I′i)i∈J
denotes the

(|J |
2

)
k ×

(|J |
2

)
k variable matrix6

Mk,(I′i)i∈J
=

 B|J | ⊗ Ik
diag

(
Vk(I

′
i ∩ I ′j) : {i, j} ∈

(
J
2

))
 .

The first condition is satisfied with probability at least 1−
(
n
2

)
/q. For the second condition, consider

fixed J ⊆ [t] and (I ′i)i∈J satisfying Conditions (1)–(3) of Lemma 5.3. We know det(Mk,(I′i)i∈J
) 6= 0

by Theorem 3.1. Also note that det(Mk,(I′i)i∈J
) is a multivariate polynomial of total degree at most

(|J |−1)k(k−1) ≤ Lk2. So by Lemma 4.2, det(Mk,(I′i)i∈J
)(α1, . . . , αn) 6= 0 holds with probability at

least 1−Lk2/q for fixed J and (I ′i)i∈J . The number of choices of (J, (I ′i)i∈J) is at most 2t(1+t+
(
t
2

)
)n

by Lemma 5.5. By the union bound, the two conditions are simultaneously satisfied with probability
at least

1−
(
n

2

)
/q − 2t

(
1 + t+

(
t

2

))n
Lk2/q = 1− o(1)

over the random choices of α1, . . . , αn, where we use the assumption that q ≥ 2c
′(L+n logL) and

c′ > 0 is a large enough constant.
Fix α1, . . . , αn ∈ Fq that satisfy the above two conditions. By the first condition, the code C

has rate exactly k/n. It remains to show that C is list-recoverable up to relative distance 1 − ε
with input list size ` and output list size L. Assume to the contrary that this does not hold. Then
there exist t distinct polynomials f1, . . . , ft ∈ Fq[x] of degree less than k and ` received words

y(r) = (y
(r)
1 , . . . , y

(r)
n ) ∈ Fnq , where r = 1, 2, . . . , `, such that for all i ∈ [t], the cardinality of the set

Ii := {j ∈ [n] : there exists r ∈ [`] such that fi(αj) = y
(r)
j }

is at least εn.

6The number of rows of Mk,(I′i)i∈J
is
(|J|−1

2

)
k+

∑
{i,j}∈(J2) |I

′
i ∩I ′j |, which equals

(|J|−1
2

)
k+

∑
i∈J |I

′
i|− |

⋃
i∈J I

′
i| =(|J|−1

2

)
k + wt(I ′J) by Condition (1) of Lemma 5.3. This number further equals

(|J|−1
2

)
k + (|J | − 1)k =

(|J|
2

)
k by

Condition (3) of Lemma 5.3.
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Let I
(r)
i = {j ∈ [n] : fi(αj) = y

(r)
j } for i ∈ [t] and r ∈ [`], i.e., I

(r)
i denotes the set of

coordinates where C(fi) := (fi(α1), . . . , fi(αn)) and y(r) agree. So Ii =
⋃`
r=1 I

(r)
i for i ∈ [t]. As

t = L+ 1 ≥ (1 + δ)`/ε and k/n ≤ ε
c
√
`( 1+δ

δ
)(log( 1

ε
)+log( 1+δ

δ
)+1)

, we also have

wt`(I[t])
(8)

≥ tεn− `n ≥ δ

1 + δ
· tεn ≥

(
c
√
`

(
log

(
1

ε

)
+ log

(
1 + δ

δ

)
+ 1

))
· tk.

By Lemma 5.3, there exist J ⊆ [t] and (I ′i)i∈J such that |J | ≥ 2, I ′i ⊆ Ii for i ∈ J , and Condi-
tions (1)–(4) of Lemma 5.3 are satisfied.

Let u be the vector (fij : {i, j} ∈
(
J
2

)
, i < j) ∈ F(|J|2 )k

q , where fij := fi − fj , as defined in the
proof of Lemma 4.4. As |J | ≥ 2 and f1, . . . , ft are distinct, we have u 6= 0.

We claim that
Mk,(I′i)i∈J

(α1, . . . , αn) · uT = 0. (9)

To see this, first note that (B|J | ⊗Ik) · uT = 0 (cf. (6) in the proof of Lemma 4.4). Now consider a
row v of the submatrix

diag
(
Vk(I

′
i ∩ I ′j) : {i, j} ∈

(
J

2

))
(α1, . . . , αn),

of Mk,(I′i)i∈J
(α1, . . . , αn), which corresponds to some {i, j} ∈

(
J
2

)
with i < j and s ∈ I ′i ∩ I ′j . By

definition, we have v · uT = fij(αs), i.e., the row v represents the linear constraint fij(αs) = 0. By

Condition (4) of Lemma 5.3, we have s ∈ I(rs)
i ∩ I(rs)

j for some rs ∈ [`], which implies fi(αs) = y
(rs)
s

and fj(αs) = y
(rs)
s . So v · uT = fij(αs) = fi(αs)− fj(αs) = 0. This proves (9).

By (9), we have det(Mk,(I′i)i∈J
)(α1, . . . , αn) = 0. But this contradicts the choice of α1, . . . , αn.

5.4 Proof of Lemma 5.3

We present the proof of Lemma 5.3 in this subsection.

Let k, n, t, ` ∈ N+, ε ∈ (0, 1], δ > 0, and the sets I
(r)
i , Ii ⊆ [n] for i ∈ [t] and r ∈ [`] be as in

Lemma 5.3. That is, we have t ≥ (1 + δ)`/ε, Ii =
⋃`
r=1 I

(r)
i and |Ii| ≥ εn for i ∈ [t], and

wt`(I[t]) ≥
(
c
√
`

(
log

(
1

ε

)
+ log

(
1 + δ

δ

)
+ 1

))
· tk. (10)

where c > 0 is a large enough absolute constant. We may assume without loss of generality that

I
(1)
i , . . . , I

(`)
i are pairwise disjoint for all i ∈ [t]: if an element appears in both I

(r)
i and I

(r′)
i for

r 6= r′, we can remove it from one of them, and the set Ii does not change. Thus, if we can prove
Lemma 5.3 when these pairwise disjoint conditions hold, we can prove it in general, since we can
choose the same subsets I ′i ⊆ Ii after removing redundant elements.

For j ∈ [n], Sj := {i ∈ [t] : j ∈ Ii}. By definition, we have

wt`(I[t]) =
n∑
j=1

max{|Sj | − `, 0}. (11)

Assume for a moment that there exists an integer K ∈ N+ such that max{|Sj | − `, 0} equals either
K or zero for all j ∈ [n]. Then by (11), the number of j ∈ [n] for which max{|Sj | − `, 0} = K holds
(or equivalently, |Sj | = K + ` holds) is precisely wt(I[t])/K. The next lemma extends this fact to
the general case with only logarithmic loss.
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Lemma 5.6. There exists an integer K > 0 such that the number of j ∈ [n] satisfying |Sj | ≥ K+ `

is at least
wt`(I[t])

c0K(log( 1
ε

)+log( 1+δ
δ

)+1)
, where c0 > 0 is some absolute constant.

Proof. By (8) and the fact that t ≥ (1 + δ)`/ε, we have

wt`(I[t]) ≥ tεn− `n ≥
δ

1 + δ
· tεn. (12)

For i = 0, 1, 2, . . . , let Bi = {j ∈ [n] : 2i ≤ |Sj | − ` < 2i+1}. Then

wt`(I[t]) =

n∑
j=1

max{|Sj | − `, 0} =

dlog te−1∑
i=0

∑
j∈Bi

(|Sj | − `).

Let d = blog( δ
1+δ · tε/2)c. Note that d could be negative (possibly δ

1+δ · tε/2 ∈ (0, 1)). Then

∑
0≤i<d

∑
j∈Bi

(|Sj | − `) ≤ n2d ≤ δ

1 + δ
· tεn/2

(12)

≤ wt`(I[t])/2.

Therefore
dlog te−1∑
i=max{d,0}

∑
j∈Bi

(|Sj | − `) ≥ wt`(I[t])/2. (13)

Let ∆ = dlog te−max{d, 0} = O(log(1
ε ) + log(1+δ

δ ) + 1). By (13), there exists an integer i0 such
that max{d, 0} ≤ i0 ≤ dlog te − 1 and∑

j∈Bi0

(|Sj | − `) ≥
wt`(I[t])

2∆
. (14)

Choose K = 2i0 . Then K ≤ |Sj | − ` < 2K for all j ∈ Bi0 . The upper bound |Sj | − ` < 2K for

j ∈ Bi0 , together with (14), implies |Bi0 | ≥
wt`(I[t])

4K∆ . So the number of j ∈ [n] satisfying |Sj | ≥ K+`

is at least
wt`(I[t])

4K∆ = Ω

(
wt`(I[t])

K(log( 1
ε

)+log( 1+δ
δ

)+1)

)
.

Fix K satisfying Lemma 5.6. Define

A := {j ∈ [n] : |Sj | ≥ K + `} ⊆ [n].

By the choice of K and Lemma 5.6, we have

|A| ≥
wt`(I[t])

c0K(log(1
ε ) + log(1+δ

δ ) + 1)
. (15)

For j ∈ [n] and r ∈ [`], let S
(r)
j := {i ∈ [t] : j ∈ I(r)

i }. So Sj =
⋃`
r=1 S

(r)
j for j ∈ [n]. Note that

S
(1)
j , . . . , S

(`)
j are pairwise disjoint for all j: if i ∈ S(r)

j ∩ S
(r′)
j , we must have j ∈ I(r)

i ∩ I
(r′)
i , but we

have assumed that I
(1)
i , . . . , I

(`)
i are pairwise disjoint for all i.

We also need the following technical lemma.

Lemma 5.7. For real numbers p ∈ (0, 1
2 ] and x ≥ 0, we have (1−p)x(1+px) ≤ 1− 1

8p
2x2 if x ≤ 1

p ,

and (1− p)x(1 + px) ≤ 2
e otherwise.
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Proof. Fix p and let f(y) = (1− p)y(1 + py). For y ≥ 0, the derivative f ′(y) satisfies

f ′(y) = (1− p)y(ln(1− p) · (1 + py) + p)

≤ (1− p)y(−p(1 + py) + p)

= −p2y(1− p)y.
(16)

So f ′(y) ≤ −p2y(1 − p)x for y ∈ [0, x]. As f(0) = 1, we have f(x) ≤ 1 +
∫ x

0 −p
2y(1 − p)xdy =

1 − 1
2p

2x2(1 − p)x. If x ≤ 1
p , we have (1 − p)x ≥ (1 − p)1/p ≥ 1/4, as (1 − p)1/p is decreasing

with p, and thus is minimized at p = 1
2 . Hence, we have f(x) ≤ 1 − 1

8p
2x2. By (16), f(y) is

decreasing and thus maximized at y = 1/p on the interval [1/p,∞), so for x ≥ 1/p, we have
f(x) ≤ f(1/p) = (1− p)1/p(1 + 1) ≤ 2

e .

The above lemma is used to prove the following statement.

Lemma 5.8. Choose a random subset J ⊆ [t] by independently including each i ∈ [t] in J with
probability p = min{

√
`/(2K), 1

2}. Let

AJ := {j ∈ A : there exists r ∈ [`] such that |S(r)
j ∩ J | ≥ 2}.

Then E[|AJ |] = Ω(|A|).

Proof. Fix j ∈ A. It suffices to prove that Pr[j ∈ AJ ] ≥ c for some constant c. Let

tr := max{|S(r)
j | − 1, 0}

for r = 1, . . . , `. Let K ′ :=
∑`

r=1 tj . Since j ∈ A and Sj =
⋃`
r=1 S

(r)
j , we have

K ′ =
∑̀
r=1

tj ≥ |Sj | − ` ≥ K.

For all r = 1, . . . , `, we have

Pr[|S(r)
j ∩ J | ≤ 1] = (1− p)tr(1 + trp)

This is because the probability is exactly (1−p)tr+1 + (tr + 1)p(1−p)tr when tr ≥ 1, and is exactly
1 when tr = 0.

As S
(1)
j , . . . , S

(`)
j are disjoint, the events that |S(r)

j ∩ J | ≥ 2 are independent. Thus, the proba-
bility that j ∈ AJ is

Pr[j ∈ AJ ] = 1−
∏̀
r=1

Pr[|S(r)
j ∩ J | ≤ 1] = 1−

∏̀
r=1

(1− p)tr(1 + trp)

= 1− (1− p)K′
∏̀
r=1

(1 + trp).

We now bound this below by a constant. First consider the case K ′ ≤ `. Then ` ≥ K and
p ≥ 1

2
√
K
≥ 1

2
√
K′

. When x1, . . . , x` are constrained to be nonnegative integers with a fixed sum,

if there exists xi ≤ xj − 2, we can strictly increase the product f(x1, . . . , x`) :=
∏`
r=1(1 + xrp) by
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replacing xi with xi+ 1 and xj with xj−1. Thus, the maximum value of f(x1, . . . , x`) occurs when
K ′ of the xi are 1 and the rest are zero. Hence, we have

Pr[j ∈ AJ ] ≥ 1− (1− p)K′(1 + p)K
′

= 1− (1− p2)K
′ ≥ 1− (1− 1

4K ′
)K
′ ≥ 1− e−1/4,

as desired.
Now suppose K ′ > `. Note that p = min{

√
`/(2K), 1

2} ≥
√
`/(2K ′). As log(1+xp) is concave for

nonnegative real numbers x, we have that f(x1, . . . , x`) =
∏`
r=1(1+xrp) subject to x1+· · ·+x` = K ′

is maximized when all the xi’s are equal. Hence,

Pr[j ∈ AJ ] = 1− (1− p)K′
∏̀
r=1

(1 + trp) ≥ 1− (1− p)K′
(

1 +
K ′

`
p

)`
= 1−

((
(1− p)K′/`

)(
1 +

K ′

`
p

))`
as desired. If x := K ′/` ≤ 1/p, then, by Lemma 5.7, we have

Pr[j ∈ AJ ] ≥ 1−
(

1− p2 (K ′)2

8`2

)`
≥ 1−

(
1− 1

32`

)`
≥ 1− e−1/32

where the second inequality uses the fact p ≥
√
`/(2K ′). If x ≥ 1/p, then by Lemma 5.7, we have

Pr[j ∈ AJ ] ≥ 1 − (2/e)` ≥ 1 − 2/e. In all cases, Pr[j ∈ AJ ] is bounded below by a constant, as
desired.

Corollary 5.9. There exists J ⊆ [t] of cardinality at most c1

√
`t/K such that the cardinality of

the set AJ as defined in Lemma 5.8 is at least c2|A|, where c1, c2 > 0 are absolute constants.

Proof. Choose a random set J ⊆ [t] as in Lemma 5.8. Then E[|AJ |] = Ω(|A|) by Lemma 5.8. As
|AJ | ≤ |A|, we have Pr[|AJ | ≥ c2|A|] ≥ c3 for some absolute constants c2, c3 > 0.

Observe that by Lemma 5.8 and the linearity of expectation we have E[|J |] = pt = O(
√
`t/K).

Moreover, by Markov’s inequality we have Pr[|J | > c1

√
`t/K] ≤ c3/2 for some sufficiently large

constant c1 > 0. By the union bound, we know the conditions |J | ≤ c1

√
`t/K and |AJ | ≥ c2|A|

are simultaneously satisfied with probability at least c3/2 > 0, so there exists J ⊆ [t] that satisfies
these two conditions.

Fix J ⊆ [t] as in Corollary 5.9, so that |J | ≤ c1

√
`t/K and |AJ | ≥ c2|A|. As the constant c in

(10) is large enough, we may assume c ≥ c0c1/c2, where c0 is as in (15). Then we have

|AJ | ≥ c2|A|
(15)

≥ c2 ·
wt`(I[t])

c0K(log(1
ε ) + log(1+δ

δ ) + 1)

(10)

≥ (c1

√
`t/K)k > (|J | − 1)k. (17)

For each j ∈ AJ , choose a subset Tj ⊆ Sj ∩ J and an index rj ∈ [`] such that |Tj | = 2 and

Tj ⊆ S
(rj)
j . This is possible by the definition of AJ in Lemma 5.8. For j ∈ [n] \ AJ , let Tj = ∅. So

for j ∈ [n], we have

|Tj | =

{
2 j ∈ AJ ,
0 j 6∈ AJ .

Let I ′i = {j ∈ [n] : i ∈ Tj} ⊆ Ii for i ∈ J . We have

wt(I ′J) =

n∑
j=1

max{|Tj | − 1, 0} = |AJ |
(17)

≥ (|J | − 1)k.
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Moreover, the fact |Tj | ≤ 2 for j ∈ [n] implies that I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J , by
noting that Tj = {i ∈ J : j ∈ I ′i}.

For j ∈ AJ , we have

{i ∈ J : j ∈ I ′i} = Tj ⊆ S
(rj)
j ∩ J = {i ∈ J : j ∈ I(rj)

i }.

And for j ∈ [n] \AJ , we have

{i ∈ J : j ∈ I ′i} = Tj = ∅ ⊆ {i ∈ J : j ∈ I(r)
i } for any r ∈ [`].

Finally, we have |J | ≥ 2 as |AJ | ≥ c2|A| > 0. To summarize, we have proved the following weaker
version of Lemma 5.3.

Lemma 5.10. Under the assumption of Lemma 5.3, there exist J ⊆ [t] and a collection (I ′i)i∈J of
subsets of [n] such that |J | ≥ 2, I ′i ⊆ Ii for i ∈ J , and the following conditions are satisfied:

(1) I ′i ∩ I ′i′ ∩ I ′i′′ = ∅ for distinct i, i′, i′′ ∈ J .

(2) wt(I ′J) ≥ (|J | − 1)k.

(3) For every j ∈ [n], there exists rj ∈ [`] such that {i ∈ J : j ∈ I ′i} ⊆ {i ∈ J : j ∈ I(rj)
i }.

Now we are ready to prove Lemma 5.3.

Proof of Lemma 5.3. Choose the sets J and (I ′i)i∈J satisfying Lemma 5.10 such that |J | ≥ 2 is
minimized. Note that removing one element from I ′i for some i ∈ J preserves (1) and (3) of
Lemma 5.10 and reduces wt(I ′J) by at most one. Removing elements from the sets in (I ′i)i∈J one
by one until wt(I ′J) = (|J | − 1)k holds. Then J and (I ′i)i∈J satisfy (1), (3), and (4) of Lemma 5.3.

The minimality of |J | guarantees that wt(I ′J ′) ≤ (|J ′| − 1)k for all nonempty J ′ ⊆ J . (When
|J ′| = 1, this holds since wt(I ′J ′) = 0.) So J and (I ′i)i∈J satisfy (2) of Lemma 5.3 as well.

6 Towards Conjecture 1.4: A Hypergraph Nash-Williams–Tutte
Conjecture

Recall that Conjecture 1.4 states that RS codes of rate R are list-decodable from radius 1−R− ε
with list size at most d1−R−ε

ε e. As discussed in the introduction, it was shown in [ST20a, Theorem
5.8] that resolving Conjecture 1.5 (about the non-singularity of intersection matrices) would resolve
Conjecture 1.4 (about list-decoding).

Our approach above was to show in Theorem 3.1 that intersection matrices are nonsingular
under the additional assumption that Ii ∩ Ij ∩ I` = ∅ for all 1 ≤ i < j < ` ≤ t, and then
use that to conclude our main result about list-recovery. However, to prove Conjecture 1.4 in
full, we need to remove the additional three-wise intersection assumption. In this section, we
describe an approach that could potentially resolve Conjecture 1.4 in full. To do so, we conjecture
a hypergraph generalization of the Nash-Williams–Tutte theorem [NW61, Tut61] that may be of
independent interest, and prove that this conjecture implies Conjecture 1.4. Indeed, one might
hope that such a generalization would be useful for Conjecture 1.4, because the Nash-Williams–
Tutte theorem has been instrumental in proving several of the results in this paper, including
Theorem 1.1, Theorem 1.2, Theorem 3.1, and Theorem 1.3. Along the way, we give a second proof
of our main list decoding theorem, Theorem 1.1, by combining this approach with known results
on hypergraph packings [CS07, CCV09] In Section 6.1, we describe our conjecture, Conjecture 6.1,
and in Section 6.2, we prove that it implies the optimal list decoding conjecture, Conjecture 1.4.
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6.1 A Hypergraph Nash-Williams–Tutte Conjecture

In this section we state a conjecture (Conjecture 6.1 below), and prove that it implies our main goal
Conjecture 1.4. We are not able to prove Conjecture 6.1, but give some evidence for it, pointing
out that special cases and relaxations are known to be true.

Throughout, we use t as the number of vertices in a (hyper)graph. This variable corresponds
to the same t used in t-wise intersection matrices. A (multi)graph G is called k-partition-connected
if every partition P of the vertex set has at least k(|P| − 1) edges crossing the partition. By the
Nash-Williams–Tutte theorem, this is equivalent to the graph having k edge-disjoint spanning trees.
The parameter k here is the same k used as the dimension of the Reed–Solomon code and the same
k used for the Vandermonde matrix degrees in the intersection matrices.

We say a hypergraph H is k-weakly-partition-connected7 if, for every partition P of the vertices
of H, we have ∑

e∈E(H)

(P(e)− 1) ≥ k(|P| − 1), (18)

where P(e) is the number of parts of P that e intersects. For example, any k-partition-connected
graph is k-weakly-partition-connected as a hypergraph. As another example, k copies of a hyperedge
covering all t vertices of H is also k-weakly partition-connected.

An edge-labeled graph is a graph G where each edge is assigned a label from some set E. Let H
be a hypergraph. A tree-assignment of H is an edge-labeled graph G obtained by replacing each
edge e of H with a tree Fe of |e|−1 edges on the vertices of e. Furthermore, each edge of the graph
Fe is labeled with e. The graph G is thus the union of the graphs Fe for e ∈ H.

A k-tree-decomposition of a graph on k(t−1) edges is a partition of its edges into k edge-disjoint
spanning trees T0, . . . , Tk−1. We say tree-decomposition when k is understood. In an edge-labeled
graph T with edge-labels from some set E, let vT ∈ NE be the vector counting the edge-labels in
T . Specifically, vTe is the number of edges of label e in T . For a tree-decomposition (T0, · · · , Tk−1)
of an edge-labeled graph, define its signature v(T0,...,Tk−1) by

v(T0,...,Tk−1) :=
k−1∑
i=0

i · vTi . (19)

An edge-labeled graph G on t vertices is called k-distinguishable if G has k(t− 1) edges and there
exists a tree-decomposition T0, . . . , Tk−1 of G with a unique signature. That is, for any tree-
decomposition T ′0, . . . , T

′
k−1 with the same signature v(T ′0,...,T

′
k−1) = v(T0,...,Tk−1), we have T ′i = Ti for

i = 0, . . . , k − 1.
With these definitions, we can now conjecture a hypergraph version of the Nash-Williams–Tutte

theorem.

Conjecture 6.1. Let t and k be positive integers. Every k-weakly-partition-connected hypergraph
H on t vertices has a k-distinguishable tree-assignment.

The key result of this section is that our optimal list decoding of Reed–Solomon codes conjec-
ture follows from our hypergraph Nash-Williams–Tutte conjecture. This connection is proved in
Section 6.2 below.

7There is also a notion of “k-partition-connected” for hypergraphs which uses min{P(e) − 1, 1} in the sum. In
other words, a hypergraph is k-partition-connected if any partition P has at least k(|P| − 1) crossing edges. This
notion admits a Nash-Williams–Tutte type theorem: any k-partition-connected hypergraph can be decomposed into
k 1-partition-connected hypergraphs [FKK03]
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Theorem 6.2. Conjecture 6.1 implies Conjecture 1.5 and thus Conjecture 1.4.

One should convince themselves that Conjecture 6.1 (if true) is a generalization of the Nash-
Williams–Tutte theorem. Indeed, when H is a (non-hyper) graph, the conjecture boils down to
the Nash-Williams–Tutte theorem. If H is a graph on k(t − 1) edges, then there is only one
tree-assignment G of H, namely H itself with each edge labeled by itself. All edges have distinct
edge-labels, so for any tree-decomposition T0, . . . , Tk−1, the signature v(T0,...,Tk−1) is unique. Thus,
showing G is distinguishable, is equivalent to showing G has k edge-disjoint spanning trees, which
follows from the Nash-Williams–Tutte theorem. In the correspondence between hypergraph parti-
tions and intersection matrices, the special case when H is a graph corresponds to Theorem 3.1.

To give more intuition when H is not a graph, we give the following example.

Example 6.3. Let t = 4, and k = 2. Below, H is a 2-weakly-partition-connected hypergraph. We
take a tree assignment of H to obtain an edge-labeled graph G on 6 edges, where each edge is labeled
by its color. The tree-decomposition T0 ∪ T1 demonstrates that G is 2-distinguishable: We have
vT0 = (2, 1, 0) and vT1 = (0, 1, 2) so the signature is v(T0,T1) = 0 · vT0 + 1 · vT1 = (0, 1, 2). One can
check that any other tree decomposition (T ′0, T

′
1) of G has a different signature v(T ′0,T

′
1) 6= (0, 1, 2).

Thus, G is 2-distinguishable. Hence, H is a 2-weakly partition-connected hypergraph with a 2-
distinguishable tree-assignment, as predicted by Conjecture 6.1.

H G

−→ = +

T0 T1

As evidence towards Conjecture 6.1, we point out that the “easy part” of the conjecture follows
from the Nash-Williams–Tutte theorem. One can check that, even in general hypergraphs, every
tree-assignment of a k-weakly-partition-connected hypergraph gives a k-partition connected graph.
Thus, any tree-assignment graph can be partitioned into k spanning trees by the Nash-Williams–
Tutte theorem, establishing the “existence” part of the graph G being k-distinguishable. Thus,
the hard part of Conjecture 6.1 is the “uniqueness” part, finding a spanning tree partition with a
unique signature.

As further evidence towards Conjecture 6.1, we point out that a relaxation of Conjecture 6.1 is
true by assuming a larger weak-partition-connectivity [CS07, CCV09].

Theorem 6.4 (Follows from [CS07, CCV09]). There exists an absolute constant C such that the
following holds. Let t and k be positive integers. Every C(log t)k-weakly-partition-connected hyper-
graph H on t vertices has a tree-assignment with a k-distinguishable subgraph.

The results in [CS07, CCV09] look slightly different from Theorem 6.4 and we briefly describe
the connection here. Both of the works prove that every C(log t)k-weakly partition-connected hy-
pergraph has k hyperedge-disjoint connected subhypergraphs:8 the first [CS07] proves an equivalent
statement about bipartite Steiner tree packings, and the second [CCV09] proves a more general re-
sult about disjoint bases of polymatroids and also improves the constant C in front of the log factor

8A hypergraph is connected if, for every two vertices v and v′, there is a path v = v0, v1, . . . , v` = v′ such that,
for all i, vi−1, vi share a hyperedge.
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over [CS07]. Furthermore, it is not difficult to show that, for any hypergraph H with k hyperedge-
disjoint connected subhypergraphs H0, . . . ,Hk−1, any tree assignment of H has a k-distinguishable
subgraph: briefly, the k-distinguishable subgraph G is the union of spanning trees T0, . . . , Tk−1 of
the tree assignments of H0, . . . ,Hk−1 that are implied by the tree assignments of H, and the span-
ning trees T0, . . . , Tk−1 give the k edge-disjoint spanning trees of G that certify k-distinguishability.
Hence, any C(log t)k-weakly-partition-connected hypergraph has k hyperedge-disjoint connected
subhypergraphs and thus is k-distinguishable, which is Theorem 6.4.

While it is known that the log factor in the results of [CS07, CCV09] cannot be removed
[BJT03]9, one can still hope that Conjecture 6.1 is true. The results in [CS07, CCV09] are used
to obtain k-distinguishability by taking a tree packing where edges of the same label are always in
the same tree. Keeping the same edge labels in the same trees is not necessary in general to obtain
distinguishability. Indeed Example 6.3 illustrates that a tree-assignment can be k-distinguishable
even when the original hypergraph does not have a partition into k connected subhypergraphs.
Thus, we hope that the log factor can still be saved by splitting edge labels of the tree-assignment
graph across the k spanning trees. As we pointed out earlier, the existence of a tree-packing in
the tree-assignment graph follows from the Nash-Williams–Tutte theorem, so the hard part of the
conjecture is not finding the tree-packing, but finding a signature-unique one.

We point out that Theorem 6.4 can be used to obtain a second proof of Theorem 1.1 by following
the proof of Theorem 6.2, which connects hypergraph partitions to intersection matrices and then
applies a polynomial method to obtain list decodable Reed–Solomon codes. The extra O(log t)
factor in the weak-partition-connectivity of Theorem 6.4 appears as an O(log 1

ε ) factor loss in the
rate of the Reed–Solomon code. Since one proof of Theorem 1.1 is already given, and the key ideas
for this second proof are covered throughout the rest of the paper, we omit the details of this second
proof of Theorem 1.1.

In addition to implying optimal list decoding of Reed Solomon codes (Theorem 6.4), Conjec-
ture 6.1 may be of independent interest as a candidate hypergraph Nash-Williams–Tutte general-
ization. On one hand, a hypergraph Nash-Williams–Tutte generalization is known for partition-
connectivity [FKK03]. A hypergraph is k-partition-connected if any partition P has at least
k(|P| − 1) crossing edges. Frank, Király, and Kriesell [FKK03] showed that every k-partition-
connected hypergraph has k edge-disjoint 1-partition-connected subhypgraphs. On the other hand,
Nash-Williams–Tutte generalizations for weak-partition-connectivity seem to be less studied, and
Conjecture 6.1 provides a plausible generalization for weak-partition-connectivity.

6.2 Proof of Theorem 6.2

In this section we prove Theorem 6.2. To do so, we show the first implication, establishing the
connection between hypergraph partitions and intersection matrices outlined in Section 6.1. The
second implication was proved in [ST20a]. At a high level, the first implication of Theorem 6.2 holds
because the uniqueness of the signature of k edge-disjoint spanning trees implies the uniqueness of
a monomial in the determinant expansion of an intersection matrix. Because such a monomial is
unique, it does not cancel with any other terms in the determinant expansion, implying that the
determinant is nonzero. We now give the details.

We first derive a sufficient condition for a hypergraph being k-weakly-partition-connected.

9[BJT03] shows there exist Ω(logn)-weakly-partition-connected hypergraphs without two edge-disjoint connected
subhypergraphs.

33



Lemma 6.5. Let H be hypergraph on the vertex set [t] where for all J ( [t],∑
e∈E(H)

max(0, |e ∩ J | − 1) ≤ k(|J | − 1)

and
∑

e∈E(H)

(|e| − 1) ≥ k(t− 1). (20)

Then H is k-weakly-partition-connected.

Proof. According to (18) it suffices to show that for any partition P of the vertices ofH,
∑

e∈E(H)(P(e)−
1) ≥ k(|P| − 1). To see this, assume that P = {V1, . . . , Vs}. Then

∑s
i=1 |Vi| = t, and for each

e ∈ E(H), |e| =
∑s

i=1 |e ∩ Vi|. By the last equality, it is not hard to check that

|e| = P(e) +

s∑
i=1

max{0, |e ∩ Vi| − 1}.

It follows that ∑
e∈E(H)

(P(e)− 1) =
∑

e∈E(H)

(
|e| −

s∑
i=1

max{0, |e ∩ Vi| − 1} − 1
)

=
∑

e∈E(H)

(|e| − 1)−
s∑
i=1

∑
e∈E(H)

max{0, |e ∩ Vi| − 1}

≥ k(t− 1)−
s∑
i=1

k(|Vi| − 1) = k(s− 1),

where the last inequality follows from (20).

We now present the proof of Theorem 6.2.

Proof of Theorem 6.2. Assume Conjecture 6.1 is true. Let I1, . . . , It ⊆ [n] be subsets satisfying the
conditions of Conjecture 1.5. For all i ∈ [n], let ei = {j ∈ [t] : i ∈ Ij}. Let H be a (multi)hypergraph
with vertex set [t] and edge set E(H) = {ei : i ∈ [n]}.

Claim 6.6. For all subsets J ⊆ [t], we have
∑

e∈E(H) max(0, |e ∩ J | − 1) = wt(Ij : j ∈ J).

Proof. We have

∑
i∈[n]

max{0, |ei ∩ J | − 1} =
∑
i∈[n]

|ei ∩ J | −

∣∣∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣∣∣ =
∑
j∈J
|Ij | −

∣∣∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣∣∣ = wt(IJ),

where the first equality follows from the fact ∪j∈JIj = {i ∈ [n] : |ei ∩ J | ≥ 1}, the second equality
follows from easy double-counting, and the last equality follows from (1).

The following is an easy consequence of Lemmas 6.5 and Claim 6.6.

Claim 6.7. H is k-weakly-partitioned-connected.
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Proof. By Claim 6.6 and the setup of Conjecture 1.5, it is clear that for each J ( [t]∑
e∈E(H)

max{0, |e ∩ J | − 1} = wt(IJ) ≤ k(|J | − 1)

and
∑

e∈E(H)

max{0, |e| − 1} = wt(I[t]) ≥ k(t− 1).

It follows by Lemma 6.5 that H is k-weakly-partition-connected.

By our assumption that Conjecture 6.1 is true, there exists a tree-assignment G of H that is
k-distinguishable. Note that by definition G has k(t−1) edges, which are labeled by the hyperedges
of H. Let S ⊆ [n] be the subset so that {es : s ∈ S} forms the set of those labels. Then, an edge
{j, j′} of G has label es for some s ∈ S if and only if s ∈ Ij ∩ Ij′ .

Recall that

Mk,(I1,...,It) =

 Bt ⊗ Ik
diag

(
Vk(Ij ∩ Ij′) : {j, j′} ∈

(
[t]
2

))
 ,

and that the
(
t
2

)
k columns are labeled by the pairs {j, j′} ∈

(
[t]
2

)
, according to the

(
t
2

)
Vandermonde

matrices in the bottom diagonal. Our goal is to show that Mk,(I1,...,It) is nonsingular. As in the
proof of Theorem 3.1, it suffices to show the nonsingularity of

M ′k,(I1,...,It) :=

 Ik ⊗ Bt(
Ci : 0 ≤ i ≤ k − 1

)
 ,

where Ci = diag
(
V

(i)
k (Ij∩Ij′) : {j, j′} ∈

(
[t]
2

))
and V

(i)
k (Ij∩Ij′) is the (i+1)-th column of Vk(Ij∩Ij′).

Note that M ′k,(I1,...,It) is obtained by permuting the columns of Mk,(I1,...,It), with the column labels
remaining unchanged.

The following fact is easy to verify by definition.

Fact 6.8. Each row of
(
Ci : 0 ≤ i ≤ k − 1

)
has exactly k nonzero entries, which has the form

x0
s, x

1
s, . . . , x

k−1
s for some s ∈ S. Moreover, there is {j, j′} ∈

(
[t]
2

)
so that s ∈ Ij ∩ Ij′, and those k

nonzero entries are all contained in {j, j′}-labeled columns.

Let us consider
(
t
2

)
k ×

(
t
2

)
k submatrix M ′ of M ′k,(I1,...,It) obtained as follows:

1. Keep the top
(
t−1

2

)
k ×

(
t
2

)
k submatrix Ik ⊗Bt.

2. For every edge {j, j′} in G of label es, keep the row in
(
Ci : 0 ≤ i ≤ k − 1

)
with nonzero

entries x0
s, . . . , x

k−1
s in {j, j′}-labeled columns (this is well-defined according to Fact 6.8).

3. Remove all other rows.

AsG has k(t−1) edges, precisely k(t−1) rows are kept in step 2. Therefore, M ′ has
(
t−1

2

)
k+k(t−1) =(

t
2

)
k rows and is thus square.
Below we show that M ′ has a nonzero determinant, thereby implying that M ′k,(I1,...,It) and hence

Mk,(I1,...,It) are nonsingular, which is the claim of Conjecture 1.5, and thus establishing Theorem 6.2.

35



For that purpose, it is enough to show that there is a monomial that appears as a nonvanishing
term in the determinant expansion of M ′. To find such a monomial, we use the fact that G is
k-distinguishable.

Recall that for a subgraph F of G, we use vF ∈ NS to denote the vector that counts the edge
labels in F , where for s ∈ S, vFs is the number of edges with label es. Note that vF is a vector of
length |S| whose coordinates are indexed by elements in S. For spanning trees T, T0, . . . , Tk−1 of
G, define

xT :=
∏
s∈S

xv
T
s
s and x(T0,...,Tk−1) :=

k−1∏
i=0

(xTi)i. (21)

Observe that, by the definition in (19), we have v
(T0,...,Tk−1)
s =

∑k−1
i=0 i · vTis for all s ∈ S. Hence, it

follows from (21) that

x(T0,...,Tk−1) =
∏
s∈S

xv
(T0,...,Tk−1)
s
s . (22)

Since G is k-distinguishable, there exists a tree decomposition T0, . . . , Tk−1 such that for any
other tree-assignment T ′0, . . . , T

′
k−1, we have that the signatures v(T0,...,Tk−1) 6= v(T ′0,...,T

′
k−1). Thus,

it follows by (22) that the monomials x(T0,...,Tk−1) 6= x(T ′0,...,T
′
k−1).

Claim 6.9. Let T0, . . . , Tk−1 be spanning trees as defined above. Then, x(T0,...,Tk−1) appears as a
nonvanishing term in the determinant expansion of M ′.

Proving Claim 6.9 establishes the nonsingularity of M ′ and thus, as discussed above, Theo-
rem 6.2. For that purpose, we identify the nonzero entries in the bottom (t − 1)k rows of M ′ by
tuples (s, {j, j′}, i), where s ∈ S ∩ (Ij ∩ Ij′), {j, j′} ∈

(
[t]
2

)
, and 0 ≤ i ≤ k − 1. Indeed, such a tuple

corresponds to the entry xis in the {j, j′}-labeled column of Ci. It is worth mentioning that we used
two types of labeling here: first, each column of Ik⊗Bt and (Ci : 0 ≤ i ≤ k− 1) is labeled by some
edge {j, j′} ∈

(
[t]
2

)
; second, each edge of G is labeled by some variable xs, s ∈ S.

Let U denote the set of all (t − 1)k2 nonzero entries in the bottom (t − 1)k rows of M ′. For
Q ⊂ U , let MQ denote the submatrix of M ′ obtained by removing all of the rows and columns that
contain some entry in Q. We say Q is a partial transversal if it contains exactly one element in each
of the bottom (t− 1)k rows of M ′, and no two share a column. By the definition of determinant,

det(M ′) =
∑

Q partial transversal

±det(MQ) ·
∏

(s,{j,j′},i)∈Q

xis. (23)

For a partial transversal Q and 0 ≤ i ≤ k − 1, let Qi be the subgraph of G that corresponds to
the tuples (s, {j, j′}, i) ∈ Q, namely,

Qi =

{
{j, j′} ∈

(
[t]

2

)
: (s, {j, j′}, i) ∈ Q for some s ∈ Ij ∩ Ij′

}
.

Note that we view each Qi as a labeled subgraph that preserves the labeling of G. Moreover, as Q
forms a partial transversal, each Qi is a simple graph with no multiple edges, while G could be a
multigraph.

We have the following claim.
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Claim 6.10. Let Q ⊆ U be a partial transversal. Then, det(MQ) 6= 0 if and only if Q0, . . . , Qk−1

form pairwise edge-disjoint spanning trees of G.

Proof of Claim 6.10. For the “only if” part, note, that by the definition of a partial transversal,
MQ is a

(
t−1

2

)
k ×

(
t−1

2

)
k square matrix with k diagonal blocks, where for each 0 ≤ i ≤ k − 1, the

(i + 1)-th diagonal block is obtained by removing from Bt all of the columns that are labeled by
the edges of Qi. As Bt has full row rank, det(MQ) 6= 0 if and only if each of the k diagonal blocks
also has full row rank. By Claim 3.5, the (i+ 1)-th block has full row rank if and only if the labels
of the removed columns form an acyclic graph on the vertices [t], namely, Qi is acyclic.

Since k(t− 1) columns are removed in total, and an acyclic subgraph on t vertices can have at
most t−1 edges, det(MQ) 6= 0 can only happen if each Qi is a spanning tree. Moreover, as elements
in Q form a partial transversal, we never have (s, {j, j,′ }, i) and (s, {j, j′}, i′) both in Q, for i 6= i′.
It follows that the Qi’s are also pairwise edge-disjoint, completing the proof of the “only if” part.

According to the discussions above, it is not hard to see that the “if” part follows fairly straight-
forwardly from Claim 3.5. Therefore, we omit its proof.

We are now in a position to present the proof of Claim 6.9.

Proof of Claim 6.9. With the notation above, it is not hard to check by definition that for a partial
transversal Q ⊆ U with det(MQ) 6= 0,

∏
(s,{j,j′},i)∈Q

xis =
∏
s∈S

k−1∏
i=0

(xv
Qi
s
s )i =

∏
s∈S

xv
(Q0,...,Qk−1)
s
s = x(Q0,...,Qk−1). (24)

It thus follows from (23), (24), and Claim 6.10 that

det(M ′) =
∑

Q0,...,Qk−1 edge-disj. spanning trees of G

±det(MQ) · x(Q0,...,Qk−1).

It is clear that by the definition of T0, . . . , Tk−1, in the above summation the monomial x(T0,...,Tk−1)

appears exactly once, and hence appears as a nonvanishing term in the determinant expansion,
completing the proof of Claim 6.9 and thus the proof of Theorem 6.2.
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A Examples of Intersection Matrices

Example A.1 (4-wise intersection matrices). Given four subsets I1, I2, I3, I4 ⊆ [n], the 4-wise
intersection matrix Mk,(I1,I2,I3,I4) is the (3k +

∑
1≤i<j≤4 |Ii ∩ Ij |)× 6k variable matrix

Ik −Ik Ik
Ik −Ik Ik

Ik −Ik Ik
Vk(I1 ∩ I2)

Vk(I1 ∩ I3)

Vk(I2 ∩ I3)

Vk(I1 ∩ I4)

Vk(I2 ∩ I4)

Vk(I3 ∩ I4)



.

Example A.2. For k = 2, instead of considering the following 4-wise intersection matrix

 B4 ⊗ I2

diag(Vk(Ii ∩ Ij) : {i, j} ∈
(

[4]
2

)
 =



1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 x1

1 x2

1 x3

1 x4

1 x5

1 x6



,
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we turn to prove the nonsingularity of

 I2 ⊗ B4

(Ci : 0 ≤ i ≤ 1)

 =



1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1 x1

1 x2

1 x3

1 x4

1 x5

1 x6



.
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